Hydroregime prediction models for ephemeral groundwater-driven sinkhole wetlands: a planning tool for climate change and amphibian conservation

Abstract

Hydroregimes of ephemeral wetlands affect reproductive success of many amphibian species and are sensitive to altered weather patterns associated with climate change.We used 17 years of weekly temperature, precipitation, and waterdepth measurements for eight small, ephemeral, groundwaterdriven sinkhole wetlands in Florida sandhills to develop a hydroregime predictive model. To illustrate its utility for climate-change planning, we forecasted weekly wetland water-depths and hydroperiods (2012–2060) using our model and downscaled climate data from the CSIRO Mk3.5 Global Circulation Model under an A1B emissions scenario.We then examined how forecasted water depths and hydroperiods might alter reproductive success, and thereby populations, of five anuran species. Precipitation and water-depth from the prior week were significant predictors of water depth. Our model forecasted shallower depths and shortened hydroperiods for most wetlands when used with the CSIRO Mk3.5 A1B scenario. The forecasted hydroregimes would likely provide adequate reproductive opportunity for only one of the five species we examined. We demonstrate the utility of our model in examining how different climatechange scenarios might affect hydroregimes and, indirectly, biological diversity. Climate change uncertainty highlights the importance of retaining multiple, hydrologically diverse wetlands on landscapes to maximize the potential for successful reproduction by species having differing hydroregime requirements.

  • Citation: Greenberg, C. H.; Goodrick, S.; Austin, J. D.; Parresol, B. R. 2015. Hydroregime prediction models for ephemeral groundwater-driven sinkhole wetlands: a planning tool for climate change and amphibian conservation. Wetlands. 13 p. 10.1007/s13157-015-0680-0
  • Keywords: Amphibian reproduction . Climate change ., Ephemeral wetlands . Groundwater-driven wetlands ., Hydroperiod .Hydroregime .Ocalanationalforest .Predictive models, Sinkhole wetland
  • Posted Date: August 10, 2015
  • Modified Date: August 10, 2015
  • Print Publications Are No Longer Available

    In an ongoing effort to be fiscally responsible, the Southern Research Station (SRS) will no longer produce and distribute hard copies of our publications. Many SRS publications are available at cost via the Government Printing Office (GPO). Electronic versions of publications may be downloaded, printed, and distributed.

    Publication Notes

    • This article was written and prepared by U.S. Government employees on official time, and is therefore in the public domain.
    • Our online publications are scanned and captured using Adobe Acrobat. During the capture process some typographical errors may occur. Please contact the SRS webmaster if you notice any errors which make this publication unusable.
    • To view this article, download the latest version of Adobe Acrobat Reader.