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Abstract

The demand for forest monitoring is growing rapidly with emphasis on 
carbon dynamics, due in part by incentives being negotiated under the 
United Nation’s Reducing Emissions from Deforestation and Forest 
Degradation (REDD+) process. While much of the temperate and boreal 
forest in developed countries is being monitored as part of national forest 
inventories, tropical forests are the least monitored and most at risk of 
deforestation. The Forest Inventory and Analysis (FIA) program of the U.S. 
Forest Service is working through its National Inventory and Monitoring 
Applications Center (NIMAC) to coordinate technical assistance in forest 
monitoring for other countries. NIMAC has developed a 15-step approach 
and an inventory planning and design tool. Examples from Honduras, Peru, 
Guyana, and the Democratic Republic of the Congo are given. Challenges 
remain in the areas of efficient plot configurations and sampling designs for 
remote areas with high biodiversity and in maximizing the use of remote 
sensing to enhance ground-based estimation. 

INTRODUCTION

The demand for forest monitoring is growing rapidly 
around the globe with an emphasis on carbon dynamics. 
This is driven in large part by incentives being negotiated 
under the United Nation’s Reducing Emissions from 
Deforestation and Forest Degradation (REDD+) process. 
Others reasons include sustainable forest management 
for timber products, biodiversity conservation, wildlife 
habitat, and other ecosystem services. The United States 
government is interested because REDD+ is a cost-
effective opportunity for reducing carbon emissions while 
providing for sustainable use of forests to help keep them as 
forests. While much of the temperate and boreal forests in 
developed countries are being monitored as part of national 
forest inventories (NFI), tropical forests are the least well 
monitored and most at risk of deforestation.

WHAT IS FIA DOING ABOUT IT?

The Forest Inventory and Analysis (FIA) program of 
the U.S. Forest Service is working through its National 
Inventory and Monitoring Applications Center (NIMAC) 
to coordinate technical assistance in forest monitoring 
to other countries. Requests for assistance come through 
the U.S. Department of State’s Agency for International 
Development and International Programs of the U.S. Forest 

HOW IS FIA HELPING OTHER COUNTRIES 
MONITOR THEIR FORESTS?
Charles T. Scott

Charles T. Scott, Program Manager, National Inventory and Monitoring Applications Center, Northern Research Station, US Forest Service, 
11 Campus Blvd. Suite 200, Newtown Square, PA 19073

Service. NIMAC identifies individuals from within and 
outside NIMAC with the skills needed for each project, 
thus improving efficiency and providing more consistent 
assistance. NIMAC staff has also developed documentation 
and software tools to enhance the quality of the advice and 
delivery of technical assistance in a collaborative manner.

WHAT IS NIMAC DOING?

NIMAC takes a 15-step approach (Scott 2009) that starts 
by determining each country’s objectives and monitoring 
needs. This focuses the effort on the goals and ensures that 
each step supports achievement of the goals. To facilitate the 
first seven steps, NIMAC developed an inventory planning 
and design tool called the Design Tool for Inventory and 
Monitoring (DTIM). NIMAC also offers advice on the use 
of other FIA tools, such as data recorder software, databases, 
and data analysis. While some in-country assistance is 
critical, FIA has adopted a capacity-building approach by 
providing training that can be offered in the United States, 
the host country, as multi-country workshops, as webinars, 
or as online training tools. 

The 15 monitoring steps are grouped into four categories:

A. Design phase
B. Data collection
C. Database and data processing
D. Analysis, reporting, and decisionmaking

Design Phase

The first seven steps focus on planning and designing the 
inventory. DTIM was developed to lead users through 
these steps. DTIM is continually being updated; a Spanish 
language version is now available.

1. Identify stakeholders and their objectives. Typically there 
are national and international stakeholders. Objectives often 
include measuring (or assessing) carbon sequestration, 
sustainable timber production, and biodiversity 
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conservation. DTIM provides a list of common objectives 
from which to choose.

2. Identify key monitoring questions for each objective. 
Develop questions that will determine whether the chosen 
objectives are being met. This is often challenging, so DTIM 
provides a list of standard questions that are linked to the list 
of common objectives from which to choose.

3. Identify attributes needed to answer each question. This is 
often best done by identifying the table of estimates needed 
to answer the question, such as estimating area by forest 
type and stage of development class when the objective is 
to restore forest composition and structure. DTIM presents 
a list of FIA attributes (or metrics) that could be used to 
answer each of the standard questions.

4. Evaluate existing data to determine if they are sufficient 
for answering the questions. Identify available data sources 
for the area of interest. Determine whether data cover the 
entire area of interest, include all the required attributes, and 
have sufficient precision to answer the questions. If so, skip 
to the analysis phase. If not, then determine what is needed 
to fill the data gap. Typically, there are only data for parts of 
tropical countries and are rarely from remeasured plots. 

5. Determine the precision required and funds available 
for the inventory. For each of the key variables (e.g., forest 
area, area change, totals for each of the forest carbon pools, 
and total commercial volume), determine the confidence 
level (e.g., 90 percent) and confidence intervals (e.g., ±15 
percent). The decisionmaker must assess the risk of making 
an incorrect decision based on imprecise estimates. REDD+ 
payments are to be linked to the reliability of the estimates. 
Precision requirements are difficult to establish; cost limits 
are usually easier to determine, so the inventory planner can 
focus on optimizing precision for inventorying a suite of 
variables for a predetermined funding level. By specifying 
both in advance, the final requirements can be established 
iteratively. In many cases, external matching funds are being 
provided to begin the monitoring project.

6. Determine the optimal plot design based on the 
requirements and information needs, then determine the 
sampling design, including sample sizes. For long-term 
monitoring (remeasurements), we recommend using 
proportional allocation to strata. Since strata boundaries tend 
to change over time, the selection probabilities can become 
very complicated to determine. The subject of plot design is 
ripe for further research in the tropics, but solutions usually 
involve large plots (e.g., 0.5 ha) due to high biodiversity and 
remoteness, and plots are rectangular (e.g., 20 x 250 m) due 
to difficulty of determining border trees.

7. Identify the plot locations. For new inventories, we 
recommend a spatially balanced design such as FIA’s 
hexagonal grid (Reams 2009) or NIMAC’s space-filling 
curve approach (Lister and Scott 2009). This method was 
utilized by NIMAC in the broadleaf inventory of the Rio 
Plátano region in Honduras. 

Data Collection

8. Develop a field guide. We encourage the use of existing 
guides (or some of the attributes they contain) from within 
the country, nearby countries, or developed for international 
use, such as by FAO (United Nations Food and Agriculture 
Organization). Collect the targeted attributes in as consistent 
a way as possible for upward reporting purposes. An 
important part of this process is developing definitions for 
each variable, such as land use and land cover classes, and 
forest land. FIA’s field guides are available at: http://www.
fia.fs.fed.us/library/field-guides-methods-proc/ 

9. Plan the field logistics and provide training. Field 
logistics is an issue that is usually best left to local expertise 
and to international organizations, such as FAO’s National 
Forest Monitoring and Assessment group, who routinely 
do this kind of work. The tropics present many logistical 
challenges so the solutions are different. For example, FIA 
uses one to two person field crews. But crews in the tropics 
typically range from 5 to14 people, often including one or 
two trained foresters, someone skilled at identifying tree 
species, one or two crew members who wield machetes to 
clear the way, and sometimes a cook and someone to care 
for the crew’s health. FIA has cooperated in conducting field 
training, including field safety. 

10. Conduct data collection. With planning, preparation, 
and training completed, the field work begins. We encourage 
the use of portable data recorders (PDRs) to collect the 
data in the field. Since FIA’s MIDAS (Mobile Integrated 
Data Acquisition System) program is very specific to FIA, 
NIMAC is working with Honduras on the development 
of a general data entry program called SIBP2. We also 
recommend performing Quality Control and Quality 
Assurance checks. While revisiting plots to check on 
data quality is expensive, not checking can be even more 
expensive, because forest management decisions could be 
based on inaccurate data. 

Database and Data Processing

11. Store data in a database. Upload the data from the PDRs 
or enter the data from tally sheets, and store in a relational 
database. Run edit checks on the data – data validation and 
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crosschecks. If using a PDR, the edits should have been 
done during data entry in the field where the corrections are 
most easily and accurately made.

12. Use models and formulas to estimate computed fields. 
Once the data are clean, then computed variables, such as 
basal area, volume, biomass and carbon, are calculated and 
added to the database along with the field data. For countries 
in the REDD readiness phase, this can be a challenge since 
the carbon pool models often do not exist and no credit will 
be given when models from outside the region are used. Any 
stratification used (either prior to plot selection or afterwards 
must be assigned to individual plots and the stratum weights 
stored in the database. These stratifications are typically 
obtained from classification of satellite imagery. 

Analysis, Reporting and 
Decisionmaking

13. Perform the analysis. Produce one-, two- or three-way 
tables to answer the questions asked in the second step. FIA 
has developed an MS Access program called EVALIDator. 
The program is stored with the data and can be downloaded 
at http://www.fia.fs.fed.us/tools-data/default.asp then 
click on FIA DataMart. It produces tables with associated 
sampling errors. Produce report(s) based on the tables. 
This step is often never reached, leaving the data greatly 
underutilized. Easy-to-use analytical tools help to overcome 
this problem. The program has proved flexible enough for 
recent use in a project in Honduras.

14. Check that monitoring system met the need. Did the data 
collected meet the information needs? Were the questions 
answered? Were the precision and cost limits met? Adjust 
the monitoring system as needed for application elsewhere 
and/or for remeasurement.

15. Make management decisions. For REDD+ countries, 
the results will be used to make decisions on payments and 
as feedback on the efficacy of policies, regulations, and 
programs.

EXAMPLES 

FIA has provided assistance in the Democratic Republic 
of Congo, Peru, Guyana, and several other countries. 
The recent focus has been on REDD+, national forest 
inventories, inventories for sustainable forest management 
planning, and on estimating populations of endangered 
species, such as mahogany. 

 
As the largest of the 10 countries in the Congo River basin, 
the Democratic Republic of Congo (DRC) has received 
significant attention to improve a forest monitoring in 
preparation for an eventual operational REDD+ mechanism. 
The country is seventh in forest area (321 million ha) and 
has the second largest tropical forest. Much like Alaska, 
it is remote with few roads. Inventories of some of the 
regions have been completed in the accessible areas, but a 
national forest inventory has never been completed. Aerial 
photography is outdated. Securing quality satellite imagery 
for the DRC is difficult due to persistent cloud coverage and 
other challenges. Historically, the deforestation rates are 
low. In addition to REDD+, DRC is interested in a full NFI 
and in intensifying the sample further to inform management 
of production forests (forest management concessions) and 
otherwise better inform land-use decisions. The expectation 
is that additional well managed forests would provide sorely 
needed economic development opportunities from national 
to the local levels, resulting in many benefits including 
providing a viable alternative to slash-and-burn agriculture.
Peru has initiated three large inventory projects. In 
the first project, FAO and Peru are co-funding the first 
complete national forest inventory. NIMAC is providing 
some technical assistance with the planning and design. 
In the second project, Peru is preparing for a second 
round of offering forest concessions for roughly a third 
of the country’s forest area (the remaining two-thirds is 
under various forms of protection). NIMAC is providing 
assistance on how to do a low-cost pre-concession inventory 
that provides improved spatial resolution for the bidders of 
individual concessions. Third, NIMAC is exploring options 
in Peru for enhancing the estimates of the mahogany and 
Spanish cedar populations, such as by increasing the NFI 
plot size for these species and/or intensifying the sample in 
areas with high probability of occurrence.

In Guyana, FIA has provided technical assistance that led 
to two requests for proposals, one for estimating carbon for 
REDD+ and the other on remote sensing to estimate land 
use change. NIMAC will continue to provide technical 
expertise on a national forest inventory in addition to 
Measuring, Reporting and Verification (MRV) for REDD+, 
but will focus on providing various kinds of training. 

U.S. Forest Service International Programs and FIA plan to 
expand the training to provide more consistent and effective 
technical assistance to the many countries seeking such 
aid. By providing regional training sessions to multiple 
countries, web-based training, and hosting training sessions 
in the United States, the demand on FIA staff time should be 
reduced.

2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists
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FUTURE DIRECTION

Although FIA has long provided technical assistance to 
other countries, the current demand is unprecedented. To 
meet this demand, FIA is collaborating with FAO, other 
international aid agencies, universities, and other partners 
on several topics. Research is needed on efficient plot 
configurations and sampling designs for remote areas with 
high biodiversity. The current methods are efficient for 
one-time inventories, but may not be cost-effective for 
long-term monitoring. Research is needed on maximizing 
the use of remote sensing to enhance ground-based 
estimation. Fortunately, considerable funding and efforts 
are being expended to address this important issue. Other 
topics include how to quantify forest degradation and how 
to determine the baseline. To assist with planning, design, 
electronic data collection, data management, analysis and 
reporting, NIMAC, FAO and others are developing software 
tools that are flexible for meeting individual countries 
needs. Finally, training materials and modules are needed 
in various forms, such as in-country, regional and U.S.-
based training sessions, webinars, web-based tutorials, and 
documentation. Together, these efforts will help address the 
growing need for forest carbon monitoring.
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Abstract

This study used USDA Forest Service Forest Inventory and Analysis (FIA) 
plot data, forest growth models, wildland fire emission estimates and timber 
harvest data to estimate the live tree carbon storage and flux of California’s 
forests and woodlands. Approximately 30 Tg CO2e per year was 
estimated as the annual flux for all California forests. The forest inventory 
components not analyzed here may reduce this to about 28 Tg CO2e per 
year. Over 80 percent of the annual net sequestration was estimated to 
come from public forestlands; however the private lands forest growth was 
likely underestimated given the growth models that were used. Suggestions 
for continued improvements in forest carbon inventory estimates include 
more accurate projections, biomass function improvements, continued 
FIA data collection, and spatial data analysis of change from natural and 
anthropogenic disturbance.

INTRODUCTION 

The forestry sector, in the global context of the forest 
industry and the forests themselves, was estimated by the 
IPCC to produce about 17 percent of global greenhouse 
gas (GHG) emissions (IPCC 2007). The majority of these 
emissions were from tropical deforestation. Temperate and 
boreal forests, while generally not under the socio-economic 
development pressures of some tropical forests, can also 
impact GHG accounting at the state and national levels. The 
EPA estimates that U.S. forests sequester approximately 600 
megatonnes (Tg) of CO2e per year (EPA 2004). Conversely, 
the recent mountain pine beetle (Dendroctonus ponderosae) 
outbreak in British Columbia was estimated to cause 990 Tg 
of CO2e emission from 2000 to 2020, taking the forest from 
a sink to a large net carbon emitter (Kurz et al. 2008). 

The EPA forest carbon estimates included live trees, 
understory vegetation, forest floor, down dead wood, 
soils, wood products in use, and landfilled wood products 
(EPA 2004). The California Energy Commission (CEC) 
commissioned a study of forest carbon in California that 
estimated 7.5 Tg of CO2e per year were sequestered 
(Brown et al. 2004). The carbon pools included in that 
study were the on-site pools, excluding wood products. The 

CURRENT FOREST AND WOODLAND 
CARBON STORAGE AND FLUX IN 
CALIFORNIA: AN ESTIMATE FOR THE 2010 
STATEWIDE ASSESSMENT

Timothy A. Robards, Ph.D., Senior Scientist/Forest Biometrician, Spatial Informatics Group, Pleasanton, CA 94588, Email: trobards@sig-gis.com

Timothy A. Robards

California Air Resources Board (CARB), in developing 
the Scoping Plan (CARB 2008) for implementation of The 
Global Warming Solutions Act of 2006 (AB 32), used a 
conservative target of annual forest sequestration that was 
derived from the CEC report. This sequestration estimate 
was 5.0 Tg of CO2e per year. 

CARB is required to periodically report on GHG 
emissions in California (CARB 2009). CARB uses an 
atmospheric flow approach to estimate net flux between 
pools. Refinements of forest carbon cycling will assist in 
ensuring that AB 32 targets are met. This study, which is 
summarized in the California Forest and Range Assessment 
(FRAP 2010), provides estimates of some elements of an 
inventory with a focus on areas that were most likely to be 
substantially different from existing estimates. This includes 
live tree and wood products pools with mortality losses from 
competition, pests and fire. 

METHODS 

A ten-year period was used to characterize sequestration in 
tree growth; emissions from tree mortality caused by fire, 
harvest and other agents; and storage in in-use and landfill 
wood product pools. The most recent 10-year period 
was used for each component to most accurately estimate 
current fluxes. The current economic recession was 
generally not included in these estimates, which likely 
overestimate 2009-2010 harvest levels and associated 
emissions and storage. 

The USDA Forest Service’s Forest Inventory and Analysis 
(FIA) data was relied on for estimates of current storage 
(FIA 2008). Stock change estimates were derived by 
applying forest growth simulations. The FIA data is 
generally measured on 10-year cycles in California although 
shorter cycles exist on some National Forests (FIA 2009a). 
Modeling simulations were necessary because the FIA plots 
were essentially relocated, with minor overlap of a subplot, 
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in 2001 so that insufficient re-measurements exist for 
reliable stock change estimates. 

Each FIA plot cluster was grown using one of four variants 
of the USDA Forest Service’s Forest Vegetation Simulator 
(FVS). A computer application called the California Forest 
and Range Analysis System (CFRAS) was developed by 
the author in Microsoft Visual Basic to serve as a menu-
driven user interface to read and process FIA data, call FVS 
simulators, and process FVS output (Robards 2010). The 
FVS variants and the geographic areas they cover are listed 
in Table 1. The number of plots were evenly distributed in 
each year from 2001 to 2007 so that the 10-year projections 
of growth was averaged over a seven year period. 

The CFRAS application processed the tree lists at time zero 
and ten years to calculate the above and below-ground live 
tree carbon. Above-ground biomass (bole, bark and crown 
limbs) used the USDA Forest Service FIA regional volume 
and biomass functions (FIA 2009b; FIA 2009c). The below-
ground biomass was estimated using the following model 
from Cairns (1997). 

                                                                                            [1]

where, 
AGB = above-ground biomass, 
BGB = below-ground biomass. 

Carbon was estimated by multiplying biomass by 0.5. 
Carbon dioxide was estimated by multiplying carbon by 
3.67. 

Simulations were made for four land bases in California: 

• all forestland, 
• public forestland only, 
• private forestland only, and 
• private timberland only. 

Timberland is a subset of forestland and is defined as lands 
capable of producing in excess of 20 cubic feet/acre/year at 
its maximum production. 

Tree Growth 
The difference in tree size over the ten-year projection 
period was the tree growth, which was calculated in terms 
of carbon tonnes by plot. No harvesting or mortality was 
assumed (i.e. all trees survived). This was termed simply 
“growth.”

Non-Fire Emissions from Mortality
Two projections of growth were made using the FIA data 
and FVS models; the first with no mortality simulated 

(see Tree Growth above) and the second with background 
and density-related mortality enabled. The difference in 
carbon estimates was the amount of carbon associated with 
mortality, which was assumed to be an immediate emission. 
Since trees decay over several years, sometimes many 
decades, this is a conservative assumption. 

The background mortality was simulated by default; by 
using the MORTMULT keyword (Van Dyck 2007) with a 
zero parameter the background mortality was turned off. The 
density-related mortality, which uses the stand density index 
(SDI) concept (Reineke 1933), is also simulated by default. 
The SDIMAX keyword was used to switch off density 
related mortality by setting the maximum SDI parameter 
to 9999 and the percentage of maximum density where 
mortality was invoked set to 95 percent. This essentially 
required a SDI value of 9,499 for mortality to be invoked, 
which is an order of magnitude above observed SDI’s. 

Wildfire Related Emissions
Wildfire emissions were estimated from official state 
estimates of emissions associated with wildfires. The FIA 
data was not appropriate for this estimate because of the 
lack of a re-measurement and because the sparse cluster 
design will not be accurate for change detection without 
auxiliary data. Wildfire carbon monoxide emissions were 
retrieved for each county from the CARB online database of 
annual estimated average emissions (CARB 2010). Queries 
were made for each county for wildfire emissions of carbon 
monoxide (CO). A CO2/CO ratio of 13 was used (Klaus 
Scott, ARB, personal communication) to estimate carbon 
dioxide (CO2) from CO. 

The acres of forested public and private lands in each county 
were estimated using FRAP vegetation data (2006). The 
proportion of public and private forestland was estimated 
by dividing by the number of total acres for a county. These 
proportions were then multiplied by the CO2 emissions 
estimate for each county. Totaling the county estimates 
resulted in an estimate of the average statewide annual CO2 
emissions associated with wildfire. 

Wood Products Pools
Wood products pools, like the wildfire emissions, were 
estimated from a source independent of the FIA data. The 
lack of re-measurement data and therefore harvest estimates 
made the use of a separate data source necessary. 

Harvest emissions from bole wood were estimated from 
10-year average Board of Equalization data and DOE 
1605(b) conversion factors. The average annual board foot 
production was 1.713 billion board feet. The conversion 
from board feet to metric tons of carbon was assumed to be 
0.427 (DOE 2007, table 1.7). CO2 was estimated from C 

BGB e x AGB= − +0 7747 0 8836. . log( )
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by multiplying by 3.67. Harvest amounts were prorated to 
private and public lands based on BOE averages and were 
92.8 percent and 7.2 percent respectively.

Non-merchantable emissions were estimated using harvest 
efficiency along with top, stump and root relationships to 
the bole (Cairns et al. 1997; Christensen et al. 2008). The 
following proportions of tree biomass were assumed. 

• Roots are 20.63 percent of live tree based on belowground 
to aboveground ratio of .26 (Cairns et al. 1997). 
• Non-bole aboveground biomass is 28.54 percent based 
on ratio of tops, limbs, and stumps to merchantable bole 
(Christensen et al. 2008) equal to 0.562. 
• Bole biomass is 50.82 percent, which is the remainder of 
the total live tree biomass. 
• Total live tree biomass excluded foliage. 

Storage due to wood products in-use and landfill were 
calculated based on the 10-year average storage from the 
DOE 1605(b) emission inventory technical guidelines for 
voluntary reporting of GHGs (DOE 2007, Part I). Softwood 
mill efficiency was estimated to be 0.675. The loss due 
to defect was estimated to be 6.15 percent (Morgan and 
Spoelma 2008). The average storage of wood products in 
in-use for the first 10 years was estimated to be 5.32 percent. 
The landfill storage estimate for the first decade was 6.7 
percent. 

Portions of harvests were of live trees and others were 
salvaged from dead or dying trees. The California Board 
of Equalization data distinguishes between green and dead 
wood. Dead wood was estimated to be 22.8 percent on 
average over ten years. This amount of harvest was removed 
from the emission portion, not storage, to avoid double 
counting with the wildfire and mortality emissions. 

Inventory Components Not Analyzed 
Brown et al. (2004) identified eight components related 
to carbon flux in the baseline analysis for forest and range 
carbon. They were: 

• fire (emission), 
• harvest (emission), 
• development (emission), 
• unverified increases in stocks (sequestration), 
• other increases in stocks (sequestration), 
• pest-related (emission), 
• seasonal, and 
• regrowth (sequestration). 

The CARB inventory analysis (CARB 2009, Table 2) used 
nine categories in the forestry sector accounting, which 

followed the 2006 IPCC guidelines (IPCC 2006). They 
were: 

• forest biomass growth, 
• fire, 
• other disturbances (such as insect pest damage), 
• development,
• timber harvest slash, 
• fuel wood, 
• wood waste dumps, 
• discarded wood and paper in landfills, and 
• composting of wood waste materials. 

Considering the factors from the two sources above, the 
following inventory elements were not analyzed in this 
paper. 

• Development, 
• fuel wood, 
• wood waste dumps, and 
• composting of wood waste materials. 

No benefits from urban forests were estimated including 
sequestration or energy conservation benefits. No other 
biogenic emissions such as GHGs from urban trees or 
emissions from non-wildfires were estimated. Wood stored 
in landfills prior to the current analysis, and associated 
emissions from landfills, was not analyzed. Imports and 
exports of wood products and logs were not included in this 
paper, including leakage effects from California’s high wood 
products demand and policy-constrained supply. 

RESULTS

The results of the carbon stocks and sequestration analysis 
are presented by land base type in tables 2 through 5. 
The estimated annual sequestration rate for all California 
forestlands was about 30 Tg of CO2e (Table 2). A third of 
the approximately 60 Tg of CO2e per year that could be 
sequestered was lost to non-wildfire related mortality. Ten 
percent was estimated to be lost to wildfire-related mortality. 
About eight percent was lost to harvest-related emissions 
while less than three percent was estimated to be in wood 
product pools. This left about one half of the potentially 
sequestered live tree carbon after estimated emissions 
deductions. These percentages varied slightly for private 
and public landowner classes due to most harvesting being 
associated with private lands. 

The estimate for private forestlands was about 5 Tg 
of CO2e per year (Table 3). Public forestlands were 
estimated to sequester about 25 Tg of CO2e per year 
(Table 4). Considering only private timberlands, rather than 
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forestlands, yielded an estimate of about half a Tg more per 
year of CO2e ( Table 5). 

A summary of the total CO2e tonnes by land class, along 
with other measures of forest stocking and change, is shown 
in Table 6. The annual change estimate does not include 
wildfire or harvest related emissions, only model mortality. 
Table 7 is expressed on a per acre basis and also includes 
SDI density. Estimates of per acre live tree carbon stocks 
were highest on private timberlands. Private forestlands 
were lowest, which is reasonable since this will include 
significant acreages of non-commercial hardwood and other 
forest lands. The SDI values for landowner classes were in 
the same ranking as carbon. On average across landowner 
types, there was about 160 tonnes per acre of CO2e. This 
compares with about 3.5 thousand cubic feet (MCF) per acre 
and 14 thousand board feet (MBF) per acre. 

The annual per acre stock change, net of modeled mortality, 
was estimated to be about 1¼ tonnes of CO2e per year 
for all ownerships. Public forestland was estimated to 
be sequestering twice the amount of carbon as private 
forestland. When considering only private timberlands, 
however, the difference narrows to 20 percent. Interestingly, 
the annual per acre board foot production on private 
timberlands is 40 percent higher than public forestlands. 
For all ownership types, the projected number of trees per 
acre decreased while stand densities increased. Some of 
this increase in density will be countered by harvesting and 
wildfire emissions. 

DISCUSSION 

This analysis is an inventory compilation and modeling 
exercise with unknown error. The general realism of these 
estimates may be considered by comparing the estimates to 
the results from other studies. The per acre carbon stocks for 
all forestlands in California was estimated by Christensen 
et al., (2008) as 33.7 tons (30.6 tonnes) C per acre above-
ground live tree carbon. The estimate of aboveground live 
tree carbon from this analysis was 31.1 tonnes C per acre, 
which compares favorably as a check on the analysis. 
The Christensen study was based on 2001-2005 FIA data, 
while this study included two additional years of FIA data. 
Hudiburg et al. (2009) estimated average stocks of 6.5 to 
19 kg/m2 across Northern California and Oregon, which 
equates to 96.5 to 282.2 tonnes CO2e per acre. That estimate 
brackets the values in this report. 

The FVS growth models used in this analysis were 
developed primarily from data on national forests and are 
used for long-term planning on national forests. Intensively 
managed forests, as found on many private timberlands, 

will likely have growth underestimated and mortality 
overestimated. Coast redwood, which is primarily privately 
owned, is missing from FVS; the other softwoods category 
was used as a surrogate in this study. Therefore, the private 
lands estimates should be considered a lower range of 
possible results, particularly for the coast redwood region 
and for plantations. 

The CARB (2009) forest inventory estimate contains 
components that were not included in this paper. Additional 
emissions of 0.021 Tg CO2e per year from development, 
1.514 Tg CO2e per year from fuel wood use, and 0.808 
Tg CO2e per year of wood waste composting sums to 2.3 
Tg CO2e per year. Combining these addition sources of 
emission would reduce the statewide forest carbon flux from 
30.4 Tg CO2e per year to 28.1 Tg CO2e per year. 

The differences in the public and private lands may be a 
function of stand age as well as productivity. Hudiburg et al., 
(2009, figure 6) showed that there are marked differences in 
stand age distributions, with private lands having 
substantially younger stands. A USDA Forest Service 
analysis (Goines and Nechodom 2009) showed that while 
national forests are currently sequestering substantial 
amounts of carbon, there are long-term risks associated with 
storage given disturbance and management assumptions. 
Consideration should be given to both the amounts of 
carbon sequestered and the probability of long-term 
storage. Potential long-term sustainable carbon storage on 
private lands needs further analysis. Hudiburg et al. (2009) 
estimate that total landscape stocks in Oregon and Northern 
California could theoretically be increased 46 percent. The 
relative amount of current stocks in relation to long-term 
sustainable stocks is of considerable policy interest and 
needs further study. 
This paper should be considered an interim step in moving 
towards a more accurate and consistent estimate of forest 
carbon flux in California. Effects from development and 
other disturbance will require monitoring in a spatial 
context that plot inventories alone cannot provide. Wood 
products decay rates will likely continue to rely on estimates 
from the national inventory, which is informed by USDA 
Forest Service research. This study focused on the live tree 
components of forests. Refined models of other forest plant 
species and the incorporation of dead wood decay and soil 
carbon models will provide a more complete forest carbon 
inventory. As additional FIA data is collected and re-
measurements begin, then stock change measurements may 
begin to calibrate and supplant model predictions of current 
forest carbon flux. Finally, the biomass functions used 
have been observed to have anomalies in bark biomass for 
some species. Given the importance of biomass functions 
in carbon estimation, the evaluation and improvement of 
biomass functions should be a priority. 
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Latitude (Degrees) Longitude (Degrees)  

 
 
FVS Variant Name 

 
 
 
Reference East West South North 

-120.0 -122.5 41.2 42.0 South Central Oregon and 
Northeast California (SO) 

(Dixon 2009b) 

-120.0 -121.3 40.4 41.2 

-123.3 -124.5 40.3 42.0 

-123.0 -124.5 39.4 40.3 

-121.4 -124.0 37.2 39.4 

Klamath Mountains (NC) (Dixon and 
Johnson 2009) 

-121.4 -122.5 35.0 37.2 

Westside Sierra Nevada (WS) (Dixon 2009c) -114.0 -121.4 32.5 42.0 

-122.5 -123.3 41.2 42.0 

-121.3 -123.3 40.4 41.2 

Inland California and Southern 
Cascades (CA) 

(Dixon 2009a) 

-121.3 -123.3 39.4 40.4 

 

Table 1—Forest Vegetation Simulator variant information and geographic area where applied

 

 

Table 2—Results for all California forestlands 
(32,114,317 acres). Harvest emissions were reduced by 
22.8% for to avoid double-counting with mortality and 
fire emissions

 

 

Table 3—Results for California private forestlands 
(12,646,761 acres). Harvest emissions were reduced by 
22.8% for to avoid double-counting with mortality and 
fire emissions
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Table 4—Results for California public forestlands 
(19,467,566 acres). Harvest emissions were reduced by 
22.8% for to avoid double-counting with mortality and 
fire emissions

Table 5—Results for California private timberlands 
(7,647,009 acres). Harvest emissions were reduced by 
22.8% for to avoid double-counting with mortality and 
fire emissions.

 

 

 

 

 

 

Table 6—Summary table of total estimated carbon, volume and tree density stocking and annual change (net of 
mortality only) by landowner class

Table 7—Summary table of per acre estimated carbon, volume, and density stocking and annual change (net of 
mortality only) by landowner class
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Abstract

The international border region between the United States and Mexico 
represents a point of discontinuity in forest policy, land use management 
and resource utilization practices. These differences along with physical 
barriers which separate the two countries can interact to alter the structure 
and functioning of forest vegetation. One valuable source of information 
for analyzing potential effects of management on forest attributes is 
National Forest Inventory (NFI) data. Both Mexico and the United States 
have systematically designed NFI programs, the U.S. Forest Service 
Forest Inventory and Analysis (FIA) program and the Comisión Nacional 
Forestal (CONAFOR) Inventario Nacional Forestal y de Suelos (INFyS). 
However, data from NFIs are seldom harmonized with respect to reporting 
units, field procedures and estimation methods. Here we evaluate two 
important aspects of NFI data compatibility using seamless geospatial data. 
First, to gauge plot measurement and location accuracy we compared the 
elevations recorded in each countries NFI database with those taken from 
an independently derived digital elevation model (DEM). Second, basal 
area compatibility was determined by means of analysis of covariance 
(ANCOVA) using a seasonal time series of normalized difference 
vegetation index (NDVI) data from Landsat. The results showed that 
both countries have good location and measurement accuracy in relation 
to DEM elevations and in the majority of cases, statistically similar 
estimates of basal area per unit of NDVI. Despite finding a high level of 
plot data compatibility, our study uncovered key differences in inventory 
stratification between the two countries which prevented further statistical 
comparison of oak woodland stand densities. Suggestions for improving 
local and regional scale analysis compatibility of American and Mexican 
NFI data are provided. 

INTRODUCTION

In response to interest concerning the effects of global 
climate change there is a growing need for information on 
the health, status, and biodiversity of the world’s forest 
resources. In many countries, the current condition of forests 
is often estimated with data collected by national forest 
inventory (NFI) programs. NFIs typically collect detailed 
tree and stand measurements across a statistically designed, 
systematic layout of field plots. Although timber assessment 
has traditionally been a focus of many NFIs (Scott and 
Grove, 2001), measurement of forest attributes relating 
to ecosystem functioning and health is increasing. NFI 
data is frequently called upon to generate continental- and 
global-scale information on biological diversity, ecosystem 
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health and forest carbon pools. However, data collected 
by independent NFIs is seldom harmonized (i.e., in 
agreement) with respect to reporting units, field procedures, 
and estimation methods (Winter et al., 2008). Resulting 
discrepancies can produce large uncertainties when multiple 
NFIs are used to estimate attributes such as forest area and 
biomass change (Schoene, 2002; Cienciala et al., 2008). 
	
As multinational NFI data represents a critical source 
of global information on greenhouse gases (e.g., 
United Nations Framework Convention on Climate 
Change (UNFCCC) and its Kyoto Protocol (1997)) and 
sustainability (e.g., Food and Agriculture Organization 
(FAO), Global Forest Resources Assessment (FRA, 2006)), 
promoting the harmonization of NFI definitions and 
measurement protocols will help reduce uncertainty, and 
facilitate the comparison of estimates across international 
boundaries. 

Until recently, reporting efforts in North America have been 
hampered by the lack of systematically collected field data 
over much of the continent. Although the United States 
has been conducting a statistically based NFI since the 
late-1920’s (Shaw, 2006), neither Canada nor Mexico had, 
until recently adopted systematically implemented national 
programs (Canada see Gillis, 2001 and Gillis et al., 2005; 
Mexico see Sandoval et al., 2008). Given different histories 
of the three countries, efforts to harmonize terminology 
and field measurement protocols are only beginning to 
take shape. Nonetheless, as Mexican and Canadian NFI 
data begin to come on-line, new methods will be needed 
to determine the extent to which plot data from the three 
North American NFIs are compatible for continental scale 
reporting. Here our objective is to evaluate the inter-
compatibility of plot data collected in borderland oak 
woodland forests by the U.S. Department of Agriculture’s 
Forest Inventory and Analysis (FIA) program and in Mexico 
by Comisión Nacional Forestal (CONAFOR).

Focusing on oak woodland on both sides of the Arizona/
Sonora border, we evaluate two important aspects of data 
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compatibility through the analysis of seamless elevation 
and spectral geospatial data sets. First, to gauge a sense of 
plot measurement and location accuracy we compare the 
elevations recorded in each country’s NFI database with 
those taken from an independently derived digital elevation 
model (DEM). Second, we use a seasonal time series of 
normalized difference vegetation index (NDVI) images 
derived from Landsat satellite data to assess the consistency 
of the relationship between plot and satellite forest 
measurements across the border.

METHODS

Study Area 
Lying equidistant between the United States and Mexico, 
the study area is the 74,655 km² Madrean Archipelago 
ecoregion (Omernik level III, CEC 1997; Fig. 1). The 
forests in this border region of southeastern Arizona 
(United States) and northeastern Sonora (Mexico) contain 
some of the most diverse temperate forest ecosystems in 
the world. The mountains here straddle two major faunal 
realms (Neotropic/Holarctic) and two climatic zones 
(Subtropical/Temperate). The confluence of these zones 
interacts with complex mountain topography to support 
high levels of endemic biodiversity (Coblentz and Riiters, 
2004). The forests, which primarily reside on a series of 
disconnected mountain ranges, are surrounded by vast 
“seas” of desert vegetation. These valley seas inhibit new 
species colonization which serves to isolate the higher 
elevation “island” biotic communities (Warshall, 1994). The 
forest composition displays an altitudinal gradient; open 
oak woodlands are found at lower elevations, which cede 
to closed canopy pine and fir dominated forests as elevation 
increases. 

Oak woodland forests were selected for this analysis 
because they represent the largest area of forested land 
within the ecoregion. Focusing on this large forested area 
ensured that a sufficient number of NFI plots from each 
country were available for analysis and, minimized the 
effect of different inventory stratification procedures used 
by the two countries. The oak woodland forest areas were 
defined by a geographic information system (GIS) coverage 
of biotic communities assembled by the U.S. Forest Service 
at a scale of 1:1,000,000 (Brown and Lowe, 1982). In the 
United States, the oak woodland forest type covers 16 
percent of the landscape and captures 36 percent of the FIA 
inventory plots collected in the ecoregion (Arizona plots 
only, New Mexico plots are not included in this analysis). 
In Mexico, the oak woodland forest type covers 32 percent 
of the landscape and captures 75 percent of the collected 
CONAFOR inventory plots in the ecoregion (Sonora plots 
only, Chihuahua plots are not included in this analysis). 

DATA

FIA
FIA data are collected on a nationally consistent hexagonal 
sampling frame where at least one plot is randomly selected 
within each 6,000 acre hexagon (Bechtold and Scott, 2005). 
Each plot consists of four fixed-radius circular subplots, 
which taken together represent an area approximately 1 acre 
in size. Data collected on each FIA plot includes land use, 
tree measurements (e.g., species, height, and diameter) as 
well as other tree and site related forest attributes.

For this study, we queried the FIA database to obtain the 
annual inventory data collected in Arizona between 2001 
and 2007. Using the geographic coordinate locations of 
the plots, a GIS overlay operation was used to identify the 
Arizona plots falling within the oak woodland boundary. 
The measured live tree data from these plots (n = 117) was 
then used to calculate basal area. Most of the trees sampled 
in this region are defined by FIA as woodland species which 
are measured for diameter at the root collar (DRC) near 
ground line. Thus, to calculate basal area we first converted 
DRC to diameter at breast height (DBH) using Eq. 1 
(Chojnacky and Rogers, 1999),

DBH = β0 + β1 DRC + β2 stm + β3 Pied + 
β4 DRCp + β5 Quga + β6DRCq 	 	  	  [1]

where DBH is diameter at 1.3m above groundline, DRC 
is diameter at root collar, stm is 1 for trees with 1 stem at 
DRC or 0 otherwise, Pied is 1 for pinyon pine species and 
0 otherwise, Quga is 1 for oak species and 0 otherwise, 
DRCp is DRC for pinyon pine species, and DRCq is DRC for 
oak species. Constants for the β terms (in inches) are β0 = 
-2.6843, β1 = 1.0222, β2 = 0.7433, β3 = 0.7469, β4 = -0.0399, 
β5 = 1.2244, and β6 = -0.0689. Equation 1 was formulated 
using 224 trees sampled in western Colorado for Pinyon 
pine (Pinus edulis), Utah juniper (Junipers osteosperma) 
and Gambel oak (Quercus gambelii). Here we applied 
the equations at the genus level (e.g., all oak species were 
converted to DBH using Quga in Eq. 1), which accounted 
for nearly 85 percent of the measured trees in the study 
area. The remaining trees were converted to DBH using 
the closest available matching equation (e.g., deciduous 
species were converted using the Quga equation, conifer 
species using the Pied equation). Although this extrapolation 
involves applying the equation outside of the range and 
species in which it was initially developed, it currently 
represents the best available option for converting FIA data 
from DRC-to-DBH.

International Forest Monitoring
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After converting from DRC to DBH, basal area per tree was 
calculated for each measured live tree >= 5 inches using 
Eq. 2,

 BA (ft²) = 0.005454 x DBH²	  		       [2]

where BA is basal area in ft² and DBH is in inches. Basal 
area per tree was multiplied by trees per acre (TPA) and 
condition proportion (COND_PROP) variables in the FIA 
database, and then summed across each plot to yield per plot 
estimates of basal area in ft²/ac. The ft²/ac estimates were 
then multiplied by 0.2296 to get basal area in m²/ha. 

CONAFOR
CONAFOR data are also collected on a nationally consistent 
sampling grid which consists of more than 24,000 plots 
covering all vegetation types. The grid spacing of plots 
depends on vegetation type (e.g., 5x5 km grid for temperate 
and high tropical forests, 10x10 km for shrub lands and 
low tropical forests, and 20x20 km for arid regions) which 
is taken from a national land use and vegetation cover map 
derived from Landsat data. Similar to FIA, CONAFOR 
data are collected on four circular subplots which cover an 
area approximately 1 acre in size. Data collected include 
topography, land use and disturbance as well as tree 
species and diameter measurements among others. For 
more information on the enhanced Mexican national forest 
inventory program see Sandoval et al. (2008). 

Plot data for the Mexican state of Sonora were spatially 
queried in a GIS system to select the plots contained within 
the geographic extent of the oak woodland boundary. The 
measured live trees >= 12.7 cm DBH (or 5 inches, same 
minimum used for FIA) from the selected plots (n = 142) 
were used to calculate basal area per tree using Eq. 3, 

 BA (m²) = 0.00007854 x DBH²	  	  	      [3]

where BA is basal area in m² and DBH is in cm. The 
CONAFOR tree data is collected at DBH approximately 
1.3 m above ground line, therefore no DRC conversion was 
necessary. The Mexican inventory data does not contain 
expansion factors. In order to obtain basal area on a per 
hectare basis, we used only the plots which contained 4 
measured subplots. Because the plots have a fixed radius, 
this allowed the use of a constant 6.25 area expansion 
factor. Basal area per tree was multiplied by this constant 
expansion factor, then summed across each plot to yield per 
plot estimates of basal area in m²/ha.

SRTM DEM 
To help evaluate the location and measurement accuracy 
of the NFI plots (described below) we obtained digital 
elevation data from the Consultative Group for International 
Agriculture Research – Consortium for Spatial Information 

(CGIAR-CSI; http://srtm.csi.cgiar.org/). Based on the 
unfinished 3 arc second data originally released by the 
National Aeronautics and Space Administration (NASA), 
the CGIAR-CSI version-4 data used here have been 
hydrologically corrected with a gap-filling algorithm to 
produce a smooth continuous raster surface at 90 m spatial 
resolution. The data were downloaded in separate 1˚ x 1˚ 
degree grid tiles, which were mosaiced together in ArcInfo 
Grid to produce seamless coverage of the study area. Once 
mosaiced, the study area elevation grid was reprojected 
from geographic coordinates to UTM projection with WGS 
84 datum. 

Satellite Imagery 
To evaluate the consistency of basal area measurements 
among the two countries, we compared plot measurements 
using NDVI data from Landsat (described in more detail 
below). NDVI is a satellite measure of green leaf area; 
therefore it can vary seasonally with changes in precipitation 
and background reflectance. To account for this we 
developed a series of images which covers nearly the full 
extent of the dry season, which ranges from mid-April 
to mid-July. To achieve complete seasonal coverage we 
acquired cloud-free Landsat TM data (LT1 processing) for 
path 35, rows 38 and 39 for six dates (4/24/2004, 5/8/2003, 
5/13/2005, 6/11/2004, 6/25/2003, and 7/16/2005). Each date 
of path/row images (see Fig.1 for coverage) were mosaiced 
and then converted to surface reflectance using the COST 
model (Chavez, 1996). NDVI was calculated as the ratio of 
(Band 4 – Band 3) / (Band 4 + 3). The final set of processed 
NDVI images had 30 m spatial resolution, UTM projection 
and WGS 84 datum.

DATA COMPATIBILITY TESTS

Plot Location 
One important indicator of data compatibility is that 
NFI plots are located where they are supposed to be in 
geographic space and that they accurately reflect the 
topography of the landscape. In general, if plots are properly 
located and measured, then we should be able to use 
each plot’s geographic coordinates to derive independent 
estimates of topographic variables (e.g., elevation from 
a DEM) which closely match the records found in each 
countries NFI database. To test this idea we compare 
independent estimates of elevation extracted from an SRTM 
DEM with those found in each countries NFI database 
(FIA n = 117, CONAFOR n = 142). SRTM data was 
extracted for each NFI plot using the mean of a 3x3 
window placed over plot center (for both FIA and 
CONAFOR we used actual plot coordinates, not publically 
available). It is possible that the level of agreement 
(based on R²) of the two countries will differ because plot 
elevations in the CONAFOR data are taken from field 
measurements, whereas in FIA they are either taken from 
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field measurements, DEM or topographic map. Minor 
agreement differences aside, if the plots are reasonably 
located in geographic space, and in the case of CONAFOR 
are accurately measured, the plots should fall on or close to 
the 1:1 line when viewed in a two dimensional scatter plot. 
This test is intended only as a check for errors which might 
bring into question the general reliability of the location and 
measurement of the NFI plots, and is not intended to be a 
precise quantitative assessment of elevation accuracy. 

Basal Area Estimation 
Barring differences in precipitation and back-ground effects, 
it is to be expected that NDVI (a satellite based measure 
of green leaf area) will increase as basal area increases. 
If the basal area estimates derived for each country are 
compatible, we should find no statistical difference between 
their fitted relationships with NDVI. To test this hypothesis 
we conducted an analysis of covariance (ANCOVA). 
The analysis was restricted to the range of basal area 
measured by both countries (i.e., 16.77 m²/ha). In addition 
to capping the range of basal area, the Landsat images do 
not cover the full extent of the study area, thus the number 
of plots available for the ANCOVA analysis (FIA n = 74, 
CONAFOR n = 121) is less than was used for the plot 
location and measurement test described above. For the 
plots qualifying for the analysis, NDVI was extracted from 
each of the six seasonal images using the mean of a 3x3 
window placed over plot center (for FIA and CONAFOR 
we used actual plot coordinates, not publically available). 
We then tested the null hypothesis that the slopes of each 
countries fitted lines were equal using a standard F test. If 
the slopes are found equal, then each countries fitted 
mean basal area is “adjusted” according to the overall 
mean of NDVI. The null hypothesis of equal adjusted 
means is then tested with a second F test. If we do not 
reject the null hypothesis of equal adjusted means 
(i.e., p-value >= 0.05) then we can conclude that per unit 
NDVI, the sample plots collected on both sides of the border 
have statistically similar estimates of basal area. 

RESULTS

Plot Location Test 
Scatter plots comparing the SRTM elevations and elevations 
from the NFI data revealed good agreement for FIA as 
indicated by all of the plots falling along the 1:1 line 
(Fig. 2). Although the majority of CONAFOR plots also fell 
on or near the 1:1 line, we did find seven plots (indicated 
by dashed oval and arrow in Fig. 2) which were not; all but 
one of these plots had recorded elevations almost exactly 
1,000 m above the SRTM measurements. Given the small 
percentage of plots affected (4.9 percent) and the systematic 
nature of these deviations, it is likely these errors were the 
result of data entry mistakes rather than plot location or 
measurement inaccuracies. Removing the seven outliers 

from the CONAFOR data we found that elevations from 
both NFI data sets were in similar agreement with the 
independent SRTM elevations (FIA R² = 0.99, CONAFOR 
R² = 0.97). Although the CONAFOR data displays higher 
residual variance (Figure 2), the R² results verified that both 
FIA and CONAFOR plots were placed on the landscape 
with sufficient accuracy that the topographic descriptors 
published in each database could be accurately reproduced 
using independent data. 

Basal Area Compatibility Test 
The ANCOVA results revealed that the fitted lines for both 
countries were statistically similar for all six NDVI image 
dates (Table 1). While the fitted lines were not necessarily 
parallel (Figure 2), they were similar enough that the null 
hypothesis of equal slopes could not be rejected. The test of 
equal adjusted means revealed that for four of the six image 
dates the null hypothesis could not be rejected 
(Table 1). This indicates that once canopy conditions 
represented by NDVI were accounted for, the adjusted mean 
basal areas of the two countries were, in the majority of 
cases, not significantly different. Although two of the image 
dates (4/24/2004, 6/25/2003) produced results which were 
close to rejecting the null hypothesis, the small average 
difference in adjusted mean basal area (0.2 m²/ha) across the 
six image dates supports the conclusion that the basal area 
estimates from the two countries are similar enough to be 
deemed compatible. 

DISCUSSION

In this study we evaluated the compatibility of American 
(FIA) and Mexican (CONAFOR) NFI data using sample 
plots collected across an area of borderland oak woodland 
forest. Given the discontinuous nature of the NFI data, 
the evaluation of compatibility focused on the analysis 
of geospatial data sets which seamlessly and consistently 
spanned the area of data collection. To gauge location and 
measurement compatibility we compared the similarity of 
each countries plot responses to topographic (i.e., elevation) 
and spectral based NDVI data. 
As verification that the NFI plots were located on the 
landscape with sufficient spatial accuracy for joint analysis, 
we compared independently derived SRTM DEM data with 
elevations recorded in each countries NFI database. The test 
identified seven CONAFOR plots which had considerable 
deviation in recorded elevations. As these errors were 
systematic in nature they were most likely the result of data 
entry mistakes. Comparison with freely available SRTM 
data may in the future be an efficient quality control measure 
for NFI elevation data. Plots identified as erroneous can be 
re-inspected to verify coordinate, elevation measurement 
and data entry integrity. Aside from the identified outliers, 
we found all of the FIA and CONAFOR NFI elevations to 
be in good agreement with the SRTM data. This provided 
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evidence that the FIA and CONAFOR plots were reasonably 
located on the landscape and that elevation was accurately 
measured or estimated by each inventory program. In 
general, this test provided an indirect verification of plot 
location compatibility, as well as an effective means for 
identifying plots which might have potential misalignment 
or measurement errors. 

Although the inventory programs have similar plot layout 
designs, differences in data collection protocols exist which 
must be accounted for before undertaking a more thorough 
assessment of data measurement compatibility. Here, efforts 
were taken to harmonize the calculation of basal area in 
order to assess the compatibility of stand density estimates 
derived from the two NFI data sets. Harmonization efforts 
included applying published equations to convert FIA 
DRC to DBH, using the same minimum DBH cutoff 
and converting basal area estimates to like units (m²/ha). 
Although the DRC-to-DBH equations (Chojnacky and 
Rogers, 1999) used here were extrapolated well beyond their 
geographic and ecological boundaries, the adjustment was a 
critical step in harmonizing the NFI data. 
In this study FIA basal area was reduced by roughly 32 
percent after the DRC-to-DBH conversion was applied. This 
is similar in magnitude to the 10 to 25 percent reduction 
in basal area reported by Chojnacky and Rogers (1999) 
for ponderosa pine forests in the Gila National Forest, 
New Mexico. It should be noted that basal area reported 
in the FIA database (e.g., variable BALIVE) is calculated 
for woodland species without converting DRC-to-DBH. 
In addition, reported diameters for woodland species in 
the FIA database (e.g., variable DIA) are actually DRC 
measurements, thus when calculating basal area, volume 
or biomass with equations that require DBH as input (e.g., 
Jenkins et al., 2003) DRC-to-DBH conversion is required. 
Given the considerable difference between DRC-corrected 
and uncorrected basal area, future work should focus on 
improving the necessary equations required to make this 
critical adjustment. These improvements would also stand 
to benefit future studies which use FIA data to estimate 
carbon and biomass for woodland species. As CONAFOR 
measurements are taken at DBH, the conversion of 
FIA DRC-to-DBH was an important step in developing 
harmonized estimates of basal area for the two countries. 

To test the compatibility of the basal area estimates we used 
NDVI data from Landsat. The reasoning behind this test 
comes from the fact that canopy conditions of forests in this 
region are open and highly variable. For example, a stand 
with the same unit basal area could have a relatively open 
canopy structure consisting of a few large but scattered trees 
or a closed canopy structure consisting of several small 
but densely clustered trees. Although in this situation basal 
area is the same, the different canopy conditions result in 

very different measures of NDVI. Thus, if the relationship 
between basal area and NDVI were drastically different for 
each country, this might suggest that inventory stratification 
or systematic data collection differences might be affecting 
the compatibility of the basal area estimates. The ANCOVA 
analysis showed that the fitted relationships between basal 
area and NDVI were similar for each country, thus offering 
evidence that per unit NDVI the basal area estimates were in 
the majority of cases, statistically compatible. 

Overall, both independent tests based on the analysis of 
seamless geospatial data indicated a high degree of plot 
level compatibility between American and Mexican NFI 
data. Given the high level of plot data compatibility we 
hoped to proceed with a joint analysis of the two NFI 
data sets with the purpose of investigating the ecological 
impacts of divergent management and land use practices on 
stand density in borderland oak woodland forests. Jointly 
analyzing the NFI data in this context could take two 
different approaches. One approach might be to use the plot 
data from both countries to analyze basal area distributions 
using tests of central tendency (e.g., looking for statistical 
differences in population means or medians). A second 
approach might collectively use the NFI plots from each 
country to derive statistical estimates of basal area for a 
particular region of interest (e.g., the Madrean archipelago 
ecoregion or the oak woodland forest type). 

To perform these types of joint analyses requires accounting 
for differences in inventory stratification which exist 
between the two countries. FIA’s sample grid extends with 
equal intensity to all lands, but only forested plots (as 
identified though photos or in the field) are surveyed in 
detail. In contrast, CONAFOR pre-stratifies their sample 
grid according to a land use map produced by the Mexican 
Agency INEGI (Instituto Nacional de Estadistica, Geografia 
e Informatica). Detailed plot measurements are taken on all 
lands with forests more heavily sampled than other wooded 
lands and deserts. While the Mexican plot data contain 
stratum identifiers, thus allowing calculation of average 
conditions by stratum, the stratification map itself is not 
publically available. Without this map, it is impossible to 
determine weights for a complex analysis unit such as the 
oak woodland forest type within the Madrean archipelago 
ecoregion. Publication of the Mexican land cover map, 
or at least development of factors communicating the 
area represented by each plot, would greatly increase the 
inventory’s usefulness in local and cross-border analyses. 

CONCLUSION

We determined that plot data from the two inventories are 
compatible: plots from both countries were accurately geo-
located, and the relationship between measured basal area 
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and satellite imagery was consistent across the border. The 
following recommendations may be identified following our 
work.
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Table 1-ANCOVA results for basal area compatibility test. 

 

  Equal Slope Adj. Mean BA (m²/ha)  Equal Adj. Mean 

Image Date F p-value FIA CONAFOR Diff F p-value 

4/24/2004 1.06 0.306 6.3 5.4 0.9 3.81 0.052 

5/8/2003 1.74 0.189 5.5 5.9 -0.5 0.84 0.360 

5/13/2005 0.03 0.856 6.3 5.4 1.0 4.51 0.035 

6/11/2004 1.68 0.197 5.5 5.9 -0.3 0.47 0.493 

6/25/2003 0.47 0.492 5.1 6.2 -1.1 3.56 0.061 

7/16/2005 0.04 0.845 6.5 5.2 1.3 7.55 0.007 

 *significant tests in bold    
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Figure 1. The Madrean Archipelago study area (red outline) showing location of oak woodland forest (yellow) and 

Landsat path/rows (blue outline). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1—The Madrean Archipelago study area (red 
outline) showing location of oak woodland forest 
(yellow) and Landsat path/rows (blue outline).
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Figure 3. Fitted relationships between NDVI and basal area for FIA (+) and CONAFOR (o) for a.) 4/24/2004, b.) 

5/8/2003, c.) 5/13/2005, d.) 6/11/2004, e.) 6/25/2003, and f.) 7/16/2005 image dates. 

 

 

 

 

 

 

 

Figure 3—Fitted relationships between NDVI and basal area for FIA (+) and CONAFOR (o) for a.) 4/24/2004, 
b.) 5/8/2003, c.) 5/13/2005, d.) 6/11/2004, e.) 6/25/2003, and f.) 7/16/2005 image dates.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Scatter plots of SRTM DEM elevation versus NFI database elevation for FIA (•) and CONAFOR (•). 
 

 

 

 

 

 

 

 

Figure 2—Scatter plots of SRTM DEM elevation versus NFI database elevation for FIA (•) and 
CONAFOR (•).
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Abstract

An approach of Controlled Trend Surface was proposed to simultaneously 
take into consideration large-scale spatial trends and nonspatial effects. 
A geospatial model of the Alaska boreal forest was developed from 446 
permanent sample plots, which addressed large-scale spatial trends in 
recruitment, diameter growth, and mortality. The model was tested on 
two sets of validation plots and the results suggest that the controlled 
trend surface model was generally more accurate than both nonspatial and 
conventional trend surface models. With this model, we mapped the forest 
dynamics of the entire Alaska boreal region by aggregating predicted stand 
states across the region. 

Introduction 

Geospatial effects at large scales have been reported in 
many biological and ecological studies. The conventional 
trend surface analysis (e.g. Kuuluvainen and Sprugel 
1996; Thomson 1986) has been developed to capture such 
trends in various disciplines (Gittins 1968) and there exist 
numerous studies attempting to explain these effects (e.g. 
Kuuluvainen and Sprugel 1996; Wilmking and Juday 2005). 

Existing spatial studies of forest dynamics have been mainly 
focusing on small-scale spatial effects, such as interactions 
of neighboring trees or stands (e.g. Franklin and others 
1985; Larson and others 2006; Liu and Ashton 1998; Pacala 
and others 1996). Little has been done to identify large-scale 
spatial factors of forest dynamics and separate them from 
small-scale variations attributable to local effects (Schenk 
1996), such as site and stand basal area (e.g. Bonan and 
Shugart 1989; Liang and others 2005). 

The purpose of this paper was to propose an innovative 
method, controlled trend surface (CTS), to account for both 
large-scale spatial effects and well-recognized nonspatial 
factors in modeling. With this proposed method, a geospatial 
dynamics model of the Alaska boreal forest was developed 
based on the same data that were used to calibrate the 

nonspatial model of Liang (2010). With remote sensing 
data and the Geographic Information System (GIS), stand-
level predictions were aggregated to tentatively map forest 
dynamics of the entire region. 

The Alaska boreal forest is generally defined as a biome 
characterized by coniferous forests. In this study, it 
represented a vast area composed of the following 
ecoregions: Interior Alaska-Yukon lowland Taiga, Cook 
Inlet Taiga, and Copper Plateau Taiga. Forestry is very 
important for the state of Alaska (AlaskaDNR 2006; Wurtz 
and others 2006), and is an indispensable component of 
rural economies (AlaskaDNR 2006). Liang (2010) develops 
the first Matrix Model for all major Alaska boreal tree 
species which is tested to be much more accurate than the 
two growth and yield tables. However, due to a lack of 
control for large-scale spatial patterns which “may cause 
substantial errors between actual and predicted stand states” 
(See Liang 2010, P.10), caution is advised when applying 
the Matrix Model on stands out of the sample area or on 
areas of considerable sizes. 

Methods
Controlled Trend Surface (CTS)
The conventional trend surface analysis studies the spatial 
trend of given observations Z(s) at location s within the 
region D (Grant 1957; Ripley 1981; Watson 1971):

                                                                                             (1)

where 

represents an unknown linear combination of known 
functions fi(s) of spatial coordinates x=(x1, …, xn)’ and 
y=(y1, …, yn)’ with unknown but fixed parameters ρi, 
i=1,2,…,k-1. δ is a zero-mean, stationary error term with 
known covariogram (see Berke 1999, p.219). 
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Z(s)=μ(s)+δ,      s=(x,y)’∈D⊂IR2

μ(s)=∑fi-1(s)ρi-1

k

i=1
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Now assume that δ was controlled by non-spatial factors n, 
viz. the factors with distributions independent from location 
s=(x,y)’, the model of controlled trend surface (CTS) was 
obtained as follows:

                                                                                             (2)

with ς(n) being the nonspatial component― an unknown 
combination of functions of non-spatial factors and ζ 
representing a zero-mean, stationary error term with known 
covariogram independent from both spatial and non-spatial 
factors. Apparently, under-parameterized conventional trend 
surface estimates were biased when nonspatial effects were 
present. In this case, CTS model (Eq. 2) was appropriate and 
provided unbiased estimates. 

Model Description
A conventional Matrix Model (e.g. Buongiorno and others 
1995; Liang and others 2005) predicts the forest stand state 
in Year t+1 based on the stand state in Year t:

						            (3)

where yt = [yijt] was a column vector representing the 
number of live trees per unit of land area of species i and 
diameter class j at time t. ε was a random error. G and 
R represented a spatial-independent growth matrix and 
recruitment vector, respectively. 

The CTS Matrix Model extended Eq. 3 to control for the 
large-scale spatial trend by recognizing geographic location 
and terrain characteristics of the stand: 

                                                                                             (4)

where Vt(s)=[vijt(s)] was a space-dependent column vector 
representing the number of live trees per unit of land area 
of species i (i=1,…,4) and diameter class j (j=1,…,19) 
at location s and at time t. ε was a zero-mean, stationary 
process with known covariogram. x and y represented the 
plot coordinates within the Alaska boreal forest region D in 
the plane (IR2). 

G(s) was a state- and space-dependent matrix that described 
how trees grew or died between t and t+1 at location s. R(s) 
was a state- and space-dependent vector representing the 
recruitment of each species between t and t+1 at location s. 

The G(s) and R(s) matrices were defined as: 

 

                                                                                             (5)

where Ri(s) was the number of trees of species i recruited in 
the smallest diameter class (3.8cm) each year at location s. 
Recruitment was zero in all the higher diameter classes. The 
probabilities of a tree of species i and diameter class j stayed 
alive in the same diameter class aij(s), and stayed alive and 
move up a diameter class bij(s) between t and t+1 at location 
s were related by: 

aij(s) =1-bij(s) -mij(s)	                                                  (6)

where mij(s) was the probability that a tree of species i and 
diameter class j died between t and t+1 at location s. bij(s) 
was calculated as the annual tree diameter growth gij(s) 
divided by the width of the diameter class (2 cm except for 
the first diameter class of 1.2 cm width), assuming that trees 
were evenly distributed in a diameter class. 

It was assumed that the large-scale spatial trend μ(s) was 
represented by a second-order polynomial function of 
northing (y) and easting (x) coordinates:

                                                                                             (7)

where d’s were coefficients to be estimated in each 
equation. Northing and easting coordinates of the Universal 
Transverse Mercator system (UTM, see Snyder 1987) were 
used here to approximate the Cartesian system in which the 
distance between permanent sample plots could be easily 
calculated (Ripley 1981). The easting values were then set 
as the absolute distance from the center of that UTM zone to 
mitigate edge effects near borders. 

The non-spatial component of the recruitment, Ri(s), 
diameter growth gij(s), and mortality mij(s) was composed 
of a terrain function and stand basal area (B), permafrost(P), 
and the number of tree species present in the plot(H), as 
B and P have been employed as key predictors in many 
existing forest dynamics models (e.g. Boltz and Carter 2006; 

( )s d d x d y d x d y d xy= + + + + +
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Bonan and Shugart 1989; Liang and others 2005; Namaalwa 
and others 2005), and H represented marked differences in 
species life histories with effects of complementarity and 
niche facilitation that may change forest dynamics(Liang 
and others 2007). In addition, Dj, the midpoint of the DBH 
class j, was used in both diameter growth and mortality 
equations, as tree size is an important factor of diameter 
growth and mortality (Buongiorno and Michie 1980; 
Buongiorno and others 1995; Liang and others 2005). Stem 
density, the number of trees per hectare of the species of 
interest (N), was used in recruitment equation to represent 
the abundance of seeds and seedlings (Liang and others 
2005; Liang and others 2007). Although the presence of 
permafrost (P) was significantly correlated with the northing 
(ρ=0.18, p-value=0.00), since the correlation coefficient was 
small and the effect of permafrost on forest growth is local 
(Chapin and others 2006), permafrost(P) was considered 
as a non-spatial variable. None of the other non-spatial 
variables was spatially correlated. 

The terrain component (Eq. 8) represented the interacting 
effects of the slope (l), aspect (α), and elevation (z) on 
site productivity (see Stage and Salas(2007), p.487). The 
function has been tested a better proxy of site productivity 
than other existing terrain functions, and is considered as an 
inseparable entity, in which all the terms are conjoint and 
should be used together or not at all (Stage and Salas 2007). 

                                                                                             (8) 

where c’s were parameters to be estimated in each equation. 

The annual diameter growth gij(s) was estimated by the 
following model:

	                                                                                (9)

where γ’s were parameters to be estimated , and ε1 was a 
random error independent of spatial patterns. 

The probability of annual mortality rate, mij(s), was 
calculated by dividing Mij(s) by the elapsed time of T years 
between the two inventories. Mij(s)=1 if a tree died between 
the two inventories, and Mij(s)=0 otherwise. Mij(s) was 
estimated with a species- and size-dependent Probit function 
(Bliss 1935):

                                                                                           (10)

where Φ was the standard normal cumulative function, and 
δ’s were parameters and ε2 was a random error independent 
of spatial patterns.

The expected recruitment of species i was estimated with 
the following model:

	                                                                              (11)

where β’s were the parameters, and ε3 was a random error 
independent of spatial patterns. 

Data 
The CTS Matrix Model presented here was calibrated with 
data from 446 remeasured permanent sample plots of the 
Cooperative Alaska Forest Inventory (CAFI) (Malone and 
others 2009). The sample area stretches over 500km from 
the Kenai Peninsula in the south to the Fairbanks area in 
the north, and represents a wide range of stand conditions 
and species composition (Fig. 1). The same data, except 
for geographic coordinates, have been used to calibrate the 
nonspatial Matrix Model of Liang (2010) (Table 1). 

The species studied here were Betula neoalaskana Sarg. 
(birch), Populus tremuloides Michx. (aspen), Picea glauca 
(Moench) Voss (white spruce), and Picea mariana (Mill.) 
B.S.P. (black spruce). White spruce had the highest basal 
area of all the species (37 percent), followed by birch 
(28 percent), aspen (20 percent), and black spruce 
(5 percent). The other species, Populus trichocarpa Torr. 
&Gray, P. balsamifera L. Larix laricina (DuRoi) K.Koch, 
and Betula kenaica W.H. Evans, accounted for less than 
10 percent of the total basal area (Table 2). Trees were 
grouped into 19 diameter classes by species, from 3.8 to 
5.0 cm up to 39.0 cm and above. Tables 3 and 4 display the 
summary statistics of plot level and individual tree variables. 

Parameter Estimation and Model 
Validation
The recruitment Ri(s) and diameter growth gij(s) equations 
were estimated by the generalized least squares (GLS) 
method (Rao 1973), and a generalized coefficient of 
determination (Nagelkerke 1991) was calculated for 
each equation as a proxy for the common coefficient of 
determination. Mortality mij(s) was a Probit function (Bliss 
1935) estimated with maximum likelihood. 
To avoid compromised type-I error rates and severe artifacts 
commonly associated with model selection procedures (Mac 
Nally 2000), predictive variables were selected with three 
criteria: the expected biological responses, the statistical 
significance, and the contribution to the model goodness-
of-fit. In this study, we used the hierarchical partitioning 
or HP (Chevan and Sutherland 1991) to decompose the 
model goodness-of-fit represented by likelihood through 
incremental partitioning, and determined the average 
independent contribution of each variable to the overall 
goodness-of-fit. The HP analysis was conducted with the 

	
  

	
  

Mij(s)=Φ(δ0+δ1D+δ2D
2+δ3D

3+δ4B+δ5P+δ6H+
τ(l,a,z)+μ(s))+ε2
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hier.part package of the R program (Mac Nally and Walsh 
2004).

The accuracy of this model was determined by the 
prediction errors, the differences between the observed stand 
states of the third inventory and the predicted ones, on two 
phases of validation plots. Phase I plots were 175 CAFI 
sample plots on which a third inventory has been conducted 
10 years after the first inventory, solely for the validation 
purpose. Phase II was consisted of 40 Forest Inventory 
and Analysis (FIA) plots located on the boreal transitional 
zone on the Kenai Peninsula outside the current sample 
area, and no data from these plots were used to calibrate 
the CTS model. Phase I and II plots represented a temporal 
and spatial extension of the current sample coverage, 
respectively (Fig. 1). For each Phase I plot, the expected 
number of trees at the third inventory was predicted by 
setting the stand state at the first inventory as the initial 
state, and applying Eq. 4 iteratively over 10 years. For each 
Phase II plot, the expected number of trees at the second 
inventory was predicted by applying Eq. 4 iteratively over 
the specific interval of that plot, averaging 4.78 years across 
all the plots. 

For comparison, we also predicted the stand states of both 
Phase I and II plots with the nonspatial Matrix Model (Liang 
2010) and a conventional trend surface Matrix Model in 
which recruitment, diameter growth, and mortality were 
equations of second-order trend surfaces only (Eq. 7). Both 
models were calibrated with data from the same 446 sample 
plots. For each model, root mean squared errors (RMSE, 
see Wooldridge 2000, P.600) were calculated based on the 
difference between the predicted and observed basal area by 
diameter class and species as a measure of accuracy of that 
model over the validation plots. 

Results
Model Parameters 
For recruitment Ri(s), the total number of trees (N) and stand 
basal area (B) were the most significant control variables, 
and their effects on recruitment were consistent over all the 
species (Table 5). When regarded as an entity, the spatial 
component was significant for all the species in recruitment, 
and so was the terrain component. Generally, N contributed 
most to the goodness-of-fit of recruitment (67~82 percent), 
followed by P and H (2~14 percent). The spatial component 
contributed 3~9 percent, and the terrain variables 8~16 
percent. B contributed little to the goodness-of-fit (2~6 
percent), albeit its high level of significance (Table 6). 

In the diameter growth model, all the control variables 
were significant, except basal area (B) for aspen and black 
spruce, permafrost (P) for birch, and species diversity 
(H) for birch and white spruce (Table 7). The spatial and 

terrain components were both highly significant (Table 
6). Generally, the diameter (D) contributed the most to 
the overall goodness-of-fit of diameter growth (4~71 
percent), followed by the terrain (12~33 percent) and spatial 
component (4~25 percent, Table 6). 

In the mortality model, all the control variables were 
significant, except basal area (B) for aspen and black spruce, 
permafrost (P) for birch, and species diversity (H) for birch 
and white spruce (Table 8). Both the spatial and terrain 
components were highly significant (Table 6). Generally, 
the terrain component contributed the most to the overall 
goodness-of-fit of mortality (22~55 percent), followed by 
the diameter (3~51 percent) and spatial component (12~33 
percent, Table 6). 

Validation and Residuals 
Over the 175 Phase I validation plots, the stand basal area 
predicted by the CTS model was generally accurate over all 
species and size, as they all fell within 95 percent confidence 
interval of the observed ones, except for the smallest black 
spruce (Fig. 2). The nonspatial model was quite close to the 
CTS model in terms of predictions over the Phase I plots, 
and the conventional trend surface model underestimated 
aspen and overestimated black spruce in general. Compared 
to the nonspatial model, the CTS model was 7.88, 20.73, 
22.28, and 11.00 percent more accurate in terms of 
RMSE for birch, aspen, white spruce, and black spruce, 
respectively. The CTS model was also 2.98, 18.41, 22.32, 
and 16.88 percent more accurate than the conventional 
trend surface model for the four species in terms of 
RMSE (Fig. 2).

The accuracy of the CTS model was more prevalent for 
deciduous species over the 40 Phase II validation plots. The 
CTS model was 21.41, 64.10, 7.24, and 3.70 percent more 
accurate in terms of RMSE than the nonspatial model for 
birch, aspen, white spruce, and black spruce, respectively. 
When compared with the conventional trend surface model, 
the CTS model was more than 60 percent more accurate 
for deciduous species, and 13.62 percent more accurate for 
white spruce. The CTS model was 7.98 percent less accurate 
than the conventional trend surface model for black spruce, 
but the difference was negligible especially for forest 
management purposes as most errors of the CTS model 
occur in the smallest diameter class (Fig. 3). 

Spatial Inference
Using the method in Liang and Zhou (2010), we created 
maps of the predicted future Alaska boreal forest. The map 
of the predicted stand basal area change in the Year 2011, 
2051, and 2101 shows that without major disturbances and 
substantial changes of climate conditions, the total stand 
basal area would keep increasing over time for most of the 
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region (Fig. 4). The Yukon River Basin and Copper River 
Valley were predicted to have the best basal area growth. 
The Matanuska-Susitna Valley, Kuskokwim River Basin, 
and some sporadic areas, such as Nenana and Healy, on 
the contrary, would see a decline in the basal area. Overall, 
the stand basal area may increase in the central and eastern 
region, while some negative basal area change may occur 
in the southern and western region. The magnitude of 
changes over the entire region slightly increased over time. 
Between the year 2001, 2011, 2051, and 2101, the average 
annual basal area change was 0.20, 0.27 and 0.33 m2/ha/y, 
respectively. The prediction implies that under current 
conditions, the total basal area of the Alaska boreal forest 
may become higher at an increasing rate for the Twenty-
First Century. 

Current distribution of dominant species throughout the 
region was predicted to remain the same until the Year 2051, 
and a large portion of the deciduous forests may switch 
to coniferous forests thereafter (Fig. 5). In the Year 2101, 
without major disturbances and catastrophes, more than 90 
percent of the forest located between 62°N and 66°N was 
predicted to be coniferous, while at present, most of the 
coniferous forests are clustered in the Copper River Valley 
and the area to the southeast of Fairbanks. The Porcupine 
River Valley and eastern Mat-Su Valley, however, may 
continue to be covered by deciduous forests in a century, 
according to the model (Fig. 5). 

Conclusion

This paper proposes a method of Controlled Trend Surface 
to simultaneously account for large-scale spatial trends and 
nonspatial local effects. By incorporating well-recognized 
nonspatial factors, CTS would be particularly useful for 
studying biological and ecological processes, such as forest 
growth and fish habitat alteration, where spatial patterns 
and effects of local variables were both important, and 
predictions were needed over areas of considerable sizes. 
With this method, a geospatial model of forest dynamics 
was developed for the Alaska boreal forest, based on a 
large and representative dataset which covers a wide range 
of forests, from lowland monospecific coniferous stands 
to upland uneven-aged hardwood stands. The CTS model 
was in general more accurate for all the species than the 
nonspatial model (Liang 2010) and the conventional trend 
surface model, both of which were calibrated with the same 
data, over the 175 Phase I and 40 Phase II validation plots. 

The CTS model was beyond traditional stand growth models 
because its geospatial component represented trends of 
forest dynamics on a large spatial scale, likely caused by the 
spatial variation of temperature and precipitation and other 
unknown factors. Therefore, this model would be more 

useful than traditional stand growth models to predict forest 
dynamics over the entire Alaska boreal region. Although it 
was a bold extrapolation, of which the accuracy remained 
to be assessed for most locations outside the sample area, 
the predictions were generally consistent with previous 
knowledge and offered a striking illustration of the potential 
power of including spatial and topographic information in 
forest dynamics models.
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Variable Definition 

Tree-level variables 

D Diameter at breast height (cm) of a live tree  

g Annual diameter increment (cm) of a live tree 

Plot-level variables 

Ri Annual recruitment, the number of trees grew into the smallest diameter class (3.8 to 5.0 cm) of 

species i in a year 

Ni Total number of trees per hectare of species i  

B Stand basal area (m
2
/ha) 

P Permafrost. A coded variable representing the likelihood of permafrost on site, where one 

stands for 90% likely, two 60% likely, three 30% likely, and four most unlikely (0%)  

H Number of tree species present on a plot 

z Plot elevation (km) 

l Plot slope (%) 
α Plot aspect showing the direction to which the plot slope faces (°). 0 means no slope, 180 and 

360 represented south- and north-facing slopes, respectively. 

x Easting of UTM coordinates (10
6
m) 

y Northing of UTM coordinates (10
6
m) 

 

 

Table 1—Definition of variables
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Table 2. Distribution of total basal area by species in the sample plots. 
Common Name Shortened Name Scientific Name Percentage 

white spruce white spruce Picea glauca (Moench) Voss 37.40 

Alaska birch birch Betula neoalaskana Sarg. 27.83 

quaking aspen aspen Populus tremuloides Michx. 20.27 

black spruce black spruce Picea mariana (Mill.) B.S.P. 4.99 

Other species   9.51 

  Total 100.00 

Note: nomenclature per FNAEC (1993). 

 

Table 2—Distribution of total basal area by species in the sample plots

 

Table 3. Summary statistics of plot-level variables, based on 446 sample plots. 
  N (trees�ha

-1
) B (m

2 
ha

-1
) P H 

 Birch Aspen White spruce Black spruce    

Mean 336.35 286.82 651.20 281.56 22.91 3.33 2.32 

S.D. 31.73 32.13 44.36 51.69 0.49 0.04 0.04 

Max 5955.03 4867.80 8771.93 12700.77 63.43 4.00 5.00 

Min 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

  Recruitment (trees�ha
-1

�y
-1

) z (km) s (%) α (°) 

 Birch Aspen White spruce Black spruce    

Mean 5.60 2.49 27.92 32.30 0.36 10.17 146.41 

S.D. 0.97 0.69 2.63 6.48 0.01 0.60 5.09 

Max 197.68 222.39 444.77 1161.35 0.96 77.00 360.00 

Min 0.00 0.00 0.00 0.00 0.02 0.00 0.00 

Note: Level variables are at the time of the first inventory, recruitment is between the two inventories.  

 

Table 3—Summary statistics of plot-level variables, based on 446 sample plots

 

Table 4. Summary statistics for individual tree data.  
 Birch Aspen White spruce Black spruce 

 Diameter (cm) 

Mean 13.13 12.30 10.52 6.12 

S.D. 7.57 6.03 7.23 3.90 

Max 59.49 53.29 85.39 30.71 

Min 3.80 3.80 3.80 3.80 

n  6080 5206 11677 4862 

 Diameter growth (cm�y
-1

) 

Mean 0.10 0.08 0.11 0.09 

S.D. 0.12 0.08 0.12 0.11 

Max 1.55 0.81 2.50 1.82 

Min -3.99 -0.62 -2.27 -2.20 

n  6080 5206 11677 4862 

 Mortality Rate (y
-1

) 

Mean 0.02 0.03 0.01 0.01 

S.D. 0.06 0.07 0.04 0.03 

Max 0.20 0.20 0.20 0.20 

Min 0.00 0.00 0.00 0.00 

n  6885 6011 12161 5014 

Note: The statistics of diameter and diameter growth were for live trees only, and those of mortality were for 

both live and dead trees. n was the number of records.  

 

Table 4—Summary statistics for individual tree data
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Table 5. Parameters of the recruitment equation. 
Explanatory Species 

Variables Birch Aspen White spruce Black spruce 

Constant -10278.00 ** 3096.00  -5290.00  -511.00  

β1 0.01 *** 0.01 *** 0.03 *** 0.11 *** 

β2 -0.36 *** -0.12 * -0.68 *** -1.05 *** 

β3 0.96  -900.30  1659.00  140.00  

β4 3.09 ** 1384.00  -7453.00  1030.00  

Spatial component 

d1 2922.00 ** 65.38  -129.00  -9.30  

d2 3555.00  -324.70  49.00  -2703.00  

d3 -207.66 ** -188.50  1036.20  -98.00  

d4 -793.20  -0.91  6.66 ** -0.25  

d5 -495.50  1.57 * 2.96  0.30  

Terrain component 

c1 -0.17  -0.07  0.75  1.38  

c2 -0.51  -0.02  0.14  0.15  

c3 -0.11  -0.23  -0.75  -1.75  

c4 1.04  -0.10  -4.78  -6.48  

c5 4.10 ** 0.50  -1.26  0.03  

c6 0.40  0.71  4.26  8.02  

c7 -0.91  0.08  3.15  2.52  

c8 -3.62 ** -0.64  0.62  -1.66  

c9 -0.13  -0.34  -3.65  -5.29  

c10 3.28  -5.29  96.85 * 87.99  

c11 -9.50  6.49  -127.59 ** -95.73  

R
2
 0.19  0.19  0.35  0.79  

n 446  446  446  446  

Note: 

-Dependent variable =stand recruitment in trees·ha
-1

·y
-1

. 

-R
2
= generalized coefficient of determination. 

-n = degrees of freedom. 

-Level of significance: *: P<0.10; **: P<0.05; ***: P<0.01. 

-The complete model is: 

 

 

 

  

 

Table 5—Parameters of the recruitment equation
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Table 6. Percentage contribution (%) to the overall goodness-of-fit and the level of significance of 

variables and components.   

 Species 

 Birch Aspen White spruce Black spruce 

 Recruitment (trees�ha
-1

�y
-1

) 

Spatial component 3.56 *** 6.23 ** 8.77 *** 2.53 * 

Stem density 68.44 *** 68.95 *** 67.46 *** 82.00 *** 

Stand basal area 6.32 *** 1.69 * 2.73 *** 4.88 *** 

Terrain component 8.02 *** 8.77 * 16.21 *** 8.41 * 

Others (P, H) 13.67 ** 14.35 * 4.83 * 2.20  

All 100.00 *** 100.00 *** 100.00 *** 100.00 *** 

 Diameter Growth (cm�y
-1

) 

Spatial component 10.18 *** 4.30 *** 12.28 *** 24.89 *** 

Diameter 58.25 *** 70.96 *** 34.19 *** 4.20 *** 

Stand basal area 13.97 *** 5.38 *** 10.72 *** 4.60 *** 

Terrain component 12.45 *** 13.80 *** 17.85 *** 32.59 *** 

Others (P, H) 5.14 *** 5.55 *** 24.96 *** 33.71 *** 

All 100.00 *** 100.00 *** 100.00 *** 100.00 *** 

 Mortality (y
-1

) 

Spatial component 25.32 * 13.48 *** 32.62 *** 12.26 *** 

Diameter 43.10 *** 50.60 *** 7.09 *** 3.13 *** 

Stand basal area 1.70 *** 8.27  7.30 *** 2.22  

Terrain component 22.61 *** 22.31 *** 44.94 *** 55.22 *** 

Others (P, H) 7.27  5.33 *** 8.05 *** 27.17 *** 

All 100.00 *** 100.00 *** 100.00 *** 100.00 *** 

Note: 

-Level of significance: *: P<0.10; **: P<0.05; ***: P<0.01. 

-Due to the limit of computing capacity, percentage contribution (%) to the overall goodness-of-fit is 

approximated with the following terms by the hierarchical partitioning method: 

.  

 

Table 6—Percentage contribution (%) to the overall goodness-of-fit and the level of significance of 
variables and components
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Table 7. Parameters of the diameter growth equation. 
 Species 

 Birch Aspen White spruce Black spruce 

Constant 33.347 *** -40.126 *** -3.835  81.300 *** 

γ1 0.022 *** 0.017 *** 0.014 *** 0.014 *** 

γ2 -0.754 *** -0.412 *** -0.381 *** -1.271 *** 

γ3 8.457 *** 4.236 *** 3.242 *** 28.367 *** 

γ4 -0.003 *** -0.002  -0.003 *** 0.000  

γ5 0.006  0.004 ** 0.032 *** 0.027 *** 

γ6 -0.003  -0.001 *** 0.001  0.014 *** 

Spatial component 

d1 -9.150 *** 11.184 *** 0.965  -22.802 *** 

d2 -19.931 ** 35.540 *** 7.109 ** -38.110 *** 

d3 0.628 *** -0.779 *** -0.060  1.598 *** 

d4 3.992  -9.245 *** -5.985 *** 9.880 *** 

d5 2.704 ** -4.906 *** -0.888 ** 5.167 ** 

Terrain component 

c1 0.001 * -0.001  -0.002 *** -0.002  

c2 -0.001 *** 0.002 *** -0.002 *** -0.003 ** 

c3 0.002 ** 0.000  0.001 ** -0.005 *** 

c4 -0.014 *** 0.012 *** 0.007 *** -0.012  

c5 0.003  -0.002  0.004 * 0.006  

c6 -0.010 ** -0.009 ** -0.005 * 0.023 ** 

c7 0.009  -0.014 *** -0.003  0.016 * 

c8 -0.002  -0.003  -0.004 * 0.000  

c9 0.012 *** 0.011 *** 0.003  -0.016 * 

c10 0.180 *** -0.217 *** 0.024  0.190 ** 

c11 -0.241 *** 0.275 *** -0.147 *** -0.255 ** 

R
2
 0.16  0.30  0.19  0.09  

n 6079  5205  11676  4861  

Note: 

-Dependent variable =diameter increment in cm·y
-1

. 

-R
2
= generalized coefficient of determination. 

-n = degrees of freedom. 

-Level of significance: *: P<0.10; **: P<0.05; ***: P<0.01. 

-The complete model is: 

 

 

 

 

Table 7—Parameters of the diameter growth equation
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Table 8. Parameters of the mortality equation. 
 Species 

 Birch Aspen White spruce Black spruce 

Constant -75.3843  -699.1010 *** -327.0340 ** -212.7930  

δ1 -0.3089 *** -0.3942 *** -0.3292 *** 0.1429 * 

δ2 0.0118 *** 0.0142 *** 0.0195 *** -0.0168 ** 

δ3 -0.0001 *** -0.0002 *** -0.0003 *** 0.0004 ** 

δ4 0.0081 ** -0.0060  0.0161 *** -0.0121  

δ5 0.0559  -0.3102 *** -0.1143 *** -0.3169 *** 

δ6 -0.0109  0.0835 ** -0.0502  0.3124 *** 

Spatial component 

d1 24.5381  203.0630 *** 97.7920 ** 75.7932  

d2 -182.5720  -240.8970 ** -169.2840 ** -945.6830 ** 

d3 -1.9537  -14.6711 *** -7.2783 ** -6.4794  

d4 34.2778  -21.6544  91.0388 *** 160.2830 * 

d5 25.2288  35.8469 *** 21.7540 * 131.0860 ** 

Terrain component 

c1 -0.0027  -0.0476 *** 0.0032  0.0667  

c2 0.0072  -0.0154  -0.0070  -0.0303  

c3 0.0035  0.0121  0.0060  0.0983 ** 

c4 0.2144 ** 0.1727  0.0262  0.0651  

c5 0.1074  -0.0983  0.0657  0.0834  

c6 -0.0089  -0.1412  -0.2113 *** -0.7993 * 

c7 -0.4002 *** -0.0990  -0.0362  -0.4884  

c8 -0.2906 ** 0.0995  -0.0471  -0.3213  

c9 0.0261  0.0699  0.2898 *** 1.0591 * 

c10 -1.4572  -4.2703 *** -2.5270 *** -2.2706  

c11 2.3799  2.4327  1.4191  -1.5049  

R
2
 0.17  0.16  0.14  0.12  

n 6885  6011  12161  5014  

Note: 

-Dependent variable =mortality rate in y
-1

. 

-R
2
= McFadden's pseudo R-squared value.  

-n = degrees of freedom. 

-Level of significance: *: P<0.10; **: P<0.05; ***: P<0.01. 

-The complete model was: 
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Figure 1 Geographic distribution of the sample and validation plots and their relative location in the 

Alaska boreal forest region (green area. Source: the U.S. Geological Survey Ecoregions Map of Alaska, 

http://agdc.usgs.gov/data/projects/fhm/).  Albers equal area map projection with standard parallels.   

 

Figure 1—Geographic distribution of the sample and validation plots and their relative location in 
the Alaska boreal forest region (green area. Source: the U.S. Geological Survey Ecoregions Map 
of Alaska, http://agdc.usgs.gov/data/projects/fhm/). Albers equal area map projection with standard 
parallels.
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Figure 2 Average predicted and observed basal area by diameter class and species with 95% 

confidence interval over the 175 Phase I validation plots.  Predictions were obtained with the present 

model (1), the nonspatial model (2), and the uncontrolled trend surface model (3). RMSE represents 

root mean squared errors calculated for that species by the three different models. 

  

 

Figure 2—Average predicted and observed basal area by diameter class and species with 95 percent confidence 
interval over the 175 Phase I validation plots. Predictions were obtained with the present model (1), the nonspatial 
model (2), and the uncontrolled trend surface model (3). RMSE represents root mean squared errors calculated for that 
species by the three different models. 

 

Figure 3 

Average predicted and observed basal area by diameter class and species over the 40 Phase II 

validation plots.  Vertical bars represented 90 instead of 95 percent confidence interval of observed 

values due to the small number of plots. Predictions were obtained with the present model (CTS), the 

nonspatial model (NS), and the conventional trend surface model (TS). RMSE represents root mean 

squared errors calculated for that species by the three different models. 

  

Figure 3—Average predicted and observed basal area by diameter class and species over the 40 Phase II validation 
plots. Vertical bars represented 90 instead of 95 percent confidence interval of observed values due to the small number 
of plots. Predictions were obtained with the present model (CTS), the nonspatial model (NS), and the conventional 
trend surface model (TS). RMSE represents root mean squared errors calculated for that species by the three different 
models.
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Figure 4 Predicted stand basal area change (m
2
ha

-1
) of the Alaska boreal forest in the year 2011, 2051, 

and 2101, assuming constant climate conditions and no major natural disturbances. The initial stand 

states were obtained from the 2001 NLCD Landsat remote sensing data.  

 

Figure 4—Predicted stand basal area change (m2ha-1) of the Alaska boreal forest in the year 2011, 2051, and 2101, assuming constant 
climate conditions and no major natural disturbances. The initial stand states were obtained from the 2001 NLCD Landsat remote sensing 
data.

 

 

 

Figure 5 Observed (year 2001) and predicted( year 2051 and 2101) tree species coverage in the boreal 

forest region of Alaska, assuming constant climate conditions and no major natural disturbances. The 

initial stand states were obtained from the 2001 NLCD Landsat remote sensing data.  

 
 

Figure 5—Observed (year 2001) and predicted (year 2051 and 2102) tree species coverage in the boreal forest region of Alaska, 
assuming constant climate conditions and no major natural disturbances. The initial stand states were obtained from the 2001 NLCD 
Landsat remote sensing data. 



39

Abstract

Foresters are increasingly required to assess trends not only in traditional 
forest attributes (e.g., growing-stock volumes), but also across suites 
of forest health indicators and site/climate variables. Given the tenuous 
relationship between correlation and causality within extremely large 
datasets, the goal of this study was to use a nationwide annual forest 
inventory to determine levels of correlation among a wide array of 
database fields to aid foresters in separating correlation from causality 
in comprehensive forest resource assessments. In examining more than 
15,000 individual correlations, we found the overwhelming majority (> 
85 percent) of correlation coefficients were under 0.1. Site variables (e.g., 
elevation) had the highest mean correlations, while tree variables (e.g., 
live aboveground biomass) had the lowest mean correlations with all other 
variables. Nearly all the high correlations (>0.6) were between variables 
substantially autocorrelated (e.g., site class code and site index). Given that 
most correlations within a large-scale forest inventory dataset are very low 
with the remainder being nonsensical or autocorrelates, finding a highly 
correlated pair of variables with no apparent autocorrelation deserves 
further exploration.

INTRODUCTION

For most of the 20th century, forest resource assessments 
in the United States and abroad were often conducted 
purposively at small scales using spatially inconsistent 
sample techniques (i.e., relevé sampling such as stand 
exams) or conducted periodically at large scales using 
temporally inconsistent sample techniques (e.g., periodic 
forest inventory programs in the U.S., Frayer and Furnival 
1999). In addition to the lack of spatially and temporally 
consistent forest inventories, the absence of computing 
resources available to forest professionals prevented 
complex forest inventory analyses and resource hypothesis 
testing. Until the 1990s, the analysis of large-scale forest 
resource datasets was severely limited to a few analysts with 
access to inconsistent datasets in computationally limited 
data management systems.

With the emergence of international agreements focused on 
the health of forest biomes (USDA 2004) and greenhouse 
gas accounting, nations have responded by developing 
nationally consistent forest inventories including numerous 

CURIOUS OR SPURIOUS CORRELATIONS 
WITHIN A NATIONAL-SCALE FOREST 
INVENTORY?
Christopher W. Woodall and James A. Westfall

C.W. Woodall, Research Forester, U.S. Department of Agriculture, Forest Service, Northern Research Station, Forest Inventory and Analysis 
Program, St. Paul, MN 55108
J.A. Westfall, Research Forester, U.S. Department of Agriculture, Forest Service, Northern Research Station, Forest Inventory and Analysis 
Program, Newtown Square, PA 19073

variables complementary to traditional tree attributes 
(e.g., soils and downed dead wood, Perry and others 2009). 
In addition to field implementation of large-scale forest 
inventories, data management systems have been developed 
such that the multitude of data can be rapidly distributed to 
the public via well-documented web sites. Perhaps never 
before have forest professionals or the public had access to 
such large and extensive datasets for exploration of forest 
resource questions. For example, there are currently 1.1 
and 15.0 million records within the plot and tree tables 
of the U.S. national inventory, respectively (Woudenberg 
and others 2011). Coupling the millions of inventory 
records with the hundreds of database fields provides the 
opportunity to explore numerous facets of forest ecosystems 
such as fire ecology (Woodall and Nagel 2007), climate 
change impacts (Woodall and others 2009), forest health 
(Huebner and others 2009), growth and mortality (Shaw 
and others 2005), and ownership patterns (Butler and 
Leatherberry 2005). 

With the ability to rapidly assess forest resource attributes 
using extensive datasets comes the danger of inferring 
causality from possibly spurious correlations. Given that the 
U.S. national forest inventory data are publicly available for 
rapid download, most analyses will be conducted by users 
not affiliated with the actual data collection or management. 
Forest professionals have received little guidance on the 
frequency of high correlations within large-scale forest 
inventory datasets. Are strong correlations a common 
occurrence? Does autocorrelation confound many analyses? 
The goal of this study was to use a nationwide annual 
forest inventory to determine levels of correlation among 
a wide array of database fields to help foresters separate 
correlation from causality in comprehensive forest resource 
assessments. 

METHODS

This study used data exclusively from the national inventory 
of all U.S. forests. The U.S. Department of Agriculture, 
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Forest Service’s Forest Inventory and Analysis (FIA) 
program is charged by Congress with providing an annual 
inventory of all forest lands. The FIA sampling framework 
is based on a systematic network of ground plots (Bechtold 
and Patterson 2005) obtained by dividing the U.S. into a 
series of 2,400-ha hexagons. Within each hexagon, FIA 
operates a multi-phase inventory. In phase 1 (P1), land 
area is stratified using aerial photography or classified 
satellite imagery to increase the precision of estimates using 
stratified estimation. In second phase (P2), permanent fixed-
area plots are installed in each hexagon when field crews 
visit plot locations that have accessible forest land. Field 
crews collect data on more than 300 variables, including 
land ownership, forest type, tree species, tree size, tree 
condition, and other site attributes (e.g., slope, aspect, 
disturbance, land use) (USDA 2009). The plot design for 
FIA inventory plots consists of four 7.2-m fixed-radius 
subplots spaced 36.6 m apart in a triangular arrangement, 
with one subplot in the center. All trees with a diameter 
at breast height of at least 12.7 cm are inventoried within 
forested conditions. Within each subplot, a 2.07-m microplot 
offset 3.66 m from the subplot center is established where 
live tree seedlings and trees with a d.b.h. between 2.5 and 
12.7 cm are inventoried. In addition to the trees measured 
on these plots, data are also gathered on the condition of 
the area in which the trees are located (e.g., stand-age class, 
ownership group, tree-density class). During the third phase 
of the inventory (P3), forest health indicators are measured 
on a 1/16th subset of the entire FIA ground plot network. 
The suite of forest health indicators includes tree crown 
condition, lichen communities, forest soils, vegetation 
diversity, down woody material, and ozone injury (Woodall 
and others In Press). 

Using FIA’s national database (FIADB version 4.0), we 
extracted forest inventory data for the most recent inventory 
in 49 states (currently no inventory available for Hawaii 
or interior Alaska). Given the multitude of database fields 
and tables examined in this study, FIA’s documented 
nomenclature will be used in this study (Woudenderg and 
others 2011). The data extraction was limited to fields in 
the plot, condition, and tree tables, or variables calculated 
from those fields (e.g., total tree biomass on a plot): INVYR, 
STATECD, UNITCD, COUNTYCD, PLOT, PLOT_
STATUS_CD, MEASYEAR, MEASMON, MEASDAY, 
REMPER, KINDCD, DESIGNCD, RDDISTCD, 
WATERCD, LAT, LON, ELEV, P2PANEL. CONGCD, 
MANUAL, EMAP_HEX, CYCLE, SUBCYCLE, 
CONDID, COND_STATUS_CD, RESERVCD, OWNCD, 
OWNGRPCD, FORTYPCD, FLDTYPCD, MAPDEN, 
STDAGE, STDSZCD, FLDSZCD, SITECLCD, SICOND, 
SIBASE, SISP, STDORGCD, CONDPROP_UNADJ, 
MICRPROP_UNADJ, SUBPPROP_UNADJ, SLOPE, 
ASPECT, PHYSCLCD, GSSTKCD, ALSTKCD, 

DSTRBCD1, DSTRBYR1, TRTCD1, TRTYR1, BALIVE, 
FLDAGE, ALSTK, GSSTK, FORTYPCDCALC, 
SITETREE_TREE, SITECL_METHOD, CARBON_
DOWN_DEAD, CARBON_LITTER, CARBON_SOIL_
ORG, CARBON_STANDING_DEAD, CARBON_
UNDERSTORY_AG, CARBON_UNDERSTORY_BG, 
CYCLE2, SUBCYCLE2, TREE, AZIMUTH, DIST, SPCD, 
SPGRPCD, DIA, DIAHTCD, HT, HTCD, ACTUALHT, 
TREECLCD, CR, CCLCD, TREEGRCD, CULL, 
DAMLOC1, DAMTYP1, DAMSEV1, STOCKING, 
VOLCFNET, VOLCFGRS, VOLBFNET, BOLBFGRS, 
VOLCFSND, DRYBIO_BOLE, DRYBIO_TOP, DRYBIO_
STUMP, DRYBIO_SAPLING, DRYBIO_BG, CARBON_
AG, CARBON_BG. All tree-level variables were summed 
to the plot and condition for live and standing dead trees. 
These calculated tree-level variables were delineated for 
live or dead by preceding each variable with a “L” or “D,” 
respectively. Not all fields from the database tables were 
extracted for this study. Excluded were variables that were 
not alphanumeric or were a duplication of variables (e.g., 
secondary and tertiary tree damages). Finally, records were 
excluded when one or more fields were null. With these 
constraints, this study’s data records totaled 42,617. 

Correlations were calculated using SAS’s CORR procedure 
with Pearson’s correlation coefficients as the primary 
output. To assess the distribution of correlations from a 
large-scale forest inventory, the frequency of correlations 
from the correlation matrix of all this study’s variables was 
determined. Correlations among the same variables were 
excluded from the matrix calculation (coefficient=1) for a 
total of 15,751 correlations. Mean absolute correlations were 
determined among broad categories of variables according 
to plot (i.e, plot selection information such as measurement 
year and county), site (i.e., physiographic information such 
as elevation and latitude), condition (i.e., stand condition 
information such as forest type and stand age), and tree (i.e., 
summed tree attributes such as height and volume). Actual 
individual correlations were examined when correlation 
coefficients exceeded 0.7.

RESULTS AND DISCUSSION

In examining of 15,625 individual absolute correlations, 
we found the overwhelming majority (> 85 percent) to be 
under 0.1 while less than 1 percent was above 0.5 (Fig. 1). 
Site variables (e.g., elevation and latitude) had the highest 
mean correlations (≈ 0.09), while tree variables (e.g., live 
aboveground biomass) had the lowest mean correlations 
(≈ 0.05) with all other study variables. Nearly all the high 
correlations (>0.7) were between variables substantially 
autocorrelated (e.g., algorithm calculated forest type and 
field estimated forest type) (Table 1). The remainder of 
high correlations could be attributed to spurious effects of 
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database manipulation (e.g., latitude and plot number) or 
possible curious ecological relationships (e.g., physiographic 
class and disturbance year). 

If variables would be randomly chosen from a strategic-
scale forest inventory dataset such as FIA’s national 
inventory, it is extremely unlikely that any appreciable level 
of correlation would be found. If indeed the correlation 
exceeded 0.5, then these variables would stand a strong 
chance of being autocorrelated. Examples of autocorrelation 
in this study were measurement year and manual number, 
inventory cycle and kind code, and sum of live tree numbers 
and sum of distances to live trees. Most of these spurious 
correlations should be readily identified by even novice 
inventory analysts. Other spurious correlations, such as 
longitude and site index base, may take identification by 
experts in forest inventory databases and sampling designs. 
Only about a dozen correlations exceeded 0.6 and were 
ecologically interesting. Physiographic class was strongly 
correlated with the year of the most recent disturbance, soil 
organic carbon, understory aboveground biomass, and sum 
of live-tree board foot gross volume. Poor physiographic 
sites (i.e., ridge tops) may have shallow soils with little 
organic soil carbon and may be more prone to disturbances 
thus reducing their aboveground biomass. It appears as 
though approaching such large-scale datasets with readily 
testable ecological hypotheses may be the best method to 
derive meaningful relationships as opposed to the often 
spurious results of massive database computations using no 
a priori assumptions.

CONCLUSIONS

Given that most correlations within a large-scale forest 
inventory dataset are very low with most of the remainder 
being autocorrelates, finding a highly correlated pair of 
variables with no apparent autocorrelation is very unlikely. 
Because all correlations were assumed to be linear in this 
study, we suggest that non-linear correlations be examined 
in future studies. With the ever increasing availability of 
large datasets of ecosystem conditions (i.e., national forest 
inventories), a tenet can be forwarded: given the extreme 
rarity of finding highly correlated natural ecosystem 
variables lacking autocorrelation, when identified their 
further investigation is warranted.
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Variables Correlations
0.7 – 0.8 0.8 – 0.9 0.9 – 1.0

Plot Lon
Measyear Manual
Lon Plot
Manual Measyear
Condid Condprop_

unadj,microprop_unadj, 
subprop_unadj

Owncd Owngrpcd
Owngrpcd Owncd
Fortypcd Fldtypcd
Fldtypcd Fortypcd
Siteclcd Second
Sicond Siteclcd
Conprop_unadj Condid Micrprop_unadj, subprop_unadj
Micrprop_unadj Condid Condprop_unadj, subprop_unadj
Subprop_unadj Condid Conprop_unadj, Micrprop_unadj
Gsstkcd Carbon_understory_ag
Dstrbyr1 Carbon_soil_org
Trtcd1 Carbon_standing_dead
Trtyr1 L_carbon_bg
Fldage L_dist
Carbon_soil_org Dstrbyr1
Carbon_standing_dead Trtcd1
Carbon_understory_bg Gsstkcd
L_tree L_azimuth, l_spgrpcd
L_azimuth L_tree L_spcd, l_sprgrpcd
L_dist Fldage
L_spcd L_azimuth L_spgrpcd
L_spgrpcd L_tree L_azimuth L_spcd
L_actualht L_volbfnet
L_volbfnet L_actualht
L_carbon_bg Trtyr1
D_tree D_damtyp1
D_azimuth D_damsev1
D_dist D_decaycd
D_damtyp1 D_tree
D_damsev1 D_azimuth
D_decaycd D_dist

Table 1—Matrix of absolute correlation coefficients for all study correlations exceeding 0.7 (live and dead tree variables 
designated by L and D, respectively)
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Figure 1—Frequency of absolute correlation coefficients among 
a multitude of variables sampled during an inventory of U.S. 
forests. 
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ESTIMATING TREE CROWN WIDTHS FOR 
THE PRIMARY ACADIAN SPECIES IN MAINE
Matthew B. Russell and Aaron R. Weiskittel
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Abstract

In this analysis, data for seven conifer and eight hardwood species were 
gathered from across the state of Maine for estimating tree crown widths. 
Maximum and largest crown width equations were developed using tree 
diameter at breast height as the primary predicting variable. Quantile 
regression techniques were used to estimate the maximum crown width and 
a constrained nonlinear equation was developed for estimating the largest 
crown width. We noted an improvement in predictions in 11 of 14 species 
compared to currently-used largest crown width equations in the region. 
The models performed well across the wide range of stand conditions 
present in the dataset and proved effective when used in the computation of 
alternative measures of stand density (crown competition factor and percent 
canopy cover). Results from this analysis can be used in examining tree 
crown dynamics and assessing alternative measures of stand density.   

INTRODUCTION

Accurately determining individual tree crown width has a 
broad applicability to forestry and natural resource sciences, 
yet, the measurement of crown width is lacking in most 
forest inventories. Estimating crown width can be used 
to calculate stand canopy closure, which is important for 
assessing wildlife habitat suitability, fire risk, and understory 
light conditions for regeneration (Crookston and Stage 
1999). Crown width variables have become integral in fields 
using airborne laser scanning technologies (e.g. Salas and 
others 2010). Tree diameter at breast height (dbh) generally 
accounts for much of the variability in predicting tree crown 
dimensions. 

Open-grown trees are commonly selected to estimate 
maximum crown width (mcw). The mcw of a tree is 
generally defined as the potential crown width at a given 
diameter if the tree is open-grown. Methods for selecting 
trees in the field that display open-grown characteristics 
are available (Paine and Hann 1982), but making this 
determination can be laborious, often involves extensive 
traveling to subject trees, and may lend to subjectivity. 
Despite its importance, there are currently no regional 
mcw equations for most of the important commercial 
species in the northeastern U.S. Ek (1974) developed mcw 
equations for several species in the Lake States region but 
their applicability for use with trees found in Maine has not 
previously been assessed. 

A forest-grown tree of a given species displays a horizontal 
crown extension that is less than that of an open-grown 
tree. This measure of crown width is termed the largest 
crown width (lcw). Hence, lcw equations differ from mcw 
equations in that they predict the crown widths of trees 
growing in forested settings. Bechtold (2003) developed lcw 
equations that covered a broad portion of the eastern U.S. 
The performance of the Bechtold (2003) equations to trees 
growing in Maine is unknown.

Crown width measurements are integral to estimating 
alternative measure of stand density used throughout 
forestry. Determining the mcw of trees is needed for 
estimating crown competition factor (CCF; Krajicek and 
others 1961), and lcw equations are needed to estimate 
percent canopy cover (PCC; Crookston and Stage 1999). 
CCF is an estimate of the area available to the average tree 
in the stand in relation to the maximum area it could use if 
it were open grown. PCC is defined as the percentage of the 
ground area that is covered by a vertical projection of tree 
crowns. Consequently, quantification of these stand density 
measures is an important component of many forest growth 
and yield models. As an example, the Forest Vegetation 
Simulator employs equations developed using open-
grown trees to compute CCF, but uses separate equations 
developed with forest-grown trees for estimating PCC 
(Crookston and Dixon 2005). 

The goal of this analysis was to employ data gathered from 
across Maine to determine tree crown width attributes for 
its primary species. The primary objectives were to: (1) 
develop mcw and lcw equations for seven conifer and eight 
hardwood tree species; (2) compare model predictions 
with existing equations used throughout the region; and (3) 
evaluate the crown width equations in the determination of 
measures of stand density. 

METHODS

Species
Maine is part of the Acadian forest, which is a transition 
zone between the conifer-dominant boreal forests of the 
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north and the mixed hardwood forests of the south (Braun 
1950, Rowe 1972). Forests are typically established under 
natural regeneration and are comprised of mixed-species 
stands with even- or uneven-aged stand structures. Common 
conifer species include balsam fir [Abies balsamea (L.)], 
red spruce [Picea rubens (Sarg.)], white spruce [Picea 
glauca (Moench) Voss.], eastern white pine [Pinus strobus 
L.], eastern hemlock [Tsuga canadensis (L.) Carr.], black 
spruce [Picea mariana (Mill.) B.S.P], and northern white-
cedar [Thuja occidentalis L.]. Hardwoods commonly found 
include red maple [Acer rubrum L.], paper birch [Betula 
papyrifera Marsh.], gray birch [Betula populifolia Marsh.], 
yellow birch [Betula alleghaniensis Britt.], quaking aspen 
[Populus tremuloides Michx.], bigtooth aspen [Populus 
grandidentata Michx], American beech [Fagus grandifolia 
Ehrh.], northern red oak [Quercus rubra L.], and sugar 
maple (Acer saccharum Marsh.). Red spruce, white spruce, 
and balsam fir dominate the relatively low-lying sites of 
poorer drainage, but the proportion of eastern hemlock and 
white pine increases as drainage improves.

Data

The data for this analysis came from three primary sources 
at a range of locations throughout Maine: (1) USDA Forest 
Service Forest Health Monitoring program (FHM); (2) 
USDA Forest Service Northern Research Station, Penobscot 
Experimental Forest (PEF); and (3) University of Maine 
Cooperative Forestry Research Unit (CFRU). 

FHM—The FHM program collected information on 123 
0.07-ha plots throughout each of the 16 counties in Maine 
from 1991-1999. Some of the trees in these plots were 
remeasured during this period. The maximum horizontal 
diameter of the widest axis of the tree crown and the 
distance perpendicular to this axis were measured. Crown 
measurements were collected on trees with a dbh greater 
than 12.7 cm.

PEF—The PEF, located in the towns of Bradley and 
Eddington, ME, is a long-term experiment investigating 
impacts of even-, two-, and uneven-aged silvicultural 
systems in the Acadian forest (Sendak and others 2003). 
Tree crown and height measurements have been collected 
since 2000 on a subset of continuous forest inventory (CFI) 
plots at the PEF. Crown measurements in this analysis were 
obtained from individual trees on 81 plots (0.08-ha in size) 
across the PEF. In addition, 2,698 crown measurements 
made on 20 CFI plots across the PEF were used in this 
analysis (Saunders and Wagner 2008).

CFRU—The CFRU dataset came from an early investigation 
of thinning in spruce-fir forests (McCormack 1989). It 
consisted of four locations across Maine in the townships of 

Lakeville Plantation, T5 R15 WELS, T11 R16 WELS, and 
T11 R13 WELS. Stand ages at time of establishment ranged 
from 17 to 70 years. Thirty-one plots of varying size were 
measured up to four times from 1978 to 1994 across these 
locations. 

In the PEF and CFRU datasets, tree dbh was recorded and 
crown radii (r) were measured from the center of the bole 
of each tree to the edge of its crown in each of the cardinal 
directions (N, S, E, W). For the FHM data, the maximum 
horizontal diameter of the widest axis of the tree crown and 
its perpendicular distance were each divided by two and 
considered as crown radii measurements. Quadratic mean 
crown width was computed for all datasets to provide an 
unbiased estimation of crown area irrespective of crown 
shape (Gregoire and Valentine 1995). Crown width by 
dbh and dataset is presented in Figure 1. Depending on 
the minimum size dbh measured in the inventory and the 
relative distribution of species, crown width and dbh vary 
according to dataset.    

Tree data according to species are summarized in Table 1. 
Observations that were coded as displaying a broken or dead 
top, or greater than 50 percent crown dieback were excluded 
in this analysis. 

Model Development
To develop mcw equations, open-grown trees are often 
used in model development. This can be problematical 
as the determination of “open-grownness” could lend to 
subjectivity, is not always specified in the field, and datasets 
of open-grown trees are often comprised of small sample 
sizes. One approach to overcome this is to employ quantile 
regression techniques to estimate a species-specific mcw for 
a given tree diameter. Least squares regression techniques 
estimate a response variable that is conditioned solely on the 
statistical mean, while quantile regression methods allow 
estimation of response variables for any quantile of the data 
(Koenker and Hallock 2001). Given that the data comprised 
a wide range of tree crown widths (both open- and forest-
grown) and that the interest is in estimating the maximum 
potential crown width for a species at a given dbh, the 99th 
quantile was fit to represent the maximum crown width for 
open-grown trees. A nonlinear allometric equation of the 
following form was used:

 						      [1]

where dbh is tree diameter at breast height (cm) and ai’s 
were coefficients estimated from the 99th percentile used to 
represent maximum crown width (m) for each species.

An lcw equation predicts the crown width for trees that 
are not able to reach their biological maximum due to 
competition in a stand. Recognizing the relationship 

mcw = a1dbh a2
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between open-grown and forest-grown trees, constrained 
predictions of lcw were made to be less than or equal to that 
of the mcw curve. A nonlinear equation was fit to the data:   
 							     
						      [2]
							     
		
where mcw is the predicted maximum crown width 
of the tree at its corresponding dbh (Eq. [1]) and bi’s 
were estimated coefficients. The b1 parameter was non-
significant for four species. To evaluate the lcw equations, 
we computed fit index (FI) and mean absolute error 
(MAE):	

where yi, ŷi, and y are observed, predicted, and mean lcw, 
respectively, and n is number of trees in a species. The 
mcw and lcw model parameters were estimated in R using 
the nonlinear quantile regression (nlrq) and generalized 
nonlinear least squares (gnls) functions, respectively. 
Further analysis indicated that incorporating tree crown ratio 
as an additional predictor showed a minor improvement in 
fit index for some species.

To assess the crown width equations in terms of computing 
stand density measures, data from the Penobscot 
Experimental Forest (PEF) long-term silvicultural study 
were obtained. The permanent sample plots within these 
stands represent differing silvicultural practices with a 
variety of stand compositions and structures (Sendak and 
others 2003). The mcw equation (Eq. [1]) was used to 
compute maximum crown area for each individual tree, and 
crown competition factor (CCF) was calculated (Krajicek 
and others 1961). The lcw equation (Eq. [2]) was used to 
compute percent canopy cover (PCC) with a correction for 
crown overlap (Crookston and Stage 1999). CCF and PCC 
were were also estimated for the PEF plots using the Ek 
(1974) and Bechtold (2003) equations, respectively. These 
estimates of CCF and PCC were compared with plot basal 
area (m2 ha-1).

RESULTS

All coefficients were positive in estimating mcw, indicating 
that mcw increases nonlinearly with dbh (Table 2). 
Differences between the mcw equations developed in this 
analysis and the equations of Ek (1974) were observed for 
several species (Figure 2). Generally, the predicted mcw 
using equations developed in this analysis were 45 percent 

higher than mcw predicted from the equations of Ek (1974). 
For the lcw equations, increasing dbh resulted in a larger 
predicted lcw (Table 3). For conifers, fit index (FI) ranged 
from 0.25 for northern white-cedar to 0.56 for eastern 
hemlock and eastern white pine. For hardwoods, FI ranged 
from 0.12 for American beech to 0.59 for paper birch. 
Mean absolute error (MAE) for conifers ranged from 0.46 
m for black spruce to 1.18 m for eastern white pine. For 
hardwoods, MAE ranged from 0.46 m for gray birch to 1.52 
m for American beech. Compared to previously published 
equations (Bechtold 2003), reductions in MAE were 
observed for 6 of 7 conifer species, with the exception of 
eastern white pine. For hardwoods, we observed reductions 
in MAE when compared to Bechtold’s (2003) equations for 
5 of 7 species, with the exceptions of northern red oak and 
sugar maple.    

CCF and PCC were found to be positively correlated with 
plot-level basal area (BA) for permanent sample plot data at 
the Penobscot Experimental Forest (Figure 3). The Pearson 
correlation coefficients of CCF-BA and PPC-BA were 0.56 
and 0.70, respectively. The Pearson correlation coefficient 
for CCF-BA using the equations of Ek (1974) was 0.45. The 
correlation coefficient for PPC-BA using the equations of 
Bechtold (1974) was 0.61.

DISCUSSION

For the primary species occurring across Maine, mcw and 
lcw relationships appear to be adequately captured using 
tree dbh. Using quantile regression provides the ability 
to model the biological maximum of tree crown width, 
hence, determining whether or not trees are open-grown is 
not required in developing mcw equations. Adapting the 
mcw estimate using a nonlinear equation form results in an 
accurate and constrained estimate of lcw. For most species, 
improved predictions resulted when compared to previously 
published equations developed at more broad scales. 

The large differences in the presented mcw equations with 
those of Ek (1974) likely arise from three primary sources. 
First, geographic differences that influence tree crown 
attributes are likely apparent, as the Ek (1974) equations 
were developed using trees grown in the Lake States. 
Second, the data used in this analysis included trees with a 
full range of crown widths and dbh, including measurements 
of trees with a minimum dbh of around 1.4 cm for most 
species. Lastly, employing quantile regression allowed for 
a quantitative estimation of the maximum potential crown 
width, whereas Ek (1974) used least squares procedures 
conditioned solely on the statistical mean of the data. Shade 
tolerant hardwoods like sugar maple and American beech 
likely had low FI’s for lcw because a limited number of 

	 mcw
lcw = 
	 b1dbhb2

FI = 1- (Σ(yi-ŷi)
2 / Σ(yi-y)2)-

i=1i=1

n n

MAE = Σ⎮yi-ŷi⎮/n
n

i=1

-
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trees were used for those species and a complete range 
of diameters was not available when compared to other 
species. 

Predicted crown widths from the developed equations 
appear to adequately represent alternative measures of stand 
density. We observed a stronger correlation between CCF 
and basal area and PPC and basal area using the crown 
width equations developed herein when compared to CCF 
and PCC using crown width equations found in Ek (1974) 
and Bechtold (2003). This speaks to the importance of an 
accurate and reliable estimate of individual tree crown 
width in determining stand density measures. Stand basal 
area is extensively used in growth models because it is 
easy to measure and is highly correlated with volume, 
but it is often confounded with site quality and stand age. 
Alternatively, the mcw equations can be used in computing 
CCF, a measure that is assumed to be independent of site 
and age and can be applied to both even- and uneven-
aged stands. CCF is an effective measure of stand density 
because the determination of crown width is species-
specific. Hence, CCF is a metric that takes into account the 
contribution of individual species to stand density. PCC 
has implications not only in forestry but also in assessing 
wildlife habitat suitability and evaluating fire risk potential. 
The computation of PCC, however, does not taken into 
account the spatial distribution of trees and as a percentage 
is constrained to be between 0 and 100%, which may prove 
difficult in quantifying competition. Field measurements of 
canopy cover and/or derived canopy cover estimates from 
LiDAR could aid in further evaluating the performance of 
the crown width equations.         

Methods developed for developing mcw equations do not 
require the discernment between open- and forest-grown 
trees. Provided that trees are sampled across a wide range of 
stand conditions, estimating maximum crown width using 
quantile regression performs well. Bounding a tree’s crown 
width by its potential maximum is biologically logical and 
resulted in accurate estimates of largest crown width. The 
equations of Bechtold (2003) performed well when using 
data from Maine, however we did find improvements for 
most species examined. Results from this analysis can be 
used in exploring measurements of stand density, examining 
tree crown profiles, and investigating canopy dynamics for 
species common to these forests.   
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 dbh (cm) Quadratic mean 

crown width (m) 

Species 

 

 

Code n Mean SD Min Max Mean SD Min Max 

Conifers 

Balsam fir BF 3605 12.2 7.0 1.1 40.1 2.8 1.3 0.3 12.5 

Black spruce BS 400 14.6 3.5 4.3 23.6 2.4 0.7 0.8 5.2 

Eastern hemlock  EH 1127 23.1 11.1 1.3 57.4 5.3 2.0 1.2 12.1 

Eastern white pine WP 866 25.6 15.7 1.4 92.2 5.0 2.4 0.6 14.8 

Northern white-cedar WC 866 22.7 7.6 1.6 59.7 3.7 1.2 0.8 10.5 

Red spruce RS 2994 19.7 7.2 1.2 56.9 3.6 1.4 0.7 12.1 

White spruce WS 339 17.4 7.1 1.5 40.6 3.5 1.2 0.6 9.3 

Hardwoods 

American beech AB 325 21.3 6.7 11.9 43.4 6.0 2.0 1.4 12.2 

Gray birch GB 251 6.4 4.7 1.3 25.4 2.1 1.3 0.2 9.4 

Northern red oak RO 102 24.3 10.3 12.7 66.8 6.3 2.3 2.1 13.1 

Paper birch PB 576 16.4 8.4 1.3 37.3 4.3 2.1 0.2 14.0 

Quaking aspen QA 353 18.2 7.5 1.3 45.4 4.2 1.7 0.4 10.7 

Red maple RM 1785 18.2 8.6 1.3 54.9 4.9 2.1 0.2 12.2 

Sugar maple SM 355 24.4 9.6 12.7 73.9 6.2 2.0 2.4 14.3 

Yellow birch YB 388 23.6 8.9 1.5 54.1 6.3 2.2 1.9 13.0 

Table 1—Summary statistics for data used in the development of crown width models for 
seven conifer and eight hardwood species in Maine

 

   

 

 

 

 

 

    

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

  

    

 

Species a1 a2 

Conifers 

Balsam fir 1.37 (0.039) 0.572 (0.021) 

Black spruce 0.535 (0.21) 0.742 (0.14) 

Eastern hemlock 2.44 (0.42) 0.408 (0.055) 

Eastern white pine 1.24 (0.49) 0.585 (0.10) 

Northern white-cedar 1.63 (0.44) 0.436 (0.087) 

Red spruce 1.80 (0.46) 0.461 (0.075) 

White spruce 1.50 (0.46) 0.496 (0.10) 

Hardwoods 

American beech 2.93 (0.65) 0.434 (0.077) 

Gray birch 2.24 (1.8) 0.382 (0.28) 

Northern red oak 4.08 (2.0) 0.310 (0.16) 

Paper birch 1.48 (0.24) 0.623 (0.056) 

Quaking aspen 1.31 (0.24) 0.586 (0.059) 

Red maple 2.17 (0.19) 0.491 (0.030) 

Sugar maple 3.31 (0.66) 0.356 (0.06) 

Yellow birch 4.04 (0.79) 0.308 (0.062) 

Table 2—Parameter estimates (standard errors 
in parentheses) by species for predicting the 
maximum crown width (mcw; m) using tree 
diameter at breast height (dbh; cm) for seven 
conifer and eight hardwood species growing in 
Maine
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Species 

 

b1 

 

b2 

 

FI 

 

MAE 

    This 

Study 

Bechtold  

(2003) 

Eq. [4] 

Conifers 

Balsam fir 1.49 (0.017) 0.105 (0.0050) 0.55 0.58 0.65 

Black spruce - 0.174 (0.0045) 0.35 0.46 0.47 

Eastern hemlock  1.90 (0.058) -0.057 (0.010) 0.56 1.01 1.06 

Eastern white pine - 0.147 (0.0033) 0.56 1.18 1.08 

Northern white-cedar 2.19 (0.20) -0.080 (0.029) 0.27 0.77 0.79 

Red spruce 4.33 (0.21) -0.264 (0.015) 0.43 0.77 0.96 

White spruce 2.09 (0.16) -0.069 (0.027) 0.51 0.59 0.64 

Hardwoods 

American beech - 0.194 (0.0058) 0.12 1.52 1.58 

Gray birch 3.10 (0.27) -0.214 (0.04) 0.49 0.62 - 

Northern red oak 4.10 (0.89) -0.272 (0.065) 0.43 1.31 1.29 

Paper birch 2.10 (0.13) -0.035 (0.021) 0.59 1.00 1.04 

Quaking aspen 2.65 (0.26) -0.157 (0.034) 0.57 0.87 0.88 

Red maple 2.63 (0.11) -0.132 (0.014) 0.56 1.05 1.15 

Sugar maple - 0.161 (0.0049) 0.17 1.44 1.38 

Yellow birch 4.23 (0.51) -0.294 (0.037) 0.41 1.33 1.58 

Table 3—Parameter estimates (standard errors in parentheses) by species 
with fit index (FI) and mean absolute error (MAE) for predicting the largest 
crown width (lcw; m) using tree diameter at breast height (dbh; cm) for seven 
conifer and eight hardwood species in Maine. Comparisons of MAE with 
those of Bechtold (2003) equation [4] is presented

Model is: lcw = mcw / (b1dbhb
2)
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Figure 1—Quadratic mean crown width and tree diameter at breast 
height (dbh) for Penobscot Experimental Forest (PEF), Cooperative 
Forestry Research Unit (CFRU), and Forest Health Monitoring (FHM) 
data.

 

 

 

 

 

 

 

 

Figure 2—Predicted maximum crown width using tree diameter at breast height (dbh) for the equation 
developed in this study and that of Ek (1974) for balsam fir and eastern white pine.
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Figure 3—Crown competition factor 
and percent canopy cover related to 
basal area using permanent sample 
plots obtained from the Penobscot 
Experimental Forest, Bradley and 
Eddington, Maine.
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AN EVALUATION OF THE PROPERTIES OF 
THE VARIANCE ESTIMATOR USED BY FIA
John P. Brown and James A. Westfall

John P. Brown, Research Forester, U.S. Forest Service, Princeton, WV, 24701
James A. Westfall, Research Forester, U.S. Forest Service, Newtown Square, PA 19073

Abstract

The Forest Inventory and Analysis (FIA) program of the U.S. Forest 
Service currently conducts inventories utilizing the protocols of the 
national enhanced FIA Program. Due to the permanent locations of the 
sample plots, the stratification of the population occurs after the selection 
of sample units, i.e., post-stratification. In situations where the population 
is of limited areal extent, this may result in small within-stratum sample 
sizes. The survey literature provides some guidance on post-stratified 
sample sizes, but does not specifically address the behavior of estimators 
when sample sizes are smaller than recommended. It is important for FIA to 
evaluate how estimators perform across a range of sample sizes, such that 
samples of sufficient size can be constructed to ensure accurate estimates. 
The variance estimator used by FIA accounts for a secondary source of 
variation (V2) due to random within-strata sample sizes that is introduced 
beyond that obtained from standard proportional allocation of samples to a 
stratified sample (V1). Thus, each estimate’s variance is composed of two 
parts. This study utilizes a Monte Carlo simulation to examine the relative 
contributions of V1 and V2 to the total variance (VTotal) of the estimate. FIA 
plots from Pennsylvania were treated as a population from which samples 
of size n are repeatedly drawn and V1, V2, and VTotal calculated for forest 
area and cubic volume estimates. The sample size varied from 25 to 200 
plots. With increasing sample size n, the V1 variance stabilized at sample 
sizes greater than 60 plots, whereas the V2 variance required sample sizes 
greater than 125. The ratio of the two variance components (VRAT=V1/V2) 
was found to increase with increasing n, ranging from 6 to 32 plots for the 
area estimates and from 8 to 45 plots for the volume estimates. 

INTRODUCTION

The Forest Inventory and Analysis (FIA) program of the 
U.S. Forest Service currently inventories forested land 
across the United States using procedures detailed in 
Bechtold and Patterson (2005). During Phase 1, remotely 
sensed information is used to stratify the population to 
reduce the variance of estimates. This stratification varies 
by region but generally includes at a minimum forest and 
nonforest as strata (Bechtold and Patterson 2005). In Phase 
2, permanent ground plots are visited and data on numerous 
attributes are collected at various levels of detail. Plots 
determined as clearly nonforest from aerial imagery are 
assessed remotely.

Weights for strata are determined during Phase 1. However, 
the Phase 2 sample determines strata sample sizes as 
plots are permanently located without respect to stratum 
boundaries. This sampling design is considered to be a post-
stratified simple random sample (Cochran 1977, Schaeffer 

and others 2006) and it has an added source of variation 
due to stratum sample sizes not being fixed in advance. 
The magnitude of this additional variation within a forest 
inventory has not been well studied. It is the goal of this 
study to examine how the use of this post-stratification 
estimate affects the variances of total area and total cubic 
foot volume. Specifically, the variance estimates for these 
values will be split into their components and examined 
both separately and jointly in order to better understand 
what role each plays in the total variance under several 
sample size situations. This is important to FIA to insure that 
sufficient sample sizes are available for accurate estimates. 
Sample strata weights will also be tested for agreement with 
population strata weights using χ2 tests of agreement. 

METHODS

Plot data is from a complete set of panels for Pennsylvania 
measured from 2003 to 2007. Phase I strata were developed 
by classifying the percent tree canopy cover from the NLCD 
2001 map product (Homer et al. 2004) into five classes. 
There were 4,628 plots that were treated as the population 
from which samples of plots were drawn. 

Variance Estimator
The variance of the estimate (Bechtold and Patterson, 2005) 
is given by

                                                                                             (1)

where

AT=total area of the population.
h…H=strata in the domain of interest.
n=sample size.
Wh=weight for stratum h within the population.
nh=sample size for stratum h.
 Yhd=mean of attribute of interest (plot proportion forest land 
or cubic-foot volume) for stratum h
d=domain of interest
v (Yhd) =variance of the mean for stratum h



54

The left side addend within the bracketed sum in (1) will be 
referred to as V1. This part of the variance results from the 
stratification of the population during Phase I. The right side 
addend within the bracketed sum in (1) will be referred to 
as V2. This second part of the variance is a consequence of 
stratum sizes being random within the strata determined in 
Phase I. The ratio V1/V2 will be defined as VRAT and the total 
variance as VTotal.

Monte Carlo Simulation
The first stage of the Monte Carlo (MC) simulation 
(Metropolis and Ulam 1949) was to determine how many 
sets of 50 plots would result in stable values for the V1, V2, 
VRAT, and total variance for both the area and cubic-foot 
estimates. Each of the four values was calculated for 5,000 
draws. Then, the variance of each value was calculated 
for the first three sets. Subsequently, an additional set was 
added and the variance recalculated for the specific value. 
Variances were plotted against the number of sets drawn 
and it was determined that 5,000 draws were sufficient to 
stabilize the several measures of interest. As computation 
length was not extensive, 10,000 draws were performed for 
each sample size. 

Procedures for the second stage of the MC simulation were 
performed separately for the forest land area and cubic-
foot volume estimates. Initially 10,000 sets of plots were 
selected, for each of a number of selected sample sizes. 
Plots in a set are drawn without replacement and sample 
sizes were: 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 
125, 150, 175, 200. Every plot in the set had its stratum, 
proportion of forest, and cubic volume recorded. Each set 
of n plots had its strata sizes, strata weights, strata means, 
strata variances, and stratified mean and variance for the 
total forested area calculated. While each plot in a set is not 
replaced, at the next iteration (next set of plots) all plots 
are then replaced, thus all aggregate measures on the plot 
are considered to be sampled with replacement. The MC 
variance was then determined as the variance of the 10,000 
stratified sample means. These procedures were repeated for 
cubic-foot volume.

Trends in variance behavior were visually analyzed with 
the use of boxplots. A boxplot was generated for each set 
of 10,000 plots at the selected sample sizes for V1, V2, VRAT 
and VTotal. Boxplots used the first, second (median), and 
third quartiles for the lower, middle and upper horizontal 
lines of the boxes. Minimum and maximum values were 
represented by the lower and upper whiskers respectively 
of the boxplots. Means also were calculated and shown as 
points (triangles). Patterns were examined specifically for 
the means and medians.

Stratum sample weights were calculated for each set of 
plots drawn for all sample sizes. A χ2 test was used to 
test agreement of stratum sample weights and population 
stratum weights (H0: nh/n =Wh) for all sets of plots at all 
sample sizes. The significance level was set at 0.05. If 
the test was not significant, the set was recorded to be in 
agreement with the population stratum weights. Frequencies 
of agreement for a fixed sample size were calculated for the 
10,000 simulations. This agreement testing will be used to 
assess if deviations from population stratum weights exist 
and whether they may be influencing the variances of the 
estimates.

RESULTS

Variances for the Area Estimates
For the V1 variance, median and mean values for a given n 
stabilize around a sample size of 60 plots (Figure 1). Median 
and mean values are less for a sample size of 50 and below. 
V2 variances approximately stabilize for a sample sizes of 
125 or greater (Figure 2) and are slightly higher for a sample 
size lower than 125. VRAT values do not approach a stable 
point (Figure 3). When considering the median and mean 
values, VTotal approaches an asymptote after 125 samples 
as well (Figure 4), yet is still decreasing slightly for larger 
values. 

Variances for the Volume 
Again considering the median and mean values for a given 
n, V1, values for the volume estimates also stabilize around 
a sample size of 60 (Figure 5). As was the case for the area 
estimates, values for a sample size less than 60 are smaller 
on average. V2 values similarly stabilize for sample size 
125 and greater (Figure 6). VRAT values are increasing and 
range from 8 to 45 for sample size 25 and 200 respectively 
(Figure 7). VTotal values approach an asymptote for sample 
size 125 and greater (Figure 8) when focusing on the mean 
and median values.

MC Variance Estimates	
The MC variance estimates for both area of forest land 
and volume follow a similar pattern, they decrease at a 
decreasing rate (Figures 9 and10). As compared to the mean 
VTotal for identical sample sizes, the MC variance is in close 
agreement. 

Sample Weights	
Sample weights were consistently in agreement 95 percent 
of the time or better for all sample sizes (Table 1). There 
were no apparent patterns related to sample size, as all 
agreement levels were either 95 or 96 percent in all cases. 

Biometrics
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DISCUSSION	

Patterns for the V1, V2, and VTotal values were quite similar 
between the area and volume estimates. For both area and 
volume, V1 increased to a stable value at sample size 60 
and above, while V2 and VTotal decreased to a stable value 
for sample size greater than 125. There were differences in 
ranges for VRAT, with VRAT for area ranging between 6 and 
32 over the given sample size range, while VRAT for volume 
ranged between 8 and 45 therein.

The increasing values for VRAT stem from minute changes 
in V2 relative to V1 (Figures 1, 2 and Figures 5, 6). While 
the V2 values have what appears to be an asymptote, 
small changes downward are enough to continue inflating 
the value of VRAT, In regard to VTotal however, the overall 
addition from V2 is small, and VTotal stabilizes when V2 
stabilizes. 

Three factors suggest that VTotal is biased for smaller 
samples. First, V1 increased as it approached 60 samples 
then approached an asymptote (Figures 1 and 5). Second, 
VRAT was continuously increasing as well, implying that V1 
dominated V2 (Figures 3 and 7). Even though V2 initially 
decreases, VRAT shows that V1 is still much greater than 
V2, therefore an increasing V1 offsets the decreasing by 
V2. Third, VTotal shows a similar pattern as V1, increasing 
to an asymptote at 60 (Figures 4 and 8). These factors 
demonstrate then that for low sample sizes VTotal is 
underestimated. The main factor to this downward bias for 
appears to be V1, with minor offsetting by V2.
 
Stratum sample weights agreed with population stratum 
weights for all sample sizes (Table 1). Agreement 
percentages were 95 percent and above, which is where they 
should be given that the significance level for the χ2 test 
was set at 95 percent as well. It was thought that perhaps 
the lower sample sizes might fail to generate similar sample 
stratum weights as compared to the population stratum 
weight as some of the class sizes were small, but this 
hypothesis was not supported. Approximately 5 percent of 
the samples deviated from the population weight and the 
other 95 percent were similar.

CONCLUSIONS

With increasing sample sizes, the penalty factor for post-
stratification, V2, diminishes greatly compared to the 

variance component stemming from stratified design (V1). 
Cochran (1977) states that the effect of the V2 variance will 
be small if the mean number of sampling units per stratum is 
reasonably large. For these data, asymptotes are approached 
for V2 and VTotal at sample size of 125. The mean number of 
sampling units per stratum is therefore 25 here, which may 
provide some insight of minimum bound for ‘reasonably 
large.’ Cochran (1977, p.134) states also that stratum 
samples greater than twenty are ‘reasonably large’ and 
Schaeffer et al. (2006, p. 150) suggest that stratum samples 
sizes greater than 20 provide “…nearly as accurate sample 
sizes as stratified sampling with proportional allocation.” 
This may be too conservative a rule of thumb for this data, 
as the smallest stratum sample weight was about 0.06, 
resulting in just seven samples on average in that stratum 
at an overall sample size of 125. Users of FIA data should 
be aware that stratifications which later have small sample 
sizes may result in an underestimate of the variance of 
the intended estimate. Further study may more accurately 
determine what within-stratum minimums are achievable. 

What was not varied in this study was the state from which 
the plots were located, as this study was conducted using 
only one population with a specific stratification scheme. 
Weights for the five strata ranged from 0.06 to 0.38. Results 
from other populations having differing structures should be 
examined to determine if the results found in this study are 
more broadly applicable. 
 
LITERATURE CITED

Bechtold, W.A.; Patterson, P.L., eds. 2005. The enhanced Forest Inventory 
and Analysis Program—National sampling design and estimation 
procedures. Gen. Tech. Rep. SRS-80. Asheville, NC: U.S. Department of 
Agriculture Forest Service, Southern Research Station. 85 p.

Cochran, W. G. 1977. Sampling techniques. 3rd ed. New York: John 
Wiley. 428 p.

Homer, C.; Huang, C; Yang, L. [and others]. 2004. Development of a 
2001 national landcover database for the United States. Photogrammetric 
Engineering and. Remote Sensing. 70:829-840.

Metropolis, N.; Ulam, S. 1949. The Monte Carlo method. Journal of 
American Statistical Association. 44: 335-341.

Schaeffer, R. L.; Mendenhall, W.; Ott, R. L. 2006. Elementary survey 
sampling. 6th ed. Belmont: Thomson Brooks/Cole. 464 p. 



56

Biometrics

 

 
 Figure 1—Boxplots for the 10,000 simulations of the area 
V1 variance using the given sample sizes. Lower and upper 
whiskers represent minimum and maximum values. Lower 
and upper box edges represent 1st and 3rd quartiles, with the 
median represented by the line inside the box. Means are 
symbolized with triangles. 

 

 

 
 

Figure 2—Boxplots for the 10,000 simulations of the area 
V2 variance using the given sample sizes. Lower and upper 
whiskers represent minimum and maximum values. Lower 
and upper box edges represent 1st and 3rd quartiles, with the 
median represented by the line inside the box. Means are 
symbolized with triangles.

 

 

 Figure 3—Boxplots for the 10,000 simulations comparing the 
ratio (VRAT) of the V2 and V1 area variances using the given 
sample sizes. Lower and upper whiskers represent minimum 
and maximum values. Lower and upper box edges represent 
1st and 3rd quartiles, with the median represented by the line 
inside the box. Means are symbolized with triangles.

 

  

 

Figure 4—Boxplots for the 10,000 simulations of the total 
area variance (VTotal) using the given sample sizes. Lower 
and upper whiskers represent minimum and maximum 
values. Lower and upper box edges represent 1st and 3rd 
quartiles, with the median represented by the line inside the 
box. Means are symbolized with triangles. 
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Figure 5—Boxplots for the 10,000 simulations of the cubic 
volume V1 variance using the given sample sizes. Lower and 
upper whiskers represent minimum and maximum values. 
Lower and upper box edge represent 1st and 3rd quartiles, 
with the median represented by the line inside the box. 
Means are symbolized with triangles. 

 

  

 

Figure 6—Boxplots for the 10,000 simulations of the cubic 
volume V2 variance using the given sample sizes. Lower and 
upper whiskers represent minimum and maximum values. 
Lower and upper box edges represent 1st and 3rd quartiles, 
with the median represented by the line inside the box. 
Means are symbolized with triangles. 

 

  

 

Figure 7—Boxplots for the 10,000 simulations comparing the 
ration (VRAT) of the V2 and V1 cubic volume variances using 
the given sample sizes. Lower and upper whiskers represent 
minimum and maximum values. Lower and upper box edges 
represent 1st and 3rd quartiles, with the median represented 
by the line inside the box. Means are symbolized with 
triangles. 

 

 

 

 

 

Figure 8—Boxplots for the 10,000 simulations of the total 
cubic volume variance (VTotal) using the given sample sizes. 
Lower and upper whiskers represent minimum and maximum 
values. Lower and upper box edges represent 1st and 3rd 
quartiles, with the median represented by the line inside the 
box. Means are symbolized with triangles.
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 Area Volume 

Sample 

size 

Lower 

confidence 

limit 
p 

Upper 

confidence 

limit 

Lower 

confidence 

limit 
p 

Upper 

confidence 

limit 

25 0.9464 0.9508 0.9550 0.9463 0.9507 0.9549 

30 0.9479 0.9523 0.9564 0.9453 0.9498 0.9540 

35 0.9525 0.9567 0.9606 0.9482 0.9525 0.9566 

40 0.9483 0.9526 0.9567 0.9488 0.9531 0.9572 

45 0.9477 0.9521 0.9562 0.9474 0.9518 0.9559 

50 0.9482 0.9525 0.9566 0.9460 0.9504 0.9546 

60 0.9510 0.9552 0.9592 0.9469 0.9513 0.9554 

70 0.9508 0.9550 0.9590 0.9504 0.9547 0.9587 

80 0.9523 0.9565 0.9604 0.9462 0.9506 0.9548 

90 0.9501 0.9544 0.9584 0.9520 0.9562 0.9601 

100 0.9492 0.9535 0.9575 0.9488 0.9531 0.9572 

125 0.9512 0.9554 0.9594 0.9533 0.9574 0.9613 

150 0.9518 0.9560 0.9599 0.9557 0.9597 0.9635 

175 0.9550 0.9591 0.9629 0.9565 0.9605 0.9642 

200 0.9515 0.9557 0.9597 0.9545 0.9586 0.9624 

 

 

Table 1—Proportion of simulations where the sample weight agreed with the population 
weight as tested by a X2 goodness-of-fit test
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Figure 9—Comparison of the Monte Carlo variance for the 
10,000 simulations of the mean total area and mean VTotal for 
a given sample size.

 

 

 

Figure 10—Comparison of the Monte Carlo variance for the 
10,000 simulations of the mean total cubic volume and mean 
VTotal for a given sample size.
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Abstract

Specific gravity (SG) and moisture content (MC) both have a strong 
influence on the quantity and quality of wood fiber. We proposed 
a multivariate mixed model system to model the two properties 
simultaneously. Disk SG and MC at different height levels were measured 
from 3 trees in 135 stands across the natural range of loblolly pine and the 
stand level values were used for the modeling SG-MC system. Regional 
variation in mean trend of the properties was incorporated in the model. 
Contemporaneous correlation between the SG and MC was accounted by 
defining within stand error structure appropriately. Compared to univariate 
models, predictions based on the multivariate model were improved by 29 
and 26 % in root mean square prediction error for disk SG and MC after 
taking account of the contemporaneous correlation. 

INTRODUCTION

A forest is a complex dynamic system with inter-related 
individual components. Foresters commonly rely on 
simultaneous modeling systems to explain such inter-
dependent systems. One familiar example of such a 
system to forest biometricians is simultaneous modeling of 
dominant height, basal area, trees per hectare and volume 
(Borders 1989; Fang et al. 2001; Hall and Clutter 2004). 
Two main reasons for the popularity of simultaneous 
modeling systems in forestry are: 1) compatibility 
requirement of individual components in the system (Clutter 
1963); 2) contemporaneous correlation of error among 
individual components in the system. 

Specific gravity (SG) and moisture content (MC) both 
have a strong influence on the quantity and quality of 
wood. SG describes the mass of woody material present 
in a given volume of wood. It is a unit-less measure and 
expressed as the ratio of wood basic density (oven dry 
weight divided by green volume) with the density of water 
at 4oC (Megraw 1985). SG is considered an important wood 
property because of its strong correlation with the strength 
of solid wood products, as well as the yield and quality of 

pulp produced (Panshin and deZeeuw 1980). Generally the 
moisture content of wood is expressed as a percentage of the 
oven dry weight of wood. Moisture content influences the 
physical and mechanical properties of wood, resistance to 
biological deterioration and dimensional stability (Haygreen 
and Bowyer 1996).

SG and MC vary considerably within loblolly pine (Pinus 
taeda L.) trees. SG follows a decreasing trend with tree 
height (He 2004; Megraw 1985; Phillips 2002; Zobel and 
Blair 1976), while MC increases with height (Koch 1972; 
Phillips 2002). It has been reported that these two variables 
are highly negatively correlated with high SG associated 
with low MC and vice-versa (Koch 1972; Zobel and Blair 
1976). The primary factor controlling the longitudinal 
variation in disk SG and MC in a loblolly pine tree is the 
proportion of juvenile wood (Zobel and Blair 1976; Zobel 
and vanBuijtenen 1989). In general, the proportion of 
juvenile wood is higher towards the top of a tree than at the 
base and juvenile wood has lower SG and higher MC than 
mature wood.

The objective of this study was to model the longitudinal 
variation in disk SG and MC as a simultaneous multivariate 
mixed model system. We will show how contemporaneous 
correlation between these two variables (disk SG and MC) 
can be potentially utilized to improve the prediction of disk 
SG or MC for loblolly pine at any height.

DATA

The Wood Quality Consortium at the University of Georgia 
and the United States Department of Agriculture (USDA) 
Forest Service Southern Research station sampled planted 
loblolly pine across its natural range to study the longitudinal 
variation in wood SG and MC. Trees were sampled from 
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135 stands from six physiographic regions across the 
southeastern United States. Regions sampled included: 1- 
southern Atlantic Coastal Plain (R1), 2- northern Atlantic 
Coastal Plain (R2), 3- Upper Coastal Plain (R3), 4- Piedmont 
(R4), 5- Gulf Coastal Plain (R5) and 6- Hilly Coastal Plain 
(R6). A minimum of 12 plantations from each of the six 
physiographic regions were sampled. The stands selected 
for sampling included 20- to 25-year-old loblolly pine 
plantations planted at 1250 or more trees per hectare and 
having 625 trees per hectare or more after thinning. Only 
stands that were conventionally managed with no fertilization 
(except phosphorus at planting on phosphorus deficient sites) 
and no competition control were sampled. Three trees from 
each stand were felled and cross sectional disks of 3.8 cm 
thickness were collected from 0.15, 1.37 m and then 1.52 m 
intervals along the stem up to a diameter of 50 mm outside 
bark. The disks were sealed in plastic bags and shipped to 
the USDA Forest Service laboratory for physical property 
analysis. Disk SG (based on green volume and oven-dry 
weight) and disk MC (based on green and oven-dry weights) 
were determined for each sampling height. Stand averages 
(at each height) for disk SG and MC were calculated using 
the three trees sampled per stand. A summary of average 
stand characteristics for each region is presented in Table 
3.1. Plots of stand average disk SG and MC with relative 
height are presented in Figures 3.1 and 3.2.

MODEL DEVELOPMENT

Two response components are considered in this 
simultaneous model system, disk SG and MC measured at 
the same heights for 3 trees in a stand. The basic models 
adopted for these two components are
		
	                  [1]

						            [2]

where SG = disk SG; MC = disk MC; x = relative height 
h/H, h is the average height above ground and H is the 
average total height of the stand calculated from the three 
sampled trees; 

are parameters to be estimated, with knot parameters 
                                                                ;             and 

are error terms for disk SG and MC respectively. 

The                     terms indicates the positive part of the

function               where “+” sets it to zero for those values

of x where                  is negative (here x >      ). The basic 
model form for disk SG is equivalent to the standard form 
of the taper model proposed by Max and Burkhart (1976), 
which is not constrained to have a value of zero at the tip of 
the tree. 

In order to account for stand-to-stand variability in the data, 

we used a nonlinear mixed effect model (NLMM). Let ijky
represent the kth response (k = 1, 2) variable measured at jth 
relative height from ith stand; the univariate nonlinear mixed 
model for each property can be represented as

 						            [3]
						    
	
 						            [4]

The mixed effect parameter         in the above models takes 
the form
							     
 						            [5]

where ,i kb  is the ith stand level random effect vector specific 

to the kth response variable with 
                               

; ikB is 

the associated random effect design matrix; ikA  is the fixed 
effect design matrix and           is the fixed effect parameter 
vector specific to the kth response variable.

In order to develop the bivariate model, we first fitted the 
univariate stand level NLMM’s model for disk SG (Eq. 
3) and MC (Eq. 4) separately. Initially we assumed all the 
parameters in the univariate models were mixed. Final 
specification of mixed effect parameters in the univariate 
models were decided based on Akaike’s Information Criteria 
(AIC), a model selection criterion used for NLMM’s. 
Parameters 

                                                           
were 

selected as mixed, with random stand level intercepts in 
these parameters. The regional variation in mean trend 
for both properties was incorporated by appropriate fixed 
effect specification (fixed effect design matrix) for all 
parameters, except the knot parameters, in both univariate 
modes. The knot parameters were assumed as common for 
all regions for both properties. Since we had six distinct 
physiographical regions in the study, we assumed different 
fixed effect parameters for each region with the southern 
Atlantic Coastal Plain as the reference region with all 
other regions having their own parameters which are 
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deviations from the reference region. The final fixed effect 
specifications for each parameter were identified using 
univariate models for each property and likelihood ratio test 
between full model and reduced model. The fixed effect 
specifications corresponds to all parameters used in the 
bivariate model are presented in Table 3.2. 

The variance-covariance structure for

in the univariate models were selected based on the model 
selection criteria (AIC and Bayesian information criterion 
(BIC)). We selected a general positive definite form of 
variance-covariance structure for disk SG and a diagonal 
form of variance-covariance structure for disk MC. The 
model information criteria and log likelihood values for 
the final selected univariate models, called SG1 and MC1 
respectively for each response, are presented in Table 3.3.

For fitting the bivariate model, the univariate model 
equations for two responses were stacked together and can 
be represented as 
							     
						            [6]

where 
                                

. To take account of the 
correlation between responses measured from the same 
stand at the same height level, we assumed the within stand 
variance-covariance matrix as

                 

where                                 . Following Eq. 5, after stacking 
the fixed effect and random effect vectors and design 
matrices for two response variables, we can 
write                               as
		   					   
					                         [7]

where	  
		          

; 
			       

; 

                             ;  

and we assumed that                               . 

All the models were fitted using the nlme package in 
R, version 2.9.1 (Pinheiro et al. 2009). Initially the two 
univariate models (Eq. [3] and [4]) were simultaneously 
fitted, referred to as SGMC1, with a positive definite form 
of variance-covariance structure for disk SG, a diagonal 
form of variance-covariance structure for disk MC and 
unique variance parameter estimate for each response 
variable. Here, a block-diagonal form was used to define the 
random effect structure of two responses as follows

The advantage of multivariate fitting over univariate fitting 
is that we can incorporate correlation among errors and 
random effects associated with different response variables 
in the model by specifying different forms of  
(Fang et al. 2001; Hall and Clutter 2004). The 
contemporaneous correlation between responses was 
incorporated by relaxing the form of Ë from an identity 
matrix to a symmetric positive definite matrix (referred to as 
SGMC2). We also allowed for correlation among random 
effects associated with the two models. The final best fitted 
model (referred to as SGMC3) is represented as follows

	
	

	

					                         [8]

In [8] the fixed effect 
                        

 indicates parameter 
specific to th

 region specified in Table 3.2 for response 
variable SG (k=1) and for response variable MC (k=2). 

The random effect , ( 1,2)i k kb = indicates the random effect 
parameter specific to the ith stand for response variable SG 
(k=1) and for response variable MC (k=2). 

The model information criteria (AIC and BIC) and log 
likelihood values from simultaneous fitting of the models 
(SGMC1, SGMC2 and SGMC3) are presented in Table 3.3. 
The log likelihood and information criteria from SGMC1 
were equal to the sum of log likelihood and information 
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criteria from univariate fitting SG1 and MC1. Incorporation 
of contemporaneous correlation into the model (SGMC2) 
significantly improved the model fitting criteria. The final 
model SGMC3 found to have a significant improvement 
in model information criteria over SGMC2. The estimated 
fixed effect parameter from the final simultaneous model 
is presented in Table 3.4. The estimated random effect 
variance-covariance matrix         is

and the within stand residual parameters are 
and 		  . 

PREDICTION
Our primary objective of developing a simultaneous 
system is to make predictions. The reported advantage 
of using a multivariate method over univariate method 
is its improvement in predictive performance (Fang et 
al. 2001; Hall and Clutter 2004). The information on 
contemporaneous correlation among response variables 
can be potentially utilized to improve the prediction of a 
variable at a particular measurement occasion (here at a 
particular stand height level) given that the observed value 
of other response variables at the specified measurement 
occasion. For example in the proposed multivariate system, 
information of disk SG at any specific height can be 
utilized to improve the prediction of disk MC at that height. 
Similarly, observed disk MC at any specific stand height 
can be utilized to improve the prediction of disk SG at that 
height. 

There are several situations where we can utilize a 
multivariate model to make predictions. Fang et al. (2001) 
dealt with several such prediction scenarios based on 
their height-basal area-volume simultaneous mixed model 
system. In the present study, we are primarily interested 
in prediction from a multivariate model system where 
observations on one of the correlated response variables are 
available. For example, we may want to predict disk MC 
for a stand at different heights when measurements of disk 
SG are available. To this extent, we can utilize a predictor 
proposed by Hall and Clutter (2004) for NLMM’s which 
is based on a linear mixed model (LMM) approximation 

of NLMM. The proposed predictor is analogous to the 
empirical best linear unbiased predictor (BLUP) of LMM. 
It is supposed to perform better than the plug-in-predictor 
proposed for NLMM by Pinheiro and Bates (2000). The 
following on the derivation of a predictor was extracted 
from Hall and Clutter (2004). Generically a NLMM can be 
represent as

						            [9]

where      is p x 1 vector of fixed effect parameters and A  is 
a corresponding fixed effect design matrix; b  is q x 1 vector 
of random effect parameters and B  is a corresponding 
random effect design matrix; and  is N x 1 vector of error 
term with                                      .

 Taking first-order Taylor series linearization of Eq. [9] 
around the estimates of  			   gives

				                                     [10]

where 

Now the Eq. 10 can be represented as a LMM on 
                                                                      as follows

							     
			                                                   [11]

Let us decompose the response vector 
                   

, where 
ó represents the observed component and óh represents 
the unobserved component. Accordingly, all other model 
quantities can be divided as 

Then based on LMM [11], the empirical BLUP of hz  based 

on sz is given as

        						          [12]

where 
			                        

, the variance-
covariance matrix of z based on LMM approximation [11], 
which can be decomposed into
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forestry (Fang 1999; Hall and Bailey 2001; Jordan et al. 
2008; Jordan et al. 2006). Univariate mixed models were 
commonly used in forestry to model different growth 
and wood properties. Compared to conventional methods 
univariate mixed models provide improved predictions 
because of their ability to capture different levels of 
variability within the data, e.g. variability from stand-
to-stand, plot-to-plot and tree-to-tree (Fang et al. 2001) 
through random effects in the models. In addition to 
variability observed at different levels of the data, individual 
components (properties) measured from a forest are usually 
inter-dependent. The simultaneous modeling technique can 
take account of the inter-dependency in a system through 
random effects and the inter-dependency among different 
components in the system through contemporaneous 
correlation. 

In this article, we proposed a multivariate simultaneous 
mixed model for stand average disk SG and MC at different 
tree heights. We observed a high correlation (-0.78) between 
two components in our system. The inverse relation between 
SG and MC was identified by Koch (1972), Zobel and 
Blair (1976) and Zobel and van Buijtenen (1989). Various 
explanations have been proposed for the inverse relation 
between SG and MC within trees such as the amount of 
heartwood, the presence of extractives and the proportion 
of juvenile wood. According to Zobel and Blair (1976), the 
dominant factor controlling SG and MC variation within a 
loblolly pine tree is the proportion of juvenile wood and the 
proportion of juvenile wood increases longitudinally from 
stump-to-tip of loblolly pine trees.

The advantage of multivariate simultaneous systems 
is their improvement in prediction in one component 
given the other components in the system (Fang et al. 
2001; Hall and Clutter 2004). Based on this study, we 
found a significant improvement in prediction for both 
properties, approximately 29 and 26 percent reduction 
in RMSPE for both disk SG and MC respectively, based 
on the simultaneous system after taking account of the 
contemporaneous correlation between the components. The 
multivariate plug-in-predictor improved by 5 and 11 percent 
in RMSPE compared to univariate approach for both disk 
SG and MC respectively. This clearly indicates the potential 
of multivariate model fitting over univariate approach. 
Operationally, the proposed system can be used to improve 
the prediction of stand disk SG at different height levels 
using the measured disk MC using non-destructive sampling 
methods. 
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By rearranging [12] using the relation between z  and ó, we 
will get our predictor for      as

						          [13]

When 
			 

, the predictor specified in Eq. 
[13] takes account of this dependence through        . However when	                               ,     and      are 
correlated only through the shared random effects and is 
best approximated by the plug-in-predictor 
                                . Since we are interested in predicting 
the value of one response variable using data where another 
response variable is available or measured at the same 
height from the same stand, we expect that the predictor [13] 
performs better than the plug-in-predictor. 

In order to evaluate the predictive performance of the 
fitted multivariate model, we randomly selected data from 
25 stands. We created a new data set with data from the 
25 selected stands excluded (apart from data measured at 
relative heights equivalent to heights of 1.37 m and 13.7 
m to get the estimate of random effect while fitting) and 
refitted the final model SGMC3 to this new data. We made 
predictions based on [13] for both disk SG and MC for the 
selected 25 stands that were not used for model fitting. Disk 
SG was predicted for the 25 excluded stands assuming that 
disk MC measurements were available for all heights and 
stands. The same assumption was made for disk SG when 
disk MC was predicted for the excluded stands. 

Plots showing the univariate plug-in-prediction, multivariate 
plug-in-prediction and multivariate improved prediction 
(based on Eq. [13]) of disk SG and MC for 5 stands 
randomly selected from the excluded 25 are presented 
in Figure 3.3 and 3.4. We can see from the figures 
that additional information for one response variable 
significantly improved the prediction of the other response 
variable using Eq. [13] compared to the plug-in-predictors. 
The curves are closer to their observed values for both disk 
SG and MC using the Eq. [13] predictor. Table 3.5, presents 
the root mean square prediction error (RMSPE) for the 
three prediction methods based on predictions of SG and 
MC for trees from the 25 excluded stands. Prediction from 
multivariate approaches, both plug-in-predictor and Eq. 
[13], was considerably better than those of the univariate 
approach. Prediction based in Eq. [13] were improved by 29 
(SG) and 26 % (MC) (Table 3.5). 

DISCUSSION

Nonlinear mixed models are an important tool for modeling 
and predicting growth and wood quality attributes in 
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Abstract
The objective of this project is to assess the effects of surface coal mining 
on forest ecosystem disturbance and restoration in the Coal River Subbasin 
in southern West Virginia. Our approach is to develop disturbance impact 
models for this subbasin that will serve as a case study for testing the 
feasibility of integrating currently available GIS data layers, remote 
sensing, and existing Forest Inventory and Analaysis program (FIA) data. 

Using a set of 30-m-pixel based GIS-based predictor layers (topography, 
soils and imagery), we developed models that predict total forest carbon for 
each pixel in the study area. By combining the vegetation change tracker 
(VCT) year of disturbance outputs with an annual biomass map derived 
from modeling the FIA data, we will be able to determine biomass losses 
from mining and estimate potential forest regrowth.

INTRODUCTION

The challenge of mitigating greenhouse gases has resulted 
in considerable focus being placed on the carbon storage 
capacities of forests. Trees and other plants naturally remove 
carbon dioxide (CO2) from the atmosphere and temporarily 
convert (sequester) carbon in wood, roots, leaves and the 
soil. In the Appalachian region of Kentucky, Virginia, 
Tennessee, and West Virginia, mountaintop removal mining 
has been prevalent since 1985 (US EPA 2005). This mining 
technique requires the removal (flattening) of mountain 
peaks to access the coal layers below. The waste material 
that is removed is pushed into adjacent valleys (valley fills), 
burying many headwater streams. Utilization of this mining 
technique increased with the 1990 amendments to the Clean 
Air Act, when mining and electric companies focused on 
extraction of low-sulfur coal to meet the new standards (Fox 
1999). At about the same time, larger and more efficient 
machinery became available for excavation and removal 
(Szwilski and others, 2001). Between 1985 and 2001, 6,697 
valley fills were approved by agencies in these States, and 
these fills would eventually cover 339 square kilometers 
(US EPA 2005). 
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In 2006, 43 percent of all coal extracted from West 
Virginia came from surface mining, 70 percent of which 
was mined using mountaintop removal methods (Britton 
2007). Not only is forest directly lost, but recent studies 
have demonstrated that the integrity of the residual 
forest is significantly altered due to fragmentation and 
the introduction of edge (Wickham and others, 2007). 
Conversion of large tracts of interior forest to edge results 
in a host of ecological changes, both aquatic and terrestrial 
(SAMAB 1996).
 
Prior to the 1977 Surface Mining Control and Reclamation 
Act (SMCRA), most mined land in the Appalachian region 
was planted with trees. The composition and productivity 
of the resulting forests are highly variable and spatially 
irregular due to the physical and chemical properties of the 
residual mine spoil material (Rodrigue and Burger 2002). 
SMCRA was enacted to reduce problems with severe 
erosion, sedimentation, landslides and mass instability 
caused by pre-SMCRA surface mining (Angel and others 
2005). SMCRA regulations require mining companies to 
post a bond that is sufficient to cover the cost of reclaiming 
a surface mined site. Because of the 5-year timeframe 
required to demonstrate successful soil stabilization and 
vegetation reclamation, many surface mined soils are 
severely and purposely compacted by machinery and 
converted to grasslands and shrubs. Native forests have not 
been successfully restored due to several soil factors: poor 
aeration, high alkalinity, and reduced water infiltration, in 
addition to severe compaction (Ashby and others, 1984, 
Andrews and others, 1998). As a result, millions of hectares 
of grassland and scrubland, in various successional stages, 
fragment the otherwise forested mountains and reduce the 
forest’s potential to produce timber and sequester carbon 
(Burger and Maxey 1998). 

The Forestry Reclamation Approach (FRA) is a new 
approach being tested as a method for reclaiming surface-
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coal-mined land to forest within the guidelines imposed by 
SMCRA (Burger and others 2005). FRA recommendations 
are founded on restoring mine-soil quality to increase 
potential carbon sequestration. Restoration guidelines 
include the creation of deep soil rooting medium, suitable 
for planting native ground covers and tree species, to 
improve ecological values. Post-mining forest restoration 
is slowly gaining acceptance; about 30 million trees have 
been planted since 2005 (Personal communication, Patrick 
Angel, forester/soil scientist, USDI Office of Surface 
Mining Reclamation and Enforcement, 421 West Highway 
80, London, Kentucky 40741). These forests are very 
young, hence, the future productivity, value, and carbon 
sequestration potential of these restored forests is still 
unknown. 

The objective of this project is to assess the effects of 
surface coal mining on forest ecosystem disturbance and 
simulated restoration in the Coal River Mountain watershed 
in southern West Virginia. This watershed already has active 
surface mining. Three new and proposed mountaintop 
removal mines are projected to produce more than 47 
million tons of coal from 2009 through 2025 (WV DEP 
2008). Our approach develops disturbance impact models 
for a sub-watershed that will serve as a case study for testing 
the feasibility of integrating currently available GIS data 
layers, remote sensing, and existing data from the USDA 
Forest Inventory and Analysis (FIA) program. Specifically, 
we will 1) identify specific areas and ecosystems that 
have been depleted of carbon stocks; and 2) calculate 
the reduction relative to a previous condition. This paper 
presents the methods used to accomplish these two tasks and 
presents initial results of our biomass modeling efforts. Our 
ultimate goal is to model the change in carbon stocks from 
anticipated forest restoration activities using FRA guidelines 
and make comparisons with the previous condition to 
determine the long-term effects of the proposed mining on 
the watershed. 

MATERIALS AND METHODS

To identify the year and spatial extent of forest disturbance 
due to surface mining and to generate maps to estimate the 
pre- and post- disturbance carbon stocks in these areas, a 
regression tree predictive modeling approach was employed 
using Cubist software (www.rulequest.com), which is based 
on a process created by Quinlan (1992). While the algorithm 
that Cubist employs is proprietary, generally speaking, 
regression trees work by using classification trees to classify 
instances into groups based on values of a set of independent 
variables and a dependent variable, and then developing 
regression models that describe the relationship between the 
dependent and independent variables using the instances 
contained in each of the classification tree’s terminal nodes. 

For our regression tree, we used several GIS-based predictor 
layers as the independent (predictor) variables, and we used 
total aboveground carbon estimates generated from forest 
inventory plots as the dependent variables. 

Independent Variables
Landsat image data were obtained from the US Geological 
Survey (USGS) Global Visualization Viewer (GLOVIS) 
data distribution system (http://glovis.usgs.gov), and 
consisted of a set of annual Landsat 5 scenes collected over 
path/row 18/34 during the growing season. Image dates 
(month/day/year) included the following days: 9/17/1984, 
9/20/1985, 7/5/1986, 6/6/1987, 6/8/1988, 8/17/1990, 
9/21/1991, 6/3/1992, 8/25/1993, 10/15/1994, 8/31/1995, 
10/4/1996, 9/5/1997, 8/7/1998, 6/23/1999, 6/9/2000, 
10/2/2001, 8/2/2002, 6/2/2003, 6/20/2004, 9/11/2005, 
8/13/2006, 9/17/2007, 7/17/2008, and 6/2/2009; suitable 
data were unavailable for 1989. These scenes were 30-m 
pixel size and processed by the USGS to Level 1T (terrain 
corrected) using the Level 1 Product Generation System 
(USGS 2011) and were further processed using the Landsat 
Ecosystem Disturbance Adaptive Processing System 
(LEDAPS) software (Masek and others, 2006). LEDAPS 
software produces atmospherically-corrected, surface 
reflectance-calibrated imagery that can be used to assess 
environmental and land cover change (Masek and others, 
2006). From the scenes that were available for each year 
within the growing season, bands 1-5 and 7 of the scene 
with the greatest cloud-free area were selected. 

Other data used for this study are listed in table 1 and 
included a 10-m elevation dataset obtained from a subset 
of the National Elevation Dataset (NED) (Gesch and 
others, 2002), raster elevation derivate datasets created 
using the NED data, and data from the Soil Survey 
Geographic (SSURGO) database (NRCS 2011). Also, 
for each Landsat scene, the disturbance magnitude of the 
difference Normalized Burn Ratio (dNBR) was created 
using vegetation change tracker (VCT) software (Huang and 
others, 2010).

Dependent Variable
Estimates of total aboveground carbon (TAG) were obtained 
using allometric equations that were applied to data 
collected by the FIA on the 69 inventory plots found in the 
portion of the Coal River watershed found within Landsat 
path/row 18/34 (fig. 1). TAG is calculated as described in 
Woudenberg and others (2011) and includes the carbon mass 
of the aboveground portion of live trees with a diameter of 
2.5 cm or larger and dead trees with a diameter of 12.7 cm 
or larger. The FIA data were collected between 2004 and 
2008 and consisted of plots with pure stands or hardwoods 
or conifers.
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Model Development
The latitude and longitude of the FIA plots were used to 
intersect them with the set of predictor data using a GIS, 
and values for each independent variable were assigned 
to the TAG value associated with each plot to create the 
training data for the regression tree modeling. The elevation, 
elevation derivatives, and SSURGO data were assumed to 
be temporally constant and these and LEDAPS-calibrated 
Landsat and VCT Landsat derivatives (dNBR and NDVI) 
from 2007 were used to build the initial model. Model 
results were assessed using cross validation (10 percent 
holdout) statistics: mean absolute error (MAE); relative 
error (RE), or the ratio of the MAE to the error magnitude 
that would result from always predicting the mean value; 
and the correlation coefficient (r) that describes the strength 
of the relationship between each set of predictions and 
carbon values from the holdout data. Using a combination 
of these metrics, correlation matrices, and experience from 
prior modeling, data reduction was performed automatically 
and heuristically until a set of independent variables was 
chosen to produce the final model for 2007 imagery.

Because the Landsat imagery was calibrated using 
LEDAPS, we, like Powell and others, (2010), made 
the assumption that variations in pixel values between 
corresponding surface reflectance-calibrated images were 
due to changes in the reflective characteristics of the 
landscape and not due to differences in the atmosphere or 
sensor position. We thus applied the regression tree model 
developed for the 2007 Landsat and ancillary data to the 
corresponding data for each year of Landsat data between 
1984 through 2009 to produce a set of 25 (yearly between 
1984 and 2009) maps of carbon estimates for the watershed. 

RESULTS AND DISCUSSION

The nonlinear portion of the regression tree process does 
not have many of the assumptions of linear modeling and 
is generally effective at choosing the best attributes to use 
in decision rules from among several potentially collinear 
variables. However, through a combination of examining 
cross validation (10 percent holdout) results from Cubist and 
arbitrary decisions, only 35 of the original variables were 
used to produce the final model.

The Cubist model output is shown in figure 2. Cubist used 
13 exploratory variables. Five variables were important 
to the classification portion of the Cubist analysis: dNBR, 
landform, X, Y, and profile curvature. Of these, profile 
curvature was present in five of the six rules developed, 
while the remaining four were present in at least half of the 
rules. Two variables, landform and Y, were only used in the 
decision process (table 2). Each of the remaining 
11 variables was involved infrequently with the linear 
models for each rule. Only one variable, heatload, was 

present in half the rules (3 of 6) while the remaining 
variables were present for only one or two of the six rules 
generated. In general, coefficients calculated for specific 
variables during the linear model steps were consistent in 
sign from rule to rule, i.e, if a coefficient was positive for 
a variable in one rule it was positive as well in other rules. 
The actual values plotted against the predicted values have 
a reasonably linear relationship (fig. 3). The correlation 
coefficient was 0.89 (r2 = 0.79).

The Cubist model rules (fig.2) were then applied to the 
aforementioned LEDAPS processed Landsat scenes 
resulting in TAG estimates maps for nearly all years from 
1984-2009. Four of these maps are illustrated in figure 
4, where an 8-year interval was used to demonstrate 
applicability of the model. Rivers and streams clearly 
appear as white lines within the maps, and irregular 
patches correspond with areas of disturbance, some of 
which is already identified as surface coal mining activity. 
The distinct boundaries that appear in the final map are 
due to the use of the Easting and Northing in the decision 
rules. While the existence of these lines creates a visual 
anomaly, the use of the map is a geospatial dataset that 
will provide pixel value summaries that serve as estimates. 
It is recognized that the presence of these discontinuities 
indicates that additional effort is needed to further refine the 
predictive models. 

CONCLUSIONS

Methodology developed to date demonstrates the feasibility 
of utilizing a set of GIS predictor layers to generate 
temporal maps of total aboveground carbon for a watershed 
containing surface mining activity in West Virginia. This 
is an important step in the ultimate goal of assessing the 
amount of carbon stock removed in disturbance events, 
specifically surface coal mining. Subsequent steps will 
compare output from the VCT disturbance maps and the 
predicted TAG maps which will enable temporal removals 
of carbon stock for the period 1984-2009. Additionally, it is 
hoped that these later results will have broader applicability 
to other watersheds containing surface mining activity. 
 
DISCLAIMER—The views expressed in this article are 
those of the authors and do not necessarily reflect the views 
or policies of the U.S. Environmental Protection Agency. 
The U.S. government has the right to retain a nonexclusive 
royalty-free license in and to any copyright covering this 
article.
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Dataset Name Dataset Description Source 

Forest productivity of yellow poplar Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Forest productivity of red oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Forest productivity of white oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index northern red oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index white oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index yellow poplar Index of forest productivity 

Soil Survey Staff, Natural Resources 

Conservation Service, United States 
Department of Agriculture (2011) 

Seedling mortality index Index of seedling mortality likelihood 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to fragipan layer Depth to a fragipan restrictive soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Depth to lithic bedrock 
Depth to a lithic bedrock restrictive soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to paralithic bedrock Depth to a paralithic restrictive soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to restrictive layer Depth to any restrictive layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to water table Depth to the water table 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Liquid limit 

Index related to the range of water 
contents over which a soil exhibits 

liquidity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Plasticity index 
Index related to range of water content 
over which a soil exhibits solidity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Soil organic matter percent 
Percent soil organic matter in the top 
soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Clay percent 
Percent clay content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Sand percent 
Percent sand content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Silt percent 
Percent silt content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Table 1—List of datasets assessed for inclusion in Cubist regression tree modeling procedure
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Rock type 
Categorical value representing different 
bedrock types 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Soil pH in water pH of soil mixed in water 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Cation-exchange capacity (CEC-7) 
Cation exchange capacity of the 
surface soil layer  

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Elevation Elevation Gesch et al. (2002) 

Filtered elevation range 
Elevation range within a 90-m square 
buffer centered on each pixel Gesch et al. (2002) 

Filtered mean elevation 
Mean elevation within 90-m square 
buffer centered on each pixel Gesch et al. (2002) 

Filtered mean-minimum elevation 

range 

Mean elevation - minimum elevation 

within 90-m square buffer centered on 
each pixel Gesch et al. (2002) 

Transformed aspect Linear transformation of aspect Roberts and Cooper (1989) 

Cosine-transformed aspect-slope Cos(aspect) X percent slope Stage (1976) 

Sine-transformed aspect-slope Sin(aspect) X percent slope Stage (1976) 

Relative moisture index 
Index of relative amount of moisture 
available at a site Parker (1982) 

Modified relative moisture index Variation of relative moisture index Parker (1982) 

Heatload 
An index of the relative amount of solar 
radiation that a site receives McCune and Keon (2002) 

Hillshade 

An index of solar radiation a site 
receives, incorporating shadows and 

illumination angle ESRI (2011a) 

Bolstad's landform A landform index Bolstad and Lillesand (1992) 

McNab's landform A landform index McNab (1989) 

Planform curvature 
An index of curvature of the land 
surface ESRI (2011b) 

Slope curvature 
An index of curvature of the land 
surface ESRI (2011b) 

Profile curvature 
An index of curvature of the land 
surface ESRI (2011b) 

Relative slope position 
An index of slope position between 
valley bottom and ridge top 

Unknown; based on ESRI topographic 
functions 

Slope position 
Position of the pixel as a percentage 
between the valley floor and ridgetop. 

Unknown; based on ESRI topographic 
functions 

Landform type 
A categorical variable representing 
landform shape and position Parker (1982) 

Surface area : ground area ratio An index of topographic complexity 
Unknown; based on ESRI topographic 
functions 

Topographic roughness index An index of topographic complexity Riley et al. (1999) 

Easting 
The value of geographic coordinate in 
UTM meters 

Native ESRI functionality (xmap and 
ymap environment variables) 

Northing 
The value of geographic coordinate in 

UTM meters 

Native ESRI functionality (xmap and 

ymap environment variables) 

Easting X Northing Easting X Northing 
Native ESRI functionality (xmap and 
ymap environment variables) 

 

 

Dataset Name Dataset Description Source 

Forest productivity of yellow poplar Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Forest productivity of red oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Forest productivity of white oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index northern red oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index white oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index yellow poplar Index of forest productivity 

Soil Survey Staff, Natural Resources 

Conservation Service, United States 
Department of Agriculture (2011) 

Seedling mortality index Index of seedling mortality likelihood 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to fragipan layer Depth to a fragipan restrictive soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Depth to lithic bedrock 
Depth to a lithic bedrock restrictive soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to paralithic bedrock Depth to a paralithic restrictive soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to restrictive layer Depth to any restrictive layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to water table Depth to the water table 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Liquid limit 

Index related to the range of water 
contents over which a soil exhibits 

liquidity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Plasticity index 
Index related to range of water content 
over which a soil exhibits solidity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Soil organic matter percent 
Percent soil organic matter in the top 
soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Clay percent 
Percent clay content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Sand percent 
Percent sand content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Silt percent 
Percent silt content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Table 1—(Continued) List of datasets assessed for inclusion in Cubist regression tree 
modeling procedure
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 Decision process Regression models  Coefficient positive Coefficient negative 

Variable No. of rules used in No. of rules used in Number Number 

dNBR 3 2 2 0 

Landform 4 0 - - 

X 4 1 1 0 

Y* 4 0 - - 

Profile curvature 5 1 0 1 

Slope* 0 2 2 0 

COS(Aspect) transformation* 0 2 2 0 

Relative slope position 0 1 0 1 

Landsat band 6 0 2 0 2 

Landsat band 4 0 2 2 0 

Transformed aspect 0 2 0 2 

Heatload 0 3 3 0 

Slope position 0 1 0 1 

     

 

 

Table 2— Frequencies of occurence and general coefficient patterns for important variables in Cubist rules
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 Figure 1—The study site in southern West Virginia, 
compromised of the portion of the Coal River watershed 
found within the boundary of Landsat scene 18/34.
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Rule 1: [7 cases, mean 1759.924, range 0 to 12319.47, est err 4022.683]
 if
	 dnbr <= 133
 then
	 Total Above Ground Carbon = 1759.924

Rule 2: [6 cases, mean 27173.246, range 11515.6 to 42868.64, est err 15844.396]
 if	
	 dnbr > 133
	 landform in {4, 7, 8}
	 profile curvature <= -0.02502192
	 x * y > 1.846332e+012
 then
	 Total Above Ground Carbon = -241151.452 + 1865 dnbr + 29039 slope * COS(aspect) transformation

Rule 3: [32 cases, mean 49472.605, range 4402.104 to 98225.22, est err 17879.621]
 if
	 dnbr > 133
	 profile curvature > -0.02502192
 then
	 Total Above Ground Carbon = -254641.664 + 0.72 x - 534 relative slope position - 8 landsat band 6 + 2 
landsat band 4

Rule 4: [8 cases, mean 65291.813, range 42630.82 to 80570.83, est err 16716.725]
 if
	 landform in {3, 6, 9, 10}
	 profile curvature <= -0.02502192
	 x * y > 1.846332e+012
 then
	 Total Above Ground Carbon = -129803.498 + 1086 dnbr - 32917 transformed aspect + 1.9 heatload - 8 
landsat band 6
	  + 6841 slope * COS(aspect) transformation + 2 landsat band 4

Rule 5: [12 cases, mean 78180.602, range 59397.14 to 121845.6, est err 12838.607]
 if
	 landform in {6, 7, 8, 10}
	 profile curvature <= -0.02502192
	 x * y <= 1.846332e+012
 then
	 Total Above Ground Carbon = -15215.85 - 29792 profile curvature - 508 slope position + 3.8 heatload

Rule 6: [4 cases, mean 122093.297, range 100926.2 to 153119.2, est err 11975.873]
 if
	 landform in {3, 5, 9}
	 profile curvature <= -0.02502192
	 x * y <= 1.846332e+012
 then
	 Total Above Ground Carbon = -323169.019 - 99972 transformed aspect + 2398 dnbr + 4.7 heatload

Average |error| 10856.566
Relative |error| 0.42
Correlation coefficient 0.89
Figure 2—Cubist output modeling total aboveground carbon.
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(A) 1984 (B) 1992 

(C) 2000 (D) 2008 

Figure 4—Prediction maps for total aboveground carbon. Selected maps were 
produced at 8-year intervals.
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Figure 3—Cubist total aboveground carbon predictive values vs. the 
actual total aboveground carbon values.
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Abstract

An ecological classification system (ECS) has been developed for use in 
evaluating management, conservation and restoration options for forest and 
wildlife resources on the Oconee National Forest. Our study was the initial 
evaluation of the ECS to determine if the units at each level differed in 
potential productivity. We used loblolly pine (Pinus taeda) site index from 
field plots inventoried by the forest inventory and analysis group of the 
Forest Service as a measure of productivity at each hierarchical level. The 
classification system performed best at the landtype level where it identified 
significant differences in site index between exposed slopes 
(82 feet) and sheltered slopes (94 feet). Results were less conclusive at 
the landtype association level, where no clear differences in site index 
were found among seven units. Results of this preliminary test suggest the 
ECS will be useful as a guide for diversifying forest cover composition 
by identifying land units that differ in environmental properties associated 
with productivity.

INTRODUCTION

The USDA Forest Service adopted a policy in 1992 of using 
an ecological approach for management of natural resources 
on national forests and grasslands. To assist managers 
implement that policy consistently at all administrative 
levels throughout the agency, an eight-level hierarchical 
framework concept of ecological units was developed 
for application from national to local scales (Cleland and 
others 1997). Ecosystems of national and regional extent 
have been identified and delineated using a “top-down” 
method of successive stratification of large regions into 
subregions that represent smaller ecosystems of increasing 
uniformity (Cleland and others 2007). For identification 
of the smallest ecosystems, at landscape and local scales, 
however, a “bottom-up” method is commonly used where 
data representing environmental components and associated 

A PRELIMINARY TEST OF AN ECOLOGICAL 
CLASSIFICATION SYSTEM FOR THE 
OCONEE NATIONAL FOREST USING 
FOREST INVENTORY AND ANALYSIS DATA
W. Henry McNab, Ronald B. Stephens, Richard D. Rightmyer, Erika 
M. Mavity, Samuel G. Lambert

W. Henry McNab, Research Forester, USDA-Forest Service, Southern Research Station, Asheville, NC 28806
Ronald B. Stephens, Forest Silviculturist (Retired), Richard D. Rightmyer, Forest Soils Scientist, Erika M. Mavity, GIS Specialist, USDA-Forest 
Service, Chattahoochee-Oconee National Forest, Gainesville, GA 30501
Samuel G. Lambert, Forester, USDA-Forest Service, Southern Research Station, Forest Inventory and Analysis, Knoxville, TN 37919

vegetation are analyzed and grouped into units of similar 
ecological potential, productivity, and predictable response 
to disturbance (VanKley 1993, Hix and Pearcy 1997). Where 
field data are not initially available to develop a bottom-
up ECS, however, a survey method based on existing 
knowledge of environmental relationships, especially 
as modeled and analyzed with a geographic information 
system, can be used for the initial subdivision of large 
areas to form smaller, tentative ecological units. Testing 
and validation of a survey-based ECS is highly desirable to 
identify units that require refinement and to gain confidence 
from users who did not participate in its development (Rowe 
and Sheard 1981, Barnes and others 1982).

The Oconee National Forest (ONF) used the survey method 
to develop an ECS consistent with the national ecological 
framework to form the basis for a large-scale assessment 
of opportunities for management of forest resources1. An 
interdisciplinary team of resource specialists used expert 
knowledge of environmental gradients on selected areas of 
the ONF represented by a range of combinations of bedrock 
formation, topography, and soils to identify and classify 
land areas with similar ecological characteristics at a range 
of scales2. The classification system was then applied to 
the entire ONF using a geographic information system to 
delineate polygons of similar ecological potential, each of 
which is hypothesized to enclose an area that differs from 
its neighbors. The purpose of this study was to begin the 
process of testing and evaluating the validity of the ONF 
classification. Our specific objective was to use data from 
an independent source to determine if the ECS identified 
land areas that differed in biological response. Our study 
is considered preliminary because it utilized a small set 
of existing data to test the classification for only one 

1 Oconee Large Scale Assessment. Unpublished report on file. Chattahoochee-Oconee National Forests, Gainesville, Ga. 
2 Technical report: Process used in mapping ecological classification system units on the Oconee National Forest of the Georgia Piedmont, July 
2009. Unpublished report on file. Chattahoochee-Oconee National Forests. Gainesville, Ga. 9 p.
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environmental response, forest productivity, which was not 
the main goal of the large scale assessment on the ONF. This 
study is the first part of an ongoing project to test and refine 
an ECS for the ONF for integration of ecological concepts 
with natural resource management (Sharitz and others 1992) 
to evaluate, for example, the effects of forest restoration on 
water yields in the southern Piedmont (Trimble and 
others 1987).

STUDY AREA AND HIERARCHICAL 
ECOLOGICAL UNITS

The ONF is in the Midland Plateau-Central Uplands 
Subsection, one of ten ecological units that stratify the 
Southern Appalachian Piedmont Section into smaller areas 
of more uniform environments associated with climate 
and surficial geologic materials (Cleland and others 2007). 
Extending from central Alabama northeast to South 
Carolina, this large (11,884 miles2) subsection is a region 
of highly weathered metamorphic gneisses and schists 
that includes most of the north-central portion of Georgia 
(Figure 1). Much of this subsection is an exotic terrain 
that was accreted to the continent during formation of the 
Appalachian Mountains, which now forms an extensive 
shield-like plateau underlain by a complex of granitic 
gneisses and schists that vary in resistance to weathering 
and associated soils. Two major river systems draining the 
region have cut deeply into parts of the plateau surface, 
forming extensive areas of highly dissected topography that 
extend more than 50 miles north from the boundary of this 
subsection with the coastal plains. Harper (1930) subdivided 
the Piedmont physiographic province into upper and lower 
parts based on the amount of landscape-scale dissection 
associated with the major river basins. The ONF is in the 
highly dissected lower part of the Piedmont, where little 
of the original plateau surface remains. Almost all of the 
ONF lies off of the plateau surface, on the broad and highly 
eroded sides of the extensive drainage basins of the Oconee 
and Ocmulgee Rivers and their tributaries.

Physiography of the subsection varies, but can be generally 
characterized as a slightly southerly sloping, moderately 
to strongly dissected peneplain with few surface features. 
Occasional granite monadnocks are present in the northern 
part of the subsection and areas of strongly dissected 
landforms increase to the south, particularly along the east-
west Fall Line transition to the coastal plains (Fenneman 
1931, Burbanck and Platt 1964). Staheli (1976) found the 
dendritic drainage pattern of this region was consistent 
throughout, but differed markedly from the trellis pattern of 
the Schist Plains Subsection of the Piedmont farther north. 
Pehl and Brim (1985) show no noteworthy variation of 
forest habitats in the region they delineate as the Midland 
Plateau Region of the Piedmont and which they describe 

as “...topography gently to steeply undulating, with forest 
vegetation associated extensively with steeper topography.” 
Wharton (1989) identified a midland subprovince within the 
Piedmont (which is similar to the Midland Plateau-Central 
Uplands Subsection) without further subdivision, and 
described 14 plant communities associated with topographic 
and soil moisture regimes ranging from hydric river swamps 
to xeric bluffs.

Quantitative relationships among environmental gradients 
and vegetation in the lower Piedmont of Georgia are limited 
to studies by Cowell (1993, 1998). On a landscape scale, 
he found vegetative communities could be subdivided into 
two groups: upland and bottomland forests. Cowell found 
soil fertility (in the upper 4 inches) was more important 
than moisture (expressed by topographic position and 
aspect) when accounting for variation in the distribution 
of tree species on upland sites. Elsewhere in the broader 
Appalachian Piedmont region, Golden (1979) reported 
that composition of forest tree and shrub communities in 
the highly disturbed landscapes of central Alabama was 
associated with macroscale landscape position ranging 
from xeric ridgetops to subhydric stream bottoms. Working 
in South Carolina, Jones (1988) associated composition 
of old-growth forest vegetation with a moisture gradient, 
which he suggested was related to landform, aspect, and soil 
properties. Brender and Davis (1959) concluded that the 
effects of topography (as it affects site moisture relations) 
was more important than soil types in determining the rate 
of hardwood encroachment into pine stands in the lower 
Piedmont of Georgia. Considerable study, however, has been 
made of the unusual flora occurring on soils weathered from 
materials associated with two intrusive geologic formations: 
granite (Burbanck and Phillips 1983) and gabbro (Schmidt 
and Barnwell 2002). Wharton (1989) comments that effects 
of over 200 years of disturbance to soil and vegetation 
related to European settlement have largely obscured many 
ecological relationships but historical accounts suggest that 
arborescent vegetation was associated with “red land” and 
“gray land” soil types weathered from different types of 
bedrock. Nelson (1957) provides a county-level map of the 
“gray lands” that were usually occupied by a pine-hardwood 
mixture, “granitic lands” (generally near Elberton, Ga.) that 
were dominated consistently by pine forests, and “red lands” 
that supported hardwood stands before European settlement. 
Following almost two centuries of intensive disturbance, 
hardwood stands are currently found on about 18 percent 
of the Piedmont landscape, equally distributed between 
bottomlands and lower slopes of coves (Nelson and 
others 1957).

For our study, the Midland Plateau-Central Uplands 
subsection was subdivided into landtype associations 
(LTA) following the hierarchical structure of the national 
ecological framework. Seven recurring LTAs, based 
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primarily on composition of mapped geologic formations 
occurring within the proclamation boundary of the ONF, 
were delineated as closed polygons enclosing an area 
of about 1.4 million acres (Figure 1). Bedrock in this 
subsection is predominately a mixture of highly weathered 
northeast-trending bands of metamorphic granitic gneisses 
and schists that have formed soils that vary mostly in depth 
and degree of erosion. Upland soils, which make up over 
90 percent of the study area, are primarily Ultisols that 
have a thermic temperature regime, a udic moisture regime, 
are well drained, highly acidic, and low in fertility. Slope 
gradients of upland soils range from 2 to 35 percent. Most 
upland soils are classified as eroded, resulting from a long 
period of intensive cultivation. Climate of this area is a 
combination of maritime and continental influences that 
varies little throughout the subsection. Average monthly 
temperatures range from 44°F in January to 80°F in July. 
Almost all precipitation occurs as rain, which averages 48 
inches annually. The wettest month is March (5.5 inches) 
and the driest is October (2.8 inches). Soil moisture deficits 
usually occur annually during the late growing season as a 
result of high temperature and low precipitation and often 
are cumulative during successive years of below average 
rainfall. Elevation averages about 510 feet (range 321-711 
feet) for the study area.

Six landtype (LT) units of the ECS, which occurred within 
all LTAs, were recognized within the three separated land 
areas forming the proclamation boundary of the ONF 
(Table 1). All LTs except one (glade) identify segments 
of the landscape that define a perceived moisture gradient 
associated with topography, ranging from dry ridges to wet 
stream banks. Ridges were separated into three classes: 
(1) Piedmont plain, (low hills atop the plateau), which 
occurred only slightly (65 acres) within the LT analysis 
area, (2) broad ridges, and (3) narrow ridges. (major land 
divides between tributary streams within the river basins). 
Slopes were stratified in two groups based on the relative 
amounts of solar radiation received: (1) exposed (aspects 
between 158° - 292°) or (2) sheltered (aspects from 293° - 
157°). Riparian LTs occurred in bottomlands on sites with 
moisture regimes ranging from supermesic or subhydric 
on high floodplains to hydric beside streams. Glades are 
small (1 - 2 acres) “island-like” LTs occurring on nearly 
flat uplands underlain by gabbro rock formations that have 
weathered to form soils with clay B-horizons that are highly 
impervious to water movement (Schroeder and others 2000). 
These areas are typically flooded during winter and early 
spring, but usually experience drought during late summer 
when precipitation declines. Glades are sites with a unique 
moisture regime that varies seasonally from xeric to hydric 

(Schmidt and Barnwell 2002). On the ONF glades occur as 
two large areas of about 4,000 acres.

Landtypes were further subdivided into landtype phases 
(LTP), the lowest and most homogenous level of the ECS. 
Thirteen units (including water) were identified, 5 of which 
were associated with upland sites and the others with 
bottomlands (Table 1). The broad ridge LT was subdivided 
into two LTPs: (1) broad ridge or (2) narrow ridge. Broad 
ridges were generally those along the ridge divides of 5th 
level hydrologic units, termed watersheds in the USGS 
classification scheme, which generally range in area from 
40,000 to 250,000 acres. Narrow ridges typically followed 
6th level hydrologic units (sub-watersheds) that range from 
10,000 to 40,000 acres. Two LTPs associated with slopes 
were identified using criteria similar to that for LTs: 
(1) exposed and (2) sheltered. The LTP designated as upland 
flat was restricted to the glade LT.

Finally, LTPs were modified (LTPm) to account for the 
biological effects of differential soil erosion. Each LTP 
was assigned a code representing one of seven mapped or 
perceived classes of soil erosion, ranging from slight to 
severe, resulting in a total of 84 potential classification units. 
When all national forest lands were classified at the LTPm 
level, however, only 34 ecological units were identified. 
Most of the riparian LTPs were represented by a single level 
of erosion, such as forested wetland-slight erosion or sand 
levee-slight erosion. Each LTPm represents an ecological 
unit of varying size with sufficiently uniform physical and 
chemical properties that combine to form environmental 
conditions suitable for establishment and maintenance of a 
characteristic vegetative community.

METHODS

Field data used for testing the classification were obtained 
from FIA through a standard data service request. Sample 
plots were restricted to those occurring on sites classified as 
forest land3. Site index (50 years) of loblolly pine on each 
sample plot was used as the biological response variable. 
Site index, a timber-related measure of site quality, was 
not an ideal choice of response variable considering the 
ecological objectives of the study, but was the best of those 
available in the FIA data set. Where site index had been 
determined for a species other than loblolly pine, it was 
converted to an equivalent value for loblolly pine using 
relationships reported by Olson and Della-Bianca (1959), 
Harrington (1987), and other sources.

3 Forest land is an area >1 acre with at least 10 percent cover by live trees of any size or species, as defined in the Forest 
Inventory and Analysis Database: Database Description and Users Manual Version 4.0 for Phase2. Draft revision 3. USDA Forest 
Service. Forest Inventory and Analysis Program. 368 p.
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A fixed-effects model analysis of variance was used to 
determine if the biological response variable (site index) 
was affected by treatments for each of the four ECS levels. 
A treatment consisted of the various randomly occurring 
combinations of environmental variables represented 
by the classification units within each ECS level. At the 
LTA level of the ECS, for example, we hypothesized 
that environmental variation of the Piedmont landscape 
affecting site index of loblolly pine would be reduced if 
the underlying geologic formations (see Fig. 1) were taken 
into account. The seven fixed categories of geology were 
considered as natural treatments in a completely randomized 
experimental design. Our null hypothesis, therefore, was 
that mean site index of loblolly pine did not differ among 
treatments (i.e. geologic groups or LTAs). Rejection of the 
null hypothesis resulted in non-rejection of the alternate 
hypothesis, which stated that mean site index differed 
among the LTA ecological units. Sample field data to test the 
hypothesis came from the LTA ecological units in which FIA 
plots had been placed. Similarly, the six LT ecological units 
were assumed to be moisture regime treatments that were 
sampled with randomly located FIA plots to determine if 
site index differed among them. Each of the four ECS levels 
was a separate experiment with a different set of treatments.

Sample sizes varied among treatments for each ECS level 
and depended on criteria used by FIA for establishing field 
plots and extent of the geographic area being investigated. 
At the large LTA level (Fig. 1), ECS units sampled with 
≥4 plots were judged as adequate replication for meaningful 
analysis. For the LT level and below, where the study area 
was restricted to the smaller area of the ONF, ECS units 
with ≥3 field sample plots were included in the analysis. 
Although the minimal replication used in our study would 
likely result in an analysis with little power to detect real 
differences among treatments (Zar 1996), it was justified on 
the basis of increasing knowledge about the function and 
application of the ECS.

Bartlett’s test was used to determine the homogeneity of 
variances of site index among units at each ECS level. A 
square root transformation of site index was used where 
necessary to achieve homogeneity of variance 
(Zar 1996). When the analysis of variance indicated 
significant differences were present among mean site 
index of the ECS units, Tukey’s test was used to determine 
differences among treatments (Zar 1996). All tests of 
statistical significance were made at the P = 0.1 level 
of probability. We used the increased type I error rate 
(probability of falsely detecting an effect) of P = 0.1, instead 
of the traditional P = 0.05, because of the small-size and the 
exploratory nature of our study.

RESULTS

A total of 241 FIA plots were present on forest land in the 
study area surrounding the ONF, which was defined by 
delineation of the large geologic based LTAs, as shown 
in Figure 1. However, 63 plots were discarded because 
site index was missing (i.e. stand was too young for its 
determination) or it had been determined for a tree species 
that could not be converted to an equivalent value for 
loblolly pine, leaving 178 plots potentially available for 
analysis. Four of the 178 plots had been installed on sites 
classified as hydric bottomlands, which were discarded 
because of the low representation of this group of plots in 
the data set. The remaining 174 plots were located on sites 
classified as mesic uplands and were available for analysis 
at the LTA level of the ECS.

Analysis at the LT level of the ECS and below was restricted 
to the area where those smaller and more detailed ecological 
units had been delineated, which was only within the 
boundary of the ONF (Fig 1). Only 18 FIA plots had been 
installed in the ONF and therefore could be used for analysis 
of data at the LT level of the ECS and below. Classification 
groupings of the 18 FIA field plots were identical for 
analysis at the LT and LTP levels. For example, upland units 
at the LT and LTP levels differed only by ridge type: broad 
versus narrow. Because the three FIA plots were all on 
narrow ridges, the LTP analysis would have been identical 
to that for the LT; therefore it was omitted. Finally, to obtain 
sample sizes adequate for analysis (n ≥3) at the LTPm level, 
the 18 plots were grouped into three broad classes (low, 
medium, and high) of erosion instead of the seven detailed 
categories recognized in the ECS.

Forest type of the large study area was predominately pine 
(59 percent) but it varied considerably among LTAs, from 
46 percent in LTA4 to 75 percent in LTA7 (Table 2). The 
pine type was primarily loblolly (96 percent); the oak-
hickory type was classified mostly as white oak/red oak/
hickory (30 percent) or mixed upland hardwoods 
(27 percent). Most of the oak/pine forest type (74 percent) 
occurred in LTA3 and LTA4, and almost half of LTA5 was 
classified as oak/hickory type. Among all sample plots site 
index was highest for four plots associated with the oak/
gum and elm/ash forest types. Although those plots had been 
classified in the FIA data as having a mesic moisture regime, 
they were likely located on drier parts of very mesic and 
fertile floodplains.

Landtype Association Ecological Units
Mean loblolly pine site index for the entire study area 
averaged 88.1 feet and ranged from an average of 83.6 feet 
(LTA4) to 103.1 feet (LTA7) (Table 3). Excluding LTA7, 
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represented by only 4 plots, variation of plot site index was 
wide for the other LTAs (44 - 71 feet) and particularly for 
three LTAs (2, 4, and 6) each of which likely (based on 
forest type) included a plot associated with a floodplain 
(Table 2). The analysis indicated significant differences 
(p<0.02) of site index were present among some or all of the 
seven LTAs. Site index differences were present between 
two groups of LTAs (Fig. 2). The Tukey Test indicated 
that average site index did not differ among LTA 2, LTA6, 
or LTA7, but it was statistically higher for LTA7 than for 
LTA1, LTA3, LTA4, or LTA5.

Landtype Ecological Units
Only 18 of the 174 FIA plots were available for the analysis 
of site index for LTs delineated within the boundary of the 
ONF, an area of about 115,300 acres. However, an adequate 
number of plots for analysis (n ≥3) were available for only 
three LTs: ridges (n=3), exposed slopes (n=5) and sheltered 
slopes (n=10). Analysis of data for the 18 plots revealed 
mean site index of exposed slopes (80.7 feet) was lower 
(P=0.02) compared to sheltered slopes (97.1 feet) (Fig. 3). 
Neither of those ECS units differed in site index compared 
to the ridge LT, which was intermediate (93.0 feet) between 
exposed and sheltered slopes. 

Landtype Phase Ecological Units
As explained previously, the analysis for LTPs would be 
identical to that for LTs, and therefore is not presented.

Landtype Phase - Modified Ecological 
Units
The LTPm level of the classification grouped LTPs based 
on the severity of soil erosion. Analysis of data from 13 
plots located on the three classes of soil erosion revealed 
no significant difference of site index of loblolly pine for 
sheltered slopes with high erosion (98.0 feet) compared 
with moderate erosion (97.6 feet) (Fig 4). Although average 
site index was lowest on exposed slope with moderate 
erosion (88.8 feet), it was not statistically different from that 
measured on plots located on the two sheltered slope units.

DISCUSSION

The results of our analysis suggest that the land units 
delineated using the ECS define areas of differing site 
quality, and perhaps ecological potential, over a range 
of scales, from large LTAs to small LTPs. The strongest 
findings of the study occurred at the LT level of the ECS, 
where we found clear differences in site index between 
exposed (80.7 feet) and sheltered units (97.1 feet). We could 
not detect real differences in site index among ecological 
units at the LTPm level of the ECS, which was a measure 

of soil erosion. Because soil erosion clearly affects site 
quality in the Georgia Piedmont (Harrington 1991) the small 
number of FIA plots (13) available for our analysis at the 
LTPm level was likely a contributing factor in our inability 
to demonstrate a difference in site index.

A recognized limitation of our study was use of site index, 
not composition of vegetation, as the biological response 
variable. Composition is generally used to evaluate 
hypothesized ecological units (Rowe and Sheard 1981). 
We used site index for several reasons primarily because 
it was available in the FIA data set and also because it is 
a vegetative variable that indirectly integrates physical 
components of ecosystems including long-term climate and 
soil characteristics (Spurr and Barnes 1973). Harrington 
(1991) in an extensive study of loblolly pine site index 
found the species was sensitive to many environmental 
variables, including those considered important to 
differentiate ecological units, such as climate, geology, 
and soil. In comparison with other Piedmont tree species, 
particularly hardwoods, loblolly pine is less responsive to 
variation in site quality (Nelson and Beaufait 1956). Our 
study is perhaps noteworthy because we found no references 
from other studies where site index of southern pines had 
been used to test for differences among ecoregion units. 
In a highly replicated, large-scale study of ponderosa pine 
(P. ponderosa) site quality in Arizona and New Mexico, 
Mathiasen and others (1987) found site index did not vary 
among seven habitat types.

Results of our preliminary study suggest the possible 
need for refinement of the ECS at the LTA level, which 
is currently based on types of bedrock. Loblolly pine site 
index varied little among LTAs when compared across the 
seven groups. Except for the exposed granitic domes and 
localized areas of gabbro, the mostly buried geology of the 
Piedmont resembles an extensive shield of gneisses and 
schists that have weathered differentially to form a coarse 
mosiac of soils with slightly varying moisture and nutrient 
characteristics. Unlike LTA7, which is associated with an 
unusual type of rock, environmental conditions associated 
with the other six LTAs did not result in identification of 
ecological units associated with detectable differences of 
site index for loblolly pine.

CONCLUSIONS

In conclusion, our preliminary evaluation of the ECS 
developed for the ONF using a small FIA data set 
demonstrated a promising relationship between ecological 
units and environmental gradients expressed by site index 
of loblolly pine. An analysis using a larger data set, with 
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vegetation as the biological response variable, is needed 
to clarify and strengthen the ecological relationships at 
the lower levels of the ECS. Such an analysis will likely 
indicate the need for revision of classification units at 
the LTA level. This region of the Georgia Piedmont is 
particularly challenging for ecological classification due to 
lack of topographic relief and its long history of intensive 
past disturbance resulting in variable soil erosion. As Rowe 
and Sheard (1981) make clear, ecosystem classification 
is done not only to reduce environmental variation by 
stratification of land units for management planning, 
but also gain a better understanding of the underlying 
interactions among the important physical components that 
combine to make the ecosystems unique, which was one 
of the objectives for developing an ECS for the Oconee 
National Forest.
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1 

___________________________________________________________________________________________ 

ECS levels
1
 Description 

___________________________________________________________________________________________ 

Landtype 

 Piedmont plain
2
 Largely undissected land surface of the "original" peneplain or plateau 

 Broad ridge Ridges along watershed divides of 5th level hydrologic units  

 Narrow ridge Ridges along watershed divides of 6th level and smaller hydrologic units 

 Exposed slope Linear part of a slope below the ridge with an aspect from 158°-292° 

 Sheltered slope Linear part of a slope below the ridge with an aspect from 293°-157° 

 Riparian Concave land surface enclosing large streams and rivers 

 Glade Flat area of a ridge associated with gabbro rock formations 

Landtype phase 

 Broad ridge Ridges along watershed divides of 5th level hydrologic units 

 Narrow ridge Ridges along watershed divides of 6th level and smaller hydrologic units 

 Exposed slope Linear part of a slope below the ridge with an aspect from 158°-292° 

 Sheltered slope Linear part of a slope below the ridge with an aspect from 293°-157° 

 Upland flat Flat area of a ridge associated with gabbro rock formations 

 Others
3
 Concave land surfaces associated with subhydric to hydric riparian sites  

Landtype phase-modified
4
 

 Slight  Little or no erosion 

 Moderate From 25 - 50 percent of surface horizon lost 

 Severe Over 50 percent of surface lost, often "gullied" 

____________________________________________________________________________________________ 

 

Table 1—Preliminary non-hierarchical units occurring at the landtype, landtyoe phase, and landtype phase-
modified levels of the ecological classification system for the Oconee National Forest

1 These units are not hierarchical. They are common to all and may occur in any of the seven landtype associations within the 
larger Midland Plateau-Central Uplands Subsection.
2 Present in a very small area (65 acres) on the ONF; it was combind with broad ridge at the LTP level.
3 Land units associated with wetter parts of the landscape (forested wetland, open wetland, riparian, river floodplain, stream 
terrace, sand levee, upland flat, and water). 
4 The seven categories of erosion in the ECS (slight, slight-moderate, moderate-slight, moderate, moderate-severe, severe-
moderate, and severe) were grouped into three classes for this study.

1 

__________________________________________________________________________________________ 

Forest type Landtype association                                                             Total Per- Site 

 1 2 3 4 5 6 7 all cent index 

__________________________________________________________________________________________ 

  - - - - - - - - - - - - - - - - - -Number of plots- - - - - - - - - - - - - - - - - - - -   feet 

Pine 15 20 27 18 9 11 3 103 59.2 90.7 

Oak/pine 1 2 7 10 - 3 - 23 13.2 84.7 

Oak/hickory 5 10 8 10 8 3 - 44 25.3 82.2 

Oak/gum - 1 - - - - 1 2 1.1 97.0 

Elm/ash - - - 1 - 1 - 2 1.1 105.5 

__________________________________________________________________________________________ 

Total 21 33 42 39 17 18 4 174 100.0 88.1 

__________________________________________________________________________________________ 

 

 

Table 2—Distribution of FIA plots by forest type and landtype association in the Midland Plateau-Central 
Uplands Subsection where site index was determined for loblolly pine on sites classified as upland mesic

Wharton, C.H. 1989. The natural environments of Georgia. Bulletin 114. 
Atlanta, Ga: Department of Natural Resources, Environmental Protection 
Division, Georgia Geologic Survey. 227 p.

Zar, J.H. 1996. Biostatistical Analysis. Upper Saddle River, NJ: Prentice 
Hall. 662 p. 
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1 

___________________________________________________________________________________________ 

Item  Landtype association
1
                                                           

 1 2 3 4 5 6 7 

___________________________________________________________________________________________ 

Site Index (feet) 85.2 94.3 87.3 83.6 97.9 90.0 103.1 

Basal area (feet
2
/acre) 124 110 100 109 98 112 129 

Elevation (feet) 232 350 306 374 369 251 415 

Aspect (degrees) 202 262 197 160 132 87 91 

Gradient (percent) 12.0 9.8 8.0 12.0 8.4 10.2 7.0 

____________________________________________________________________________________________ 

 

Table 3—Characteristics of ecological units classified by landtype association from FIA sample plots within 
the Midland Plateau-Central Uplands Subsection study area of the Oconee National Forest

1 An 8th geologic group, aluminous schist, occurred in the subsection but was not present within the area delineated by LTAs in the 
proclamation boundary of the Oconee National Forest. 

1 

 

 Figure 1—Extent of the Midland Plateau—Central Uplands 
Subsection (hatched area in small inset map) in Alabama, Georgia, 
and South Carolina. The study area (black overlay in Geogia) 
was defined by the closed polygons of seven proposed landtype 
associations (LTAs) that occur within the proclamation boundary of 
the Oconee National Forest (three gray areas in the enlarged LTA 
area). The LTAs (identified by a number in each polygon) represent 
the predominate geologic bedrock formations: 1, intermediate 
gneiss; 2, granitic gneiss; 3, mica schist; 4, granite; 5, biotite gneiss; 
6, metamorphosed mafic; 7, mafic and ultramafic (gabbro). 
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1 

 

 

 Figure 2—Box plot for loblolly pine site index by landtype association 
(LTA). The bottom and top of the box represent the 25th and 75th 
percentiles; respectively; the mean is represented by the horizontal 
dashed bar and the median by the solid bar in each box. The cross 
bars below and above each box indicate the range of site index. 
LTAs with the same letters are not significantly different at the 0.1 
level of probability. The number of plots present in each LTA is 
shown below each box.
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Figure 3—Box plot for loblolly pine site index by landtype and 
landtype phase levels of the ecological classification system (ECS) 
for the Oconee National Forest.. The bottom and top of the box 
represent the 25th and 75th percentiles, respectively; the mean is 
represented by the horizontal dashed bar and the median by the 
solid bar in each box. The cross bars below and above each box 
indicate the range of site index. Bars with the same letters are not 
different at the 0.1 level of probability. Below each bar is the number 
of plots present in that unit of the ECS.



86

Forest Ecosystems

1 

 

 

 

 

 

Figure 4—Box plot for loblolly pine site index by landtype phase-
modified level of the ecological classification system (ECS) for the 
Oconee National Forest. The bottom and top of the box represent 
the 25th and 75th percentiles, respectively; the mean is represented 
by the horizontal dashed bar and the median by the solid bar in each 
box. The cross bars below and above each box indicate the range of 
site index. Bars with the same letters are not different at the 0.1 level 
of probability. Below each bar is the number of plots present in that 
unit of the ECS.
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Abstract
Early successional hardwood forests constitute important breeding habitat 
for many migratory songbirds. Declines in populations of these species 
suggest changes in habitat availability either on the species’ wintering 
grounds or on their early successional breeding grounds. We used Forest 
Inventory and Analysis data from 11 states across four decades to examine 
changes in early successional (small-diameter) hardwood forests in four 
Bird Conservation Regions (BCRs) where migratory songbirds of interest 
have exhibited population declines: Appalachian Mountains, Central 
Hardwoods, Piedmont, and Southeastern Coastal Plains. We hypothesized 
that 1) proportional to the amount of timberland on the landscape, 
hardwood area in the four BCRs of interest has remained stable across the 
four decades studied and 2) proportional to the total amount of hardwood 
timberland on the landscape, the area of small-diameter hardwood forest in 
the four BCRs of interest has declined across the four decades studied. In 
the Central Hardwood BCR, proportional hardwood area declined slightly 
(P=0.0033), while in the Southeastern Coastal Plain, proportional hardwood 
area remained stable (0.2705). The Appalachian Mountains and Piedmont 
experienced increases (P=<0.0001). Total timberland area and proportional 
area of early successional forests across the entire sample of interest 
remained stable from the 1970s through the 1980s, experienced an increase 
in the 1990s, then declined in the 2000s (P<0.0001)—a pattern reflected in 
the individual BCRs. Implications of our findings are discussed.

INTRODUCTION

Early-successional, or small-diameter, hardwood forests 
constitute an important habitat component for many wildlife 
species, including numerous migratory songbird and game 
animal species. Historically, natural and anthropogenic 
disturbances like fire, insects and disease, domestic and 
wild animal grazing, and storms helped to create and 
maintain early successional habitat in the central hardwoods, 
Appalachian, and Piedmont regions (Lorimer 2001). 
Lorimer and White (2003) estimate that in the pre-settlement 
hardwood forests of the northeast the average proportion of 
the landscape occupied by early successional habitat was 
between 1-3 percent, with some coastal pine/oak forests 
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exhibiting proportions of 10 percent or higher. Following 
European settlement, land clearing for agriculture, 
development and commercial timber management replaced 
fire as primary disturbances in the hardwood forests of 
Eastern North America, resulting in widespread areas of 
early-successional habitat reaching proportions of as much 
as 75 percent of the forested landscape by the late 19th and 
early 20th centuries (Lorimer and White 2003). 

More recently, some studies suggest that forests throughout 
the central and northern hardwood regions are maturing, 
resulting in a reduction in the amount of early successional 
habitat on the landscape (Trani 2001, Brooks 2003, Oswalt 
and Turner 2009). Lorimer and White (2003) and Brooks 
(2003) suggest that, for the northeastern United States, 
the proportion of forest that is early-successional may be 
nearing pre-settlement levels following the widespread 
clearing that occurred during settlement and expansion.

Early successional hardwood forests constitute important 
breeding habitat for many migratory songbirds of concern 
like the golden-winged warbler (Vermivora chrysoptera), 
prairie warbler (Dendroica discolor), chestnut-sided 
warbler (D. pensylvanica), and Bewick’s wren (Thryomanes 
bewickii), among others. Changes in the availability of early 
successional habitat are of interest to wildlife managers 
and ornithologists who are concerned with declines in 
disturbance-dependent avian species (Hunter and others 
2001, DeGraaf and Yamasaki 2003). Mitchel and others 
(2001) found that birds associated with early successional 
habitat respond to changes in habitat availability at a 
landscape scale, and inferred that the extent of contiguous 
habitat may be limiting for those populations. Declines 
in populations of these species suggest changes in habitat 
availability either on the species’ wintering grounds or on 
their early successional breeding grounds. Regional patterns 

Changes in Early-successional 
hardwood forest area in four 
bird conservation regions 
across four decades



88

of change in early successional habitat are, therefore, 
important for understanding the role that declining small-
diameter forest area may play in changing populations of 
breeding songbirds.

We used Forest Inventory and Analysis (FIA) data from 
11 states across four decades to examine changes in early 
successional (small-diameter) hardwood forests in portions 
of four bird conservation regions where migratory songbirds 
of interest have exhibited population declines: Appalachian 
Mountains, Central Hardwoods, Piedmont, and Southeastern 
Coastal Plains. We hypothesized that 1) proportional to the 
amount of timberland on the landscape, total hardwood area 
in the four BCRs of interest has remained stable across the 
four decades studied and 2) proportional to the total amount 
of hardwood timberland on the landscape, the area of small-
diameter hardwood forest in the four BCRs of interest has 
declined across the four decades studied.

METHODS

Data from the USDA Forest Service national FIA Database 
(FIADB) were compiled and analyzed to examine the status 
and trends of small diameter hardwood forests among four 
decadal time periods (1970s, 1980s, 1990s, and 2000s) 
within four Bird Conservation Regions of interest. The 
sample population was defined by intersecting the outline of 
Bird Conservation Regions (BCRs) of interest with FIA plot 
locations in 11 states using ESRI ArcGIS (figure 1). Four 
BCRs were of interest in this study: Central Hardwoods, 
Southeastern Coastal Plain, Appalachian Mountains, and 
Piedmont. FIA plots were located on the map using actual 
coordinates collected in the field, with the exception of 
plot locations in Missouri and West Virginia, where FIA 
“perturbed and swapped” locations were used (see Bechtold 
and Patterson 2005 for detailed documentation of FIA 
inventory methods, and LaPointe 2005 for an explanation 
of fuzzed and swapped coordinates). Not all states were 
available for all years, and survey years varied among states. 
States, survey periods, and numbers of plots used in this 
analysis are given in table 1. 

Data were aggregated to the county level for analysis, and 
counties were used as the sample unit (Fei and Steiner 
2007, Oswalt and Turner 2009). The total timberland area in 
hectares (TTA), total hardwood timberland area (THA), and 
total small-diameter hardwood timberland area (TSD) were 
calculated for each Decade-State-BCR-County combination. 
Sample area and size differed through time; therefore, area 
estimates were normalized for analysis by converting raw 
numbers to proportions, yielding the proportion of total 
timberland area that was hardwood (PTTA), the proportion 
of total timberland area that was small-diameter hardwood 
(PTSD), and the proportion of total hardwood timberland 

that was small-diameter (PTHA). Concerns that the use of 
proportions might produce erroneous results with regards 
to changes in avian habitat if raw TTA and raw TSD both 
experienced declines but PTSD remained stable were 
relieved by Smith and others (2009), who showed that in 
the regions encompassing the BCRs of interest, timberland 
area has remained stable or increased since the mid-1970s. 
Hardwood stands were identified as those falling within 
a pre-selected set of FIA forest-type groups containing 
primarily hardwood species (table 2). Small-diameter 
(seedling/sapling) stands were identified using the FIA 
variable STNDSZCD, which defines small diameter stands 
as: Stands with an all live stocking value of at least 10 (base 
100) on which at least 50 percent of the stocking is trees less 
than 12.7 cm in diameter (U. S. Forest Service 2009). 
Analyses of variance were used determine changes in PTTA, 
PTSD, and PTHA over time across the whole study area and 
by BCR. Proportions were arcsin-transformed to improve 
normality. Means were back-transformed for reporting 
purposes. Generalized least square means were compared 
among decades for each ANOVA. 

RESULTS

Hypothesis 1
Proportional to the amount of timberland on the landscape, 
hardwood area in the four BCRs of interest has remained 
stable across the four decades studied.
Hardwood area trends, as a proportion of total timberland, 
varied by BCR and time. In the Appalachian Mountain 
BCR, PTTA increased between the 1970s and 1990s, 
and then increased again between the 1990s and 2000s 
(p<0.0001; figure 2). The Central Hardwoods experienced 
a moderate increase in PTTA from 1970 to 1980 (88.0 ± 
1.9 and 89.3 ± 0.8), followed by a gradual decrease in 2000 
to levels statistically lower than 1980, but comparable to 
1970 (86.2 ± 0.9; p=0.0033). The Southeastern Coastal 
Plains BCR PTTA remained stable across all four decades 
(p= 0.2705). The PTTA increased in the Piedmont BCR 
between the 1980s and 1990s (p<0.0001). Timberland in 
the Appalachian Mountains and Central Hardwood BCRs 
was predominately hardwood, and contained the highest 
proportion of hardwood to softwood timberland in the 
study (91.2 ± 4.1 and 86.2 ± 0.9 percent in the 2000s, 
respectively). In comparison, the Piedmont BCR sample 
area was composed of approximately 60.8 ± 1.4 percent 
hardwood area, while the Southeastern Coastal Plain BCR 
was only 39.1 ± 1.1 percent hardwood area.

Hypothesis 2
Proportional to the total amount of hardwood timberland on 
the landscape, the area of small-diameter hardwood forest 
in the four BCRs of interest has declined across the four 
decades studied.
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Proportionally, the area of small-diameter hardwood 
timberland across the entire sample of interest remained 
stable from the 1970s to the 1980s (27.0 ± 0. 7 and 26.8 ± 
0.7 percent, respectively), increased in the 1990s to 32.3 ± 
0.8 percent, then declined in the 2000s to 21.7 ± 0.6 percent 
(p<0.0001; figure 3). In the Appalachian Mountains BCR, 
no differences occurred from the 1970s to the 1980s (18.0 
± 1.3 and 16.0 ± 0.9 percent, respectively), but small-
diameter area increased in the 1990s to 19.6 ± 1.4 percent 
of hardwood timberland before declining precipitously 
to 11.7 ± 0.9 percent in the 2000s (p<0.0001; figure 4). 
Small-diameter hardwood area was stable in the Central 
Hardwoods BCR from the 1970s through the 1990s (23.8 
± 2.2, 21.5 ± 1.2, and 21.8 ± 1.8 percents, respectively) 
but declined to 9.1 ± 0.6 percent of total hardwood 
timberland area in the 2000s (p<0.0001). In the Piedmont 
BCR, small-diameter area experienced no significant 
changes (p=0.1329). Small-diameter area increased in the 
Southeastern Coastal Plain between the 1970s and 1980s 
(34.7 ± 1.0 and 38.3 ± 1.1 percent of hardwood timberland 
area, respectively), reached a peak in the 1990s at 43.7 ± 1.0 
percent, then declined back to pre-1990s levels in the 2000s 
(36.7 ± 1.1 percent, p<0.0001).

DISCUSSION

In contrast to our original hypothesis that the hardwood 
proportion of timberland area remained stable from the 
1970s to the 2000s in the BCRs studied, total hardwood 
area actually increased in the Appalachian Mountains and 
Piedmont BCRs and remained stable, overall, in the Central 
Hardwoods and Southeastern Coastal Plain BCRs. Because 
of the stability of the total timber resource, and the relative 
stability of the overall hardwood resource, we were able 
to focus on the proportion of that resource that was small-
diameter habitat. 

Declines in early successional stands as a proportion of the 
overall hardwood resource were most notable in the Central 
Hardwood and Appalachian Mountain BCRs with 15 and 6 
percent declines from the 1970s to the 2000s, respectively. 
Current proportions of early-successional forest for the 
Central Hardwoods and Appalachian Mountains appear to 
be similar to presettlement levels for the upper Midwest 
and Northeast, but possibly much lower than presettlement 
levels for the central hardwoods region as reported by 
Lorimer (2001), though that study used different definitions 
of early successional forests, different regional boundaries, 
and included both softwood and hardwood forests, savannas, 
and prairies. Comparisons with presettlement landscapes 
are also confounded by overall changes in forest area that 
occurred with the onslaught of development. Oswalt and 
Turner (2009) studied the Appalachian Hardwood Region 
(similar to, but distinct from the Appalachian Mountains 

BCR), and also note that total diameter distributions of 
hardwood trees shifted to larger diameter classes between 
the 1980s and 2000s (Oswalt and Turner 2009). 

In contrast to the Central Hardwoods and Appalachian 
Mountains BCRs, while we noted proportional declines 
from the 1990s to the 2000s in the Southeastern Coastal 
Plain BCR, there was no net change from the 1970s and 
small-diameter stands still comprised between 34 and 36 
percent of total hardwood timberland. The Piedmont and 
Southeastern Coastal Plain BCRs may experience more 
natural disturbance from hurricanes and associated fire 
and storms than the northern and central interior forests, 
or a larger proportion of timberland in the Piedmont and 
Southeastern Coastal Plain may be affected by commercial 
timber harvests, resulting in a larger proportion of small-
diameter forests. However, overall hardwood forest area 
(and, subsequently, small-diameter hardwood forest area) 
is lowest in both of these predominately pine and mixed 
oak/pine regions than in the Central Hardwoods and 
Appalachian Mountains regions.

The loss of early successional hardwood forest habitat 
on the landscape is suggested as one potential reason for 
declining migratory songbird populations that typically rely 
on small-diameter forests for a portion of their lifecycle 
(Richardson and Brauning 1995, Nolan and others 1999, 
Gill and others 2001, Klaus and Buehler 2001). In a study 
examining bird population status in three of these BCRs, 
we found that most of the scrub-shrub birds as a group 
were declining significantly (Franzreb and others in press). 
Thus, it is particularly concerning that we found significant 
declines in small-diameter forests in the two BCRs that 
contained the largest proportion of hardwood timberland 
investigated in this study. However, factors beyond overall 
area loss may be playing a role in avian species declines. 
For example, although our study addresses declines in 
landscape-scale early successional hardwood forest area, 
it does not address shifts in tree, shrub, or herb species 
composition since the 1970s. Changes in the dominant 
vegetation occupying small-diameter stands may affect the 
structure of breeding habitat and available food sources, 
which may, in turn, impact populations (Lynch and 
Whigham 1984). This paper and other papers addressing 
landscape-level changes in small-diameter forest (e.g. 
Trani and others 2001) also fail to take into account the 
distribution of small-diameter forests in relation to the 
overall forest matrix, and in relation to surrounding land 
uses. Overall changes in the forest matrix, particularly patch 
size, may also play an important role in avian population 
dynamics (Lynch and Whigham 1984).

Early successional forests as defined in this paper may not 
adequately represent changes in habitat used by disturbance 
dependent birds on the landscape. For example, this study 
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does not assess changes in scrub-shrub habitat that would 
not meet the FIA definition of forestland. Additionally, 
some species that depend on early successional structure for 
breeding may be able to make use of relatively small canopy 
gaps or multi-storied forests that may not be captured within 
the definition of “small-diameter stand size” utilized in this 
paper. 

The FIA program has undergone many changes since the 
1970s, including switching from measuring plots using a 
variable-radius prism plot design to a fixed-radius annual 
remeasurement plot design, changing plot remeasurement 
cycles, fluctuating plot lists, and changes in definitions 
and estimation methods (Bechtold and Patterson 2005). 
These changes have accompanied the transition of 
FIA from a series of regional programs to a nationally 
consistent program that is comparable from state to state 
across regional boundary lines. Therefore, some changes 
noted in the paper may be due in part to changing FIA 
methodologies, though we anticipate that those influences 
are minimal.

CONCLUSIONS

Data from FIA suggest that early successional habitat in 
hardwood forests of the Central Hardwoods, Appalachian 
Mountains BCRs have declined since the 1970s, despite a 
stable or increasing hardwood timberland resource, and that 
Piedmont and Southeastern Coastal Plain BCR hardwood 
forests have declined since the 1990s, but are similar to 
areas noted in the 1970s. These declines are concerning 
with regards to disturbance-dependent migratory songbird 
populations that have been declining over the last several 
decades. However, multiple factors may also play a role 
in avian population declines, and changes in other types 
of early successional habitat that were not captured in this 
study, like scrub-shrub habitat, prairies, and small canopy 
gaps may be affecting populations.
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Decade 1970s 1980s 1990s 2000s 

State/Year Alabama 1972 Alabama 1982 Alabama 1990 Alabama 2008 

 Arkansas 1978 Arkansas 1988 Arkansas 1995 Arkansas 2007 

 Georgia 1972 Georgia 1989 Georgia 1997 Georgia 2008 

 Mississippi 1977 Kentucky 1988 Mississippi 1994 Kentucky 2007 

 North Carolina 1974 Mississippi 1987 North Carolina 1990 Mississippi 2006 

 South Carolina 1978 North Carolina 1984 South Carolina 1993 North Carolina 2007 

 Tennessee 1980 South Carolina 1986 Tennessee 1999 South Carolina 2007 

 Virginia 1977 Tennessee 1989 Texas 1992 Tennessee 2007 

  Virginia 1985 Virginia 1992 Virginia 2008 

  Missouri 1989  Missouri 2008 

    West Virginia 1989   West Virginia 2006 

Total Number of 

Plots 28,367 39,611 31,596 31,733 
 

 

Table 1—States, years, and number of plots used for each decadal time period
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FIA Forest 

Type Code Forest Type  

FIA Forest 

Type Code Forest Type  

400 Oak/Pine group 510 Scarlet oak 

401 

Eastern white pine/northern red oak/white 

ash 511 Yellow-poplar 

402 Eastern redcedar/ hardwood 512 Black walnut 

403 Longleaf pine/oak 513 Black locust 

404 Shortleaf pine/oak 514 Southern scrub oak 

405 Virginia pine/southern red oak 515 Chestnut oak/black oak/scarlet oak 

406 Loblolly pine/hardwood 516 Cherry/white ash/yellow-poplar 

407 Slash pine/hardwood 517 Elm/ash/black locust 

409 Other pine/hardwood 519 Red maple/oak 

500 Oak/hickory group 520 Mixed upland hardwoods 

501 Post oak/blackjack oak 800 Maple/beech/birch group 

502 Chestnut oak 801 Sugar maple/beech/yellow birch 

503 White oak/red oak/hickory 802 Black cherry 

504 White oak/red oak/hickory 805 Hard maple/basswood 

505 Northern red oak 809 Red maple/upland 

506 Yellow-poplar/white oak/northern red oak 905 Pin cherry 

507 Sassafras/persimmon 962 Other hardwoods 

508 Sweetgum/yellow-poplar 971 Deciduous oak woodland 

509 Bur oak 976 Miscellaneous woodland hardwoods 

    
 

 

Table 2—Forest Inventory and Analysis forest type codes and definitions used for data selection

 

 

 

 

Figure 1—Bird Conservation Regions and plots (approximate 
locations) used in this study.

 

 

 

 

Figure 2—Proportion (±1 s.e.) of timberland in selected hardwood 
forest types by BCR and time (all size classes).
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 Figure 3—Proportion (±1 s.e.) of all hardwood timberland that is 
small-diameter.

 

 

 

 

 

 

 

Figure 4—Proportion (±1 s.e.) of hardwood timberland that is small 
diameter by BCR and time.
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Abstract

The goal of this research was to quantify the relationship between 
American ginseng (Panax quinquefolius) and timber inventory and harvest. 
This was done through compilation and analysis of county-level data from 
public datasets: ginseng harvest data from U.S. Fish and Wildlife Service, 
US Forest Service (USFS) forest inventory and analysis (FIA) data, and 
roundwood production data from the USFS Timber Products Output (TPO) 
program. Data for the 18-state region from 2000 to 2007 were aggregated 
to the county level. Ginseng harvest was correlated with hardwood growing 
stock and hardwood forest area. No evidence of a relationship between 
timber harvest levels and ginseng harvest was observed. There is also no 
indication that ginseng harvest is higher in areas with more abundant public 
forestland. For the counties recording a ginseng harvest during the period, 
ginseng harvest was valued at $25 million, while timber harvest value was 
estimated to be $1 billion.

INTRODUCTION

Herbal medicines and other non-timber forest products have 
been a significant, yet underappreciated, part of the forest 
products industry in the United States for more than 300 
years (Chamberlain and others 1998). Trade in American 
ginseng (Panax quinquefolius) between North America and 
China began in the early 1700s. By the mid-1700s, natural 
populations around Montreal had been depleted, and the 
plant was discovered in New England (Nash 1898). From 
the Revolutionary War until 1900, an estimated 20 million 
pounds of dried ginseng was exported to China from the US 
(Pritts 1995).

Since 1975, when American ginseng was put on Appendix 
II of the Convention on International Trade in Endangered 
Species of Wild Fauna and Flora (CITES), the United States 
has been tracking harvest and export of this important 
medicinal plant (Robbins 2000, U.S. Department of Interior 
2009). Biannually, the U.S. Fish and Wildlife Service (FWS) 
must determine if export of wild-harvested ginseng will be 
detrimental to the species survival. For each of the years 
2000-2010, the FWS determined that lawfully harvested 
ginseng could be exported from 19 states (Alabama, 
Arkansas, Georgia, Illinois, Indiana, Iowa, Kentucky, 
Maryland, Minnesota, Missouri, New York, North Carolina, 

RELATIONSHIPS BETWEEN HARVEST OF 
AMERICAN GINSENG AND HARDWOOD 
TIMBER PRODUCTION
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Ohio, Pennsylvania, Tennessee, Vermont, Virginia, West 
Virginia, and Wisconsin) without detriment to the survival 
of the species. Of the states approved to export American 
ginseng, most are found in the Appalachian region. The 
harvest data collected by FWS under CITES provides a 
county-level dataset of annual estimates that can inform 
analyses of the spatial distribution of ginseng harvest. 
Combined with data on forest conditions at the county level, 
there is an opportunity to examine relationships between 
ginseng harvest and forest inventory.

The Forest Inventory and Analysis (FIA) program of the 
U.S. Forest Service (USFS) collects, analyzes and reports 
on the status and trends of America’s forests: how much 
exists and where it is located, who owns it, and how it is 
changing, as well as the health and well-being of forest trees 
and other vegetation. It has been in continuous operation 
since 1930, with a mission to “make and keep current 
a comprehensive inventory and analysis of the present 
and prospective conditions of and requirements for the 
renewable resources of the forest and rangelands of the US” 
(Frayer and Furnival, 1999). FIA regularly reports on the 
status of forests in specific states. FIA also reports, through 
the Timber Products Output (TPO) program, production of 
roundwood through mills. Unlike FIA data, which are based 
on a sampling design involving plots on which trees are 
measured, the TPO dataset is based on surveys of mills, in 
which mill managers respond with estimates of production 
by wood product and source county. Thus, through TPO 
data we have an additional estimate of timber production at 
the county level (Johnson and others 2008).

The goal of this study was to improve the understanding of 
the relationship between American ginseng and hardwood 
timber harvests. We examine the relationship between 
standing timber volume, the amount of timber harvested 
and wild American ginseng harvest. There have been a 
few studies done to estimate amount of available ginseng 
habitat (Van Manen and others 2005), but no efforts have 
been made to quantify the relationship between timber and 
ginseng harvests. 



96

METHODS

Data at the county level were compiled from two primary 
sources: ginseng harvest records from the FWS, and Forest 
Inventory and Analysis (FIA) data from the USFS. Data 
from each source were compiled from the states in the 
eastern US where recent (2000 – 2007) ginseng harvest 
data were available (Figure 1). Several states had missing 
ginseng harvest data for one or more years (Table 1), and 
Minnesota had no harvest data at the county level and was 
therefore omitted from this analysis. In all, data from 1,542 
counties were compiled.

Ginseng Harvest Data
Ginseng harvest data provided by the FWS were entered 
manually into database tables. In some cases, dry weights 
were recorded in pounds and ounces and converted to 
decimal pounds. Also, for some states, green weights were 
recorded on data sheets provided by the FWS and were 
converted to dry weights using a factor of three pounds 
green weight per pound dry weight, a conversion ratio 
that is commonly used in the industry. Where the county 
of origin was not provided on data sheets (some records 
merely indicated “various” counties), the unassigned harvest 
numbers were allocated proportionally to counties where 
harvest was recorded. After entering all harvest data into the 
database and conducting error-checking for omitted or mis-
entered data, average annual harvest across the time period 
was computed for each county.

Forest Inventory Data
FIA data are collected in all US states on an annual basis 
using a multiphase sampling scheme. Due to the transition 
from periodic to annual inventory, some states had 
incomplete inventories for the study period (Table 1). In 
such cases, however, state estimates are still available, but 
have larger variability than if complete data were available. 
The sampling intensity used in the FIA program results in 
estimates are not statistically reliable at the county level. 
The FIA program, therefore, recommends that totals for 
groups of counties called FIA units be used. We conducted 
this analysis at both the county and FIA unit level 
(Figure 1).

From the FIA data for each state, we compiled estimates of 
growing stock and removals (by softwood and hardwood), 
and forest area (by broad forest type and ownership) for 
each county and FIA unit. We anticipated that ginseng 
harvest may vary with forest type (hardwood versus 
softwood forests), and harvesters’ access may vary with 
land ownership (public versus private), so we summarized 
inventory and removals by forest type and ownership class 
for analysis. We included as public lands all federal, state, 

and municipal forests except for military bases, in situations 
where we assumed ginseng harvesting would be restricted.

After compilation of FIA data and computation of relevant 
estimates, the FIA and ginseng harvest databases were 
merged by county identifier. This enabled creation of 
maps showing relevant variables as well as graphical 
and statistical analysis of relationships between ginseng 
harvest and forest inventory estimates. Both Pearson’s and 
Spearman’s correlation coefficients were calculated. These 
analyses were performed using ArcGIS software and JMP 
software (SAS Institute 2007).

Production and Price Data
Data on sawtimber and pulpwood production from the 
states in the region were collected from the FIA Timber 
Product Output (TPO) dataset (Johnson and others 2008). 
Annual county figures from 2001 and 2006 were averaged 
to estimate annual wood product production for the period. 
Average stumpage price data for wood products were 
collected from Timber-Mart South (http://www.tmart-south.
com) for the time period and applicable states in this study. 
Wood production and wood price data were used to compare 
economic value of ginseng and wood production for the 
individual states, averaged over the period 2000 – 2007.

Price data for ginseng is not as accessible or as readily 
available as for timber. Persons and Davis (2005) 
provide estimates of prices paid to ginseng harvesters 
for 1982 through 2005. Persons complemented this 
data with estimates for 2007 and 2008 through personal 
communications. 

RESULTS AND DISCUSSION

Ginseng Harvest
During the period of study, almost 500,000 pounds of 
American ginseng were harvested from the 18 states 
reported (Table 2). Kentucky accounted for more than 25 
percent of the total, followed by Tennessee (13 percent), 
North Carolina (12 percent), West Virginia (9.5 percent), 
and Indiana (8.7 percent). These five states accounted for 
almost 70 percent of the total American ginseng harvest 
for the period 2000-2007. Maryland reported the lowest 
harvest of less than 600 pounds. The overall average annual 
ginseng harvest across the region during the period of study 
was 60,100 pounds. Annual harvest ranged from a high of 
76,644 pounds in 2003 to a low of 42,085 in 2005. 

Figure 2 illustrates the spatial distribution of American 
ginseng harvest. Counties reporting at least 600 pounds of 
annual harvest are located in eastern Kentucky, southern 
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West Virginia and western North Carolina. Fourteen states 
had counties with annual harvests greater than 90 pounds. 
The greatest majority of counties, though, reported less than 
90 pounds of annual harvest. Clearly American ginseng 
harvest is concentrated in five states.

Across the 1,002 counties that reported some ginseng 
harvest between 2000 and 2007, the average annual harvest 
ranged from 0.008 to 1,113.3 pounds. The top 10 percent 
of producing counties reported at least 166 pounds per year 
and together accounted for approximately 34,718 pounds 
per year, or 60 percent of the overall harvest. The top 10 
producing counties accounted for nearly 8,615 pounds or 15 
percent of the overall average ginseng harvest. Five of these 
counties are in Kentucky, and four are in North Carolina.

Relationships with Forest Inventory
Using correlation analysis we examined the relationship of 
a suite of variables with ginseng harvest. We did this for 
two subsets of the data. First, all counties with any reported 
ginseng harvest were used as a subset of the total dataset 
(which included 1,542 counties/cities, nearly a third of 
which had no reported harvest). Because many counties 
had only minimal harvest, we examined a second subset of 
only counties with an average annual harvest of at least 50 
pounds. The first subset (all producing counties) consisted 
of 1,002 counties, and the second (producers of at least 50 
pounds per year) consisted of 256 counties. 

Table 3 summarizes the Pearson correlation coefficients at 
the county level for the suite of FIA variables examined. The 
number of counties included in the calculations may be less 
than the number of counties in a dataset because of missing 
observations (e.g., counties with no public land, no removals 
data, etc.). 

Analysis of all counties with some harvest (first data subset) 
provides many statistically significant but low correlations. 
This dataset contains many counties that had very low 
harvest but might have large forest areas, growing stock 
volumes, etc. For example, many of these counties may 
be along the edges of the expected ginseng range, or may 
contain only small areas of forest that are conducive to 
ginseng growth and reproduction. Or, these counties may 
have a limited numbers of harvesters. Regardless, the 
strongest relationships were with hardwood growing-stock 
volume, total forest growing-stock volume, and hardwood 
forest area. 

The analysis of counties producing at least 50 pounds 
annually (second data subset) presents a slightly different 
picture (Table 3). These counties, while numbering only a 
quarter of the total number of counties with any harvest, 
account for 84 percent of total ginseng harvest. Among 
these counties, we might expect to find more meaningful 

relationships with forest inventory variables. Again, the 
strongest and most significant correlations are with growing 
stock volume and forest area. This is not surprising as 
it indicates more ginseng harvest in counties with more 
hardwood forest, and with more or larger hardwood trees. 

Growing stock volume per acre is simply the total growing 
stock divided by number of forest acres, and represents 
relative timber density. This variable shows the one 
of the highest correlations among the variables in the 
second dataset. Figure 3 depicts the relationship between 
ginseng harvest and hardwood growing stock volume. 
This relationship had the strongest correlation for the 
256 counties producing at least 50 pounds/year However, 
there is tremendous variability, with some heavily forested 
counties (growing stock in excess of 800 million cubic feet) 
producing less than 200 pounds of ginseng annually, while 
some counties with much less forest volume (300 to 800 
million cubic feet) are producing amounts of ginseng in 
excess of 600 pounds per year.

We also found, in the counties producing at least 50 pounds, 
positive (but non-significant) correlations with timber 
removals. This could be because counties with more timber 
removals also have more growing stock, which is positively 
correlated to ginseng harvest. Dividing timber removals by 
growing stock, therefore, gives us a variable that measures 
intensity of removals relative to standing inventory. For 
these, the correlations were negative, very low and not 
statistically significant, meaning the observed relationship 
could be based on chance alone.

As noted, FIA data are sparse within individual counties 
such that county-level estimates are not considered reliable 
as they have high variability. For some analyses, relevant 
patterns are clearer when data are aggregated to the FIA 
unit level. To test this effect, we examined correlation 
coefficients for total ginseng harvest within FIA unit 
aggregates (Table 4). At the FIA unit level, we see stronger 
and more significant correlations, due to the removal of 
county-to-county variability. Hardwood growing-stock 
volume and hardwood forest area are again significantly 
correlated with ginseng harvest. Correlations related to 
public land ownership are weaker or insignificant. The 
correlation of timber harvest (removals) to ginseng harvest 
is significant and positive, but lower than the correlations 
with growing-stock volume. Part of this effect could be due 
to the very strong and positive way in which removals are 
themselves correlated with growing-stock volume (0.72 
correlation coefficient between hardwood growing stock and 
hardwood removals).

We found a negative but insignificant correlation with 
percent hardwood growing stock on public lands. The 
negative correlation (if significant) would suggest that 
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counties with a higher proportion of their hardwood forests 
under public ownership harvest less American ginseng than 
counties with less hardwood forest on public land. In fact, 
the FIA unit with peak ginseng harvest per hardwood forest 
area had only 8.5 percent of hardwood forest in public 
ownership, ranking 61st out of 76 FIA units. If public lands 
were a consistent, primary source of ginseng harvest, we 
would expect these correlations to be larger, positive, and 
significant. 

At the aggregate level of FIA units, we looked at the harvest 
level of ginseng relative to hardwood forest area to get 
an indicator of production per unit area. It is impossible 
to extrapolate from this how much area might support 
ginseng harvest, because hardwood forest area alone does 
not account for all the factors relevant to ginseng growth, 
reproduction, survival, and harvest. But it is evident that 
ginseng harvest per hardwood acre varies widely, with 
the highest reported level being 2,615 pounds of ginseng 
produced per million acres of hardwood forest, in Eastern 
Kentucky (Figure 4). This eight-county area produced 
27,375 pounds of ginseng in the six years for which we had 
data. An annual harvest of 4,562 pounds was derived from 
a hardwood forest area of 1.74 million acres. The top ten 
FIA units each produced over 1,000 pounds of ginseng per 
million acres of hardwood forest.

Production and Economic Value
While ginseng prices ranged from $200/pound to an 
abnormal peak of $1,150/pound (Persons and Davis 2005), 
we used a nominal average price of $423.42/pound to obtain 
estimates of annual harvest value. Ginseng prices reflect the 
amount paid to harvesters for dried wild-harvested root. 

For timber stumpage, we used averages of prices from 
southern states reported during the period: $212 per 
thousand cubic feet for hardwood pulpwood and $736.16 
per thousand cubic feet for hardwood sawtimber. These 
prices may not reflect the entire study region, but are 
indicative of the active southern timber markets. Prices were 
for stumpage, the price paid to a landowner for standing 
timber before harvesting and transportation to a mill.

Timber product output data indicate that during the period 
2000 – 2007, hardwood timber production in the 1,002 
ginseng-producing counties averaged approximately 2.1 
billion cubic feet per year, consisting of 0.982 billion cubic 
feet of pulpwood and 1.153 billion cubic feet of sawtimber. 

While the average prices used may not reflect the variability 
over time and geographic region, they indicate the relative 
magnitude of the economic value of the timber and ginseng 

crops. Annual hardwood timber revenue in the ginseng-
producing counties was slightly more than $1.0 billion, 
compared to approximately $25 million for ginseng (Table 
5). These numbers actually understate the difference in 
value, as the timber prices used are for stumpage (standing 
timber in the forest), and the ginseng prices are for dried 
ginseng delivered to a dealer.

CONCLUSIONS

Ginseng harvest in an area (county or FIA unit) is related 
to the amount of hardwood forests in the area, as well as 
other factors. There was a correlation between ginseng 
harvest and total hardwood forest area as well as hardwood 
growing stock. Also, there was a positive but statistically 
insignificant correlation between ginseng harvest and 
harvest of timber. Our findings suggest a slight negative 
relationship between ginseng harvest and amount of public 
lands. We also conclude that while the value of ginseng 
harvest may be significant to rural counties it is minor 
compared to hardwood timber values.

Further analysis of the relationship between ginseng harvest 
and forest conditions (including timber harvest) is possible. 
It is also reasonable to consider combining the spatial 
database of ginseng harvest (Figure 2) with other spatially-
defined data that might help explain ginseng abundance. 
For example, temperature, precipitation, elevation, soil 
conditions, and other environmental parameters may be 
associated with ginseng distribution and abundance, and 
could be modeled with harvest data. Such analyses might 
provide further insights about factors explaining varying 
levels of ginseng harvest, and enhance the sustainable 
utilization of this valuable resource.
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State 2000 2001 2002 2003 2004 2005 2006 2007 Counties FIA Data 

Years 

Alabama         67 2001 - 2005 

Arkansas         75 2000 - 2005 

Georgia         159 1998 - 2004 

Illinois         102 2002 - 2006 

Indiana         92 2002 - 2006 

Iowa         99 2002 - 2006 

Kentucky         120 2000 - 2004 

Maryland         24 2004 - 2006 

Missouri         115 2002 - 2006 

New York         62 2002 - 2006 

North Carolina         100 2003 - 2006 

Ohio         88 2001 - 2006 

Pennsylvania        67 2002 - 2006 

Tennessee         95 2000 - 2004 

Vermont         14 2003 - 2006 

Virginia         136 2002 - 2007 

West Virginia         55 2004 - 2006 

Wisconsin         72 2002 - 2006 

Count 15 15 16 15 17 18 15 17 1542  

 

 

 

 

 

 

Table 1—Ginseng harvest and FIA data availability. Gray cells represent years in which county-level 
ginseng harvest data are missing. The FIA data years indicate the time period for the FIA data used 
for each State



100

Forest Ecosystems

 

State 2000 2001 2002 2003 2004 2005 2006 2007 Total 

Alabama 256 874 457 1,011 649 221 761 340 4,569 

Arkansas 519 927 2,075 2,633 1,717 496 863 990 10,220 

Georgia 311 707 266 416 243 161 167 259 2,530 

Illinois 2,781 2,884 1,748 2,844 2,682 1,234 2,000 2,082 18,255 

Indiana 6,273 6,818 3,192 6,915 4,823 4,926 5,106 3,862 41,915 

Iowa 940 783 798 554 286 230 609 1,014 5,215 

Kentucky 16,216 22,765 12,149 22,572 16,672 9,393 13,713 11,332 124,813 

Maryland 48 56 72 109 160 31 62 53 590 

Missouri 1,477 1,703 1,907 2,452 1,358 2,093 1,722 1,097 13,809 

New York 1,398 621 485 633 359 309 133 439 4,376 

North Carolina 8,417 6,788 8,790 6,548 4,265 5,733 6,447 12,317 59,305 

Ohio 3,492 3,254 3,135 4,559 3,978 3,311 2,265 3,126 27,120 

Pennsylvania 1,749 1,370 1,730 920 1,025 930 1,355 1,947 11,025 

Tennessee 8,164 8,737 5,815 10,826 8,204 5,034 8,153 8,730 63,663 

Vermont 205 119 183 117 112 36 60 114 946 

Virginia 5,723 3,821 3,810 4,675 3,435 1,569 2,798 3,050 28,881 

West Virginia 8,602 5,409 5,206 7,170 5,882 4,785 4,561 4,150 45,765 

Wisconsin 3,024 2,495 2,580 1,690 1,946 1,593 2,146 2,396 17,869 

Totals 69,596 70,131 54,399 76,644 57,795 42,085 52,919 57,299 480,868 

 

 

Table 2—Ginseng harvest by State and year (pounds dry weight). Where county-level data were unavailable, 
Statewide summary data were used and are shown in italics

Table 3—Pearson correlation coefficients relating FIA-derived variables to average annual ginseng harvest 
at the county level. An asterisk indicates the correlations are statistically significant (at the 95 percent 
confidence level)
 

   Counties with some 

production 

Counties producing at least 

50 pounds annually 

  Variable Correlation 

Coefficient 

Number of 

Counties 

Correlation 

Coefficient 

Number of 

Counties 

  Forest area 0.1629 * 1002 0.1584 * 256 

  Hardwood forest area 0.2177 * 1002 0.1844 * 256 

  Forest growing-stock volume 0.2340 * 1000 0.1978 * 256 

  Hardwood growing-stock volume 0.2884 * 1000 0.2189 * 256 

  Average growing stock per acre 0.2069 * 1000 0.2143 * 256 

  Hardwood growing stock on public lands 0.0822 * 678 -0.0297  196 

  Percent hardwood growing stock on public lands -0.0418  678 -0.0886  196 

  Removals from all species 0.1175 * 783 0.1159  189 

  Removals of hardwood species 0.1746 * 782 0.1378  189 

  Removals as a percent of growing stock -0.0163  781 -0.0314  189 

  Hardwood removals as percent of growing stock 0.0076  780 -0.0173  189 
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Variable Correlation 

Coefficient 

Number of 

FIA Units 

Forest area 0.3400 * 76 

Hardwood forest area 0.3835 * 76 

Forest growing-stock volume 0.4565 * 76 

Hardwood growing-stock volume 0.4853 * 76 

Average growing stock per acre 0.2897 * 76 

Hardwood growing stock on public lands 0.2948 * 76 

Percent of hardwood growing stock on public lands -0.0620  58 

Removals from all species 0.3389 * 58 

Removals of hardwood species 0.4275 * 58 

Removals as a percent of growing stock -0.1121  58 

Hardwood removals as a percent of growing stock -0.0620  58 

 

 

Table 4—Pearson correlation coefficients relating 
FIA-derived variables to average annual ginseng 
harvest at the FIA Unit level. An asterisk indicates 
the correlations are statistically significant (at the 95 
percent confidence level)
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State 

Average Annual 
Ginseng 
Harvest 

(pounds) 

  
 

Ginseng Revenue* 
(thousand $)  

 
 Timber 

Revenue 
(thousand $)  

  Alabama 571.1 $242  $32,996  

  Arkansas 1,277.5 $541  $27,464  

  Georgia 316.3 $134  $8,121  

  Illinois 2,281.9 $966  $35,404  

  Indiana 5,239.4 $2,218  $59,256  

  Iowa 651.9 $276  $11,315  

  Kentucky 15,601.6 $6,606  $118,108  

  Maryland 73.8 $31  $6,154  

  Missouri 1,726.1 $731  $78,073  

  New York 547.0 $232  $60,409  

  North Carolina 7,413.1 $3,139  $53,092  

  Ohio 3,390.0 $1,435  $38,006  

  Pennsylvania 1,378.1 $584  $109,602  

  Tennessee 7,957.9 $3,370  $127,923  

  Vermont 118.3 $50  $17,961  

  Virginia 3,610.1 $1,529  $78,640  

  West Virginia 5,720.6 $2,422  $93,249  

  Wisconsin 2,233.6 $946  $101,554  

  Total 60,108.3 $25,451  $1,057,327  

      

  * Based on $423.42 per pound  

 

 

Table 5—Annual revenue from ginseng and hardwood timber harvest by State for 
1,002 counties with recorded ginseng harvest during 2000-2007
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 Figure 1—States for which county-level ginseng harvest data were 
available included Alabama, Arkansas, Georgia, Illinois, Indiana, 
Iowa, Kentucky, Maryland, Missouri, New York, North Carolina, 
Ohio, Pennsylvania, Tennessee, Vermont, Virginia, West Virginia, 
and Wisconsin. Counties shown in gray had at least one record 
of ginseng harvest during 2000-2007. Dashed lines within States 
indicate boundaries of FIA aggregation units.

 

 

Figure 2—Map of average ginseng harvest.

 

 

 

 

 

Figure 3—Scatterplot of hardwood growing stock volume and annual 
ginseng harvest for the 256 counties producing at least 50 pounds of 
ginseng per year.

 

 

 

 

 

 
Figure 4—Ginseng harvest per million acres of hardwood forest, by 
FIA unit.
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Abstract

The emerald ash borer (Agrilus planipennis Fairmaire; Coleoptera: 
Buprestidae; EAB) is an introduced beetle that kills ash (Fraxinus spp.) 
trees. While most EAB-related ash mortality has been documented in 
urban areas, the effects of EAB in forested settings, particularly in riparian 
forests, are not well known. This study utilizes forest inventory data to 
quantify changes in the composition and structure of riparian ash forests 
since the introduction of EAB to Michigan and Indiana. Estimates of the 
abundance, number of standing dead trees, mortality and regeneration of 
riparian ash were compared over time. The abundance of ash growing-stock 
significantly decreased across the study area between 2003/2004 and 2009. 
Mortality of riparian ash sharply increased in 2005. The preponderance of 
ash mortality was limited to riparian forests in the southeastern portion of 
Michigan. 

INTRODUCTION

In recent years, the sustainability of the Nation’s ash 
resource has been threatened by an exotic wood-boring 
beetle. Native to Asia, the emerald ash borer (Agrilus 
planipennis Fairmaire; Coleoptera: Buprestidae; EAB) was 
first detected in North America near Detroit, Michigan, 
in 2002 (Haack et al. 2002). Surveys conducted in the 
surrounding area soon revealed dead and dying ash 
(Fraxinus spp.) trees throughout southeastern Michigan. 
EAB was subsequently found in Indiana in 2004. 
Dendrochronological reconstruction by Siegert et al. (2009) 
has suggested establishment of EAB and initial mortality 
of ash originated in the Westland-Garden City area of 
Michigan around 1997-1998. Since tree mortality generally 
occurs 3 to 4 years after infestation, it could be concluded 
that EAB was introduced to southeastern Michigan during 
the early to mid-1990s, (Siegert et al. 2009) nearly 20 years 
ago. 

While EAB poses a risk to ash in both urban and forested 
ecosystems, it represents a unique threat to riparian forests. 
Riparian forests tend to make up a small percentage 
of forested land area but they often contain a large 
proportion of ash. Data from the Forest Inventory and 
Analysis (FIA) Program of the USDA Forest Service show 
that riparian forests comprise 4.1 million acres, or 21 
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percent, of Michigan timberland, yet they contain nearly 
half (48 percent) of all ash trees in the State. Due to the 
predominance of ash in these areas, the composition and 
structure of riparian forests could be greatly altered by the 
activity of EAB.

The purpose of this investigation was to quantify the effects 
of EAB introduction and spread on the ash resource in 
riparian forests. To accomplish this goal, FIA data collected 
between 2003 and 2009 were analyzed to compare ash 
abundance, distribution of standing dead trees, mortality, 
and regeneration over time. Results provide an indication of 
how EAB presence has influenced riparian forest systems as 
well as insight into types of changes that may occur in other 
regions with EAB infestations. 

METHODS

Annual inventory data from FIA, collected between 
2003 and 2009, were used to analyze change in riparian 
ash composition in Michigan and Indiana. FIA began to 
collect data on an annual basis in 1999; under the annual 
inventory system, one-fifth of all plots (or one panel) in 
the State is measured each year. Once all five panels have 
been measured, each panel of plots will be remeasured on a 
5-year cycle. For example, in Michigan, field plots measured 
in 2000 were remeasured in 2005. Subsequently, inventories 
are available for each year following the completion of the 
first annual inventory, using a 5-year rolling average. The 
first annual inventory was measured between 1999-2003 in 
Indiana and 2000-2004 in Michigan. For the sake of brevity, 
inventory periods are referred to using the last year of data 
collection. 

Under the annual FIA plot design, all trees greater than 5 
inches in diameter at breast height (d.b.h) are measured 
on four 24-foot radius subplots and saplings (d.b.h. 
between 1 and 4.9 inches) are measured on four 6.8-foot 
radius microplots (Bechtold and Patterson 2005). Tree 
variables and site attributes, including species, diameter, 
and physiographic class, are recorded on all subplots with 
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a forested condition (for more information, see Bechtold 
and Patterson 2005). The presence and species of seedlings 
(d.b.h. less than 1 inch) are counted on the microplot, but 
detailed, individual measurements are not recorded. 

Riparian ash forests were defined using only plots where 
ash was present and the physiographic class code was 
one of the following: narrow flood plains/bottomlands; 
broad floodplains/bottomlands; other mesic; swamps/bogs; 
small drains; bays and wet pocosins; beaver ponds; and 
other hydric. Reported estimates of abundance, number 
of standing dead trees, and mortality were limited to 
comparisons of growing-stock trees (trees 5 inches d.b.h. or 
larger) on timberland.

RESULTS

Ash abundance
The number of ash trees in riparian forests significantly 
decreased in both Indiana and Michigan over the course of 
the study period. Between 2003 and 2009, the abundance 
of riparian ash trees in Indiana decreased by more than 
half, from 13 million to 6 million trees. While ash numbers 
declined across most of Indiana, change was concentrated 
in the northeastern and southeastern portions of the State. 
Michigan saw a 14 percent reduction in ash abundance over 
time, falling from 474 million trees in 2004 to 406 million 
in 2009. The sharpest declines in ash numbers occurred in 
the Lower Peninsula, particularly in counties surrounding 
Detroit.

Standing dead trees
In 2004, an estimated 5.6 million standing dead ash trees 
were recorded in riparian forests throughout Michigan. The 
majority of standing dead ash was located in the northern 
Lower Peninsula. Fewer, but a proportionally similar 
number of standing dead ash were recorded in Indiana 
in 2003—an estimated 1.2 million trees. Northeastern 
Indiana and the Indianapolis area had the highest numbers 
of standing dead ash. In 2009, the estimated number of 
standing dead riparian ash in Michigan increased to 6.3 
million trees. In contrast, Indiana saw large decreases in the 
total number of standing dead riparian ash throughout the 
State.

Ash Mortality
Riparian ash mortality in Michigan was an estimated 3.3 
million cubic feet per year in 2004, equal to 50 percent 
of total ash mortality (Fig. 1). By 2005, mortality sharply 
increased, more than doubling to nearly 8 million cubic 
feet per year; mortality remained high through 2009. In 
2004, ash mortality was fairly evenly distributed throughout 
the state. However, by 2009, the majority of riparian 
ash mortality (66 percent) was located in the southern 
Lower Peninsula, predominately in the original six-county 

quarantine area of the Detroit metro area (Oakland, 
Macomb, Washtenaw, Wayne and Monroe counties) (Haack 
et al. 2002).

A similar trend in riparian ash mortality was also seen in 
Indiana, where mortality began to increase in 2005 and 
had more than doubled by 2009 (Fig. 2). Increases in 
mortality were not evenly distributed across the State. For 
example, 100 percent of Indiana’s riparian ash mortality in 
2003 occurred in the southern half of the State; by 2009, 
64 percent of riparian ash mortality was reported in the 
northern half of Indiana. 

Riparian regeneration
In terms of species composition, seedling regeneration in 
riparian forests in Michigan remained fairly similar between 
2004 and 2009. In Indiana, however, changes between 2003 
and 2009 included a decrease in black ash and green ash 
seedlings and an increase in boxelder, silver maple, sugar 
maple and white ash seedlings. 

DISCUSSION

The orientation and nature of riparian forests makes them 
especially susceptible to insect invasion since they are 
small in area yet contain a large percentage of the ash 
resource (Crocker et al. 2009). Therefore, the aim of this 
investigation was to use FIA data to quantify the occurrence 
of change in riparian forests following the introduction of 
EAB. 

Michigan, where EAB has been active the longest, showed 
the greatest transformation over time. The pattern of 
change appears to reflect the history of EAB introduction 
and its subsequent spread from the Detroit metropolitan 
area. The preponderance of standing dead ash trees in the 
northern half of the Lower Peninsula are indicative of later 
infestations of EAB and their distribution on the landscape. 
Detection of areas with increases in standing dead ash trees 
may be a mechanism for identifying future or currently 
undetected EAB infestations. Minimally, the location of 
these dead trees may highlight areas in which to allocate 
additional survey resources.

An increase in ash mortality in northern Indiana provides 
similar evidence of the pattern of spread. Trees killed 
around 2003 and 2004 began to be detected widely over 
the landscape in 2009. A continued look at riparian ash 
mortality over time will likely show more mortality in 
southern Indiana as EAB spreads further south. Seedling 
regeneration data from Indiana provides evidence of 
changes in future species composition within the State’s 
riparian areas. Decreasing numbers of ash seedlings were 
accompanied by an increased number of maple seedlings.

Forest Health
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Future work will include incorporating geospatial data 
to help refine estimates of riparian areas so that we can 
generate riparian estimates using FIA’s periodic inventory, 
i.e., data collected prior to 1998. In doing so, we will be 
better able to create a picture of the riparian landscape prior 
to the introduction of EAB and construct a larger picture of 
landscape-level changes that may result from this insect. 
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Figure 1—Mortality of growing-stock ash trees on riparian 
timberland, Michigan, 2004-2009.
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Figure 2—Mortality of growing-stock ash trees on riparian 
timberland, Indiana, 2003-2009.
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Abstract
 

Drought has been the subject of numerous recent studies that hint at an 
acceleration of tree mortality due to climate change. In particular, a recent 
global survey of tree mortality events implicates drought as the cause of 
quaking aspen mortality in Minnesota, USA in 2007. In this study, data 
from the Forest Inventory and Analysis program of the USDA Forest 
Service were analyzed for the period 2000-2009. The fate of individual 
trees was tracked on a 5-year return interval and the proportion of trees that 
died was examined in relation to the Palmer Drought Severity Index for 
the same time period. Quaking aspen mortality increased in northeastern 
Minnesota over the study period but was stable in north-central Minnesota. 
The rate of quaking aspen mortality was found to be significantly higher 
than the mortality rate of all tree species combined in northeastern 
Minnesota in recent remeasurement periods. Aspen mortality cannot be 
conclusively attributed to drought without further analysis of contributing 
factors. While anecdotal observations of small-scale mortality have been 
cited as evidence of climate-change-induced mortality in other studies, the 
results of this study suggest further exploration of statistical models for 
apportionment of inciting, predisposing, and contributing tree mortality 
factors.

INTRODUCTION

Coincident with the growing concern of climate change 
effects on ecosystems, the impact of drought on tree 
mortality has become a topic of interest in both popular 
and academic literature. Moisture deficiency and increased 
temperature were linked by van Mantgem et al. (2009) to 
substantial increases in tree mortality across the western 
United States, and the story was subsequently reported in 
popular media outlets (e.g., Boxall 2009). Rapid mortality 
of quaking aspen (Populus tremuloides) has been reported in 
the western United States (Worrall et al. 2008) and Canada 
(Hogg et al. 2008) with drought implicated as the cause. 

While the aforementioned studies relied on direct 
observation of mortality at a small number of field sites, 
some alternative approaches have been pursued. Rehfeldt 
et al. (2009) used presence/absence data from the USDA 
Forest Service’s Forest Inventory and Analysis (FIA) 
program to construct a bioclimatic model for the distribution 
of aspen. The model predicted the current range with only 
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4.5 percent error for 15,500 observations and allowed for 
predictions of range shifts (via mortality) under climate 
change scenarios. A self-identified first global survey of 
drought-induced tree mortality was developed by analyzing 
reports from around the world that link tree die-off to local 
drought conditions (Allen et al. 2010); the implication of 
this global drought survey is that mortality is increasing in 
response to global warming.

One of the mortality events attributed to drought by Allen 
et al. (2010) is the die-off of quaking aspen in northern 
Minnesota as reported by the Minnesota Department of 
Natural Resources (2007). It should be noted the report 
actually states the cause is “unknown,” and later reports 
stated 30,000 acres of quaking aspen had perished from 
2004 to 2009 indicating drought likely predisposed trees 
to attacks by secondary pests (Minnesota Department of 
Natural Resources 2009). The observations of mortality 
were derived partly from on-the-ground anecdotal 
observations and partly from aerial sketch mapping. Given 
emerging studies that suggest large-scale tree mortality 
events may be climate-change related, the purpose of this 
study was to objectively examine the evidence for drought-
induced aspen mortality in northern Minnesota using FIA 
data.

METHODS

The area of investigation was limited to north-central 
(Climate Division 2) and northeastern (Climate Division 3) 
Minnesota in which severe drought occurred in 2006 and 
2007. Climate Divisions in Minnesota are aggregations of 
counties with similar weather conditions (www.esrl.noaa.
gov/psd/data/usclimate/map.html).

Individual tree data collected by FIA from 2000 to 
2008 were analyzed. Because FIA revisited locations in 
Minnesota on a 5-year remeasurement interval, the status 
of individual trees was tracked over time (survived, died, or 
harvested). For the period analyzed, this approach resulted 
in six unique re-measurement intervals (2000-2004, 2001-
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2005, 2002-2006, 2003-2007, 2004-2008, 2005-2009). The 
FIA database contained information for 1,764 quaking aspen 
trees and 3,494 total trees in the study area. In addition to 
the status of individual trees, other attributes were examined 
such as diameter at breast height (d.b.h.) and age.

Monthly averages of Palmer Drought Severity Index (PDSI) 
data were acquired from the National Oceanic Atmospheric 
Administration’s National Climatic Data Center. Data 
are available from 1895 to the present and are reported 
by climate division. Hurst rescaling was applied to time 
series of PDSI using the method of Outcalt et al. (1997). 
The rescaled PDSI simplifies interpretation and provides 
additional information regarding long-term drought trends.

RESULTS AND DISCUSSION

For north-central Minnesota (Climate Division 2), no 
statistically significant difference was found in the 
proportion of quaking aspen trees that experienced mortality 
across the six overlapping time intervals (Figure 1). For 
northeastern Minnesota (Climate Division 3), quaking 
aspen mortality observed for the 2005-2009 time period 
was significantly higher than the mortality observed in the 
2001-2005 time period (Figure 2). Quaking aspen mortality 
was not significantly different than the mortality of all tree 
species combined for five out of six time periods in Climate 
Division 2, but was higher for the four most recent time 
periods in Climate Division 3. The drought experienced 
in Climate Division 3 was more prolonged than Climate 
Division 2 since 2001 (Figure 3) and could have contributed 
to the increase in aspen mortality with time. Without 
more information, it is impossible to determine whether 
quaking aspen trees have been disproportionately affected 
by drought in Climate Division 3 or if the higher mortality 
relative to other species is a natural result of successional 
trajectories and stand age. Given the history of forest harvest 
activities across the Minnesota, one might expect numerous 
stands in northern Minnesota to be in latter stages of stand 
development and predisposed to density and age-related tree 
mortality.

This study represents a preliminary examination of 
drought-induced mortality using FIA data, and a variety of 
challenges in linking drought to mortality were uncovered. 
Due to the 5-year FIA re measurement interval, it will 
be difficult to attribute a single-year drought event to an 
increase in mortality. That is, for each dead tree, the exact 
year of mortality cannot be determined. There are also scale 
issues that must be overcome. Many of the mortality events 

cataloged by Allen et al. (2010) were described as patchy, 
and the intensity of the FIA grid may not be well suited to 
such observations.

Perhaps the larger question is this: what is the correct 
way to link drought to tree mortality? There is a tendency 
in drought studies to use correspondence or correlation 
between the location of drought events and subsequent 
die off of trees as proof of causality. For example, if one 
examines Figure 2 and Figure 3 together, there appears to 
be a correspondence between increased aspen mortality and 
the prolonged drought of 2006-2007 in Climate Division 
3. This correspondence does not prove causality, and it is 
generally accepted in the forestry community that drought 
is part of a complex that leads to mortality (as described by 
the decline spiral model, Manion 1991). At a minimum, an 
attempt should be made to eliminate other possible causes 
such as the age of the trees, other damage agents, or poor 
site quality. Future work should focus on development of 
statistical models to apportion the explanatory power of 
inciting, predisposing, and contributing factors that lead to 
mortality.

If establishing a causal link between a drought event and 
increased tree mortality requires more than correlation, 
the same standard should apply to attributing shifts in 
the drought/mortality cycle to climate change. Kampen 
(2010) elaborates on the shortfalls of correlational research 
and points out that models that verify or falsify can be 
misleading when feedback mechanisms exist and are not 
well understood. 

CONCLUSIONS

Given extensive speculation that future climate change 
may result in widespread tree mortality, it may be ever 
more important to accurately establish causality between 
contemporary tree mortality and climatic events such 
as droughts. Erroneously attributing contemporary tree 
mortality to large-scale climatic events, rather than pursuing 
a better understanding of the host of factors involved, is 
likely to result in poor predictions for changing climatic 
conditions. This study found inconclusive evidence of 
increased quaking aspen tree mortality in Minnesota due to 
a long-term drought using large-scale inventory data, while 
anecdotal observations of small-scale mortality have been 
cited as evidence of climate-change-induced mortality. It is 
suggested that future studies explore statistical models for 
apportionment of inciting, predisposing, and contributing 
tree mortality factors.
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Figure 1—Proportion of trees that died in Climate Division 2 in Minnesota, USA. Trees were revisited on a 5-year 
interval, and the end year of the interval is depicted on the horizontal axis. Error bars represent the standard error for a 
sample proportion.
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Figure 2—Proportion of trees that died in Climate Division 3 in Minnesota, USA. Trees were revisited on a 5-year 
interval, and the end year of the interval is depicted on the horizontal axis. Error bars represent the standard error for a 
sample proportion.

Figure 3—Drought as measured by the Palmer Drought Severity Index from 1971-2009 for Climate Divisions 2 and 3 in Minnesota, 
USA. Values have been transformed using Hurst rescaling such that positive slopes indicate a change from dryer to wetter conditions 
and negative slopes indicate a change from wetter to drier conditions. Climate Division 3 experienced its driest condition of the period 
in 2007 after a sustained shift toward drier conditions that began in 2001.
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Abstract
Studies suggest that the southern United States is an area of primary 
concern with regards to the spread of nonnative invasive plant species. 
Recent data show that species such as Japanese honeysuckle (Lonicera 
japonica) and Nepalese browntop (Microstegium vimineum) are invading 
forests and displacing native species throughout the southern United States. 
Monitoring on large spatial scales is among the most important mechanisms 
for the detection and prevention of the spread of nonnative species. 

Accurate assessments of on-going biological invasions are a primary 
research priority in the Southeast. As one method for addressing this need, 
the US Forest Service Southern Research Station (SRS), in partnership with 
State forestry agencies across the South, initiated a southern region survey 
of 33 invasive plant taxa in 2001 on all forest ownerships as part of the SRS 
Forest Inventory and Analysis (FIA) program. Currently in the southern 
United States, presence-absence data is collected for select invasive 
flora throughout the calendar year. Little is known about the impacts of 
year-round sampling on the quality of invasive flora data collection. In 
this study we investigate the implications of year-round sampling on 
presence-absence data collected by the southern FIA program for states 
east of the Mississippi river. Chinese and European privets (Ligustrum 
spp) are observed on FIA plots most often between February and May, and 
least often between September and December. Exotic roses (Rosa spp) and 
Japanese honeysuckle follow a similar trend. 

Nepalese browntop, however, is observed more often between August and 
October. Moreover, Nepalese browntop is observed more than four times 
as often during peak months than it is during the period between December 
and April. These results suggest that plant apparency may be impacting the 
quality of presence-absence data collected by the SRS-FIA program. While 
the systematic nature of the FIA sampling design minimizes the impact to 
population estimates of sampled invasive flora, year-round sampling may 
be impacting attempts to accurately portray the geographical distribution of 
a given plant.

Keywords: forest Inventory, invasive species, exotic plants, sampling bias, 
plant survey

Introduction

Nonnative invasive plant species (NNIPS) are threats to 
southern forests through the displacement of native species 
(Mooney and Cleland 2001), the alteration of soil physical 
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and chemical properties (Bruce and others 1995, Jose and 
others 2002), and the disruption of successional pathways 
(Oswalt and others 2007) among other potential impacts 
(Gordon 1998, Jose and others 2002). Environmental 
impacts coupled with attempts to control and/or eradicate 
NNIPS are costly, as exemplified by the estimated $3 
to $6 million spent annually by the State of Florida to 
manage the highly invasive Chinese tallowtree (Melaleuca 
quinquenervia; Pimentel and others 2005). Because of 
the environmental and ecological burdens posed by these 
species, NNIPS inventory and monitoring is considered a 
priority in the South. 

Effective inventory and monitoring programs depend on 
reliable data. Monitoring vegetation on a large scale can be 
challenging, however. The potential effects of observer-bias 
in vegetation monitoring have been documented and include 
species misidentification and missed species occurrences, 
along with widely varying interpretations of area cover, all 
of which can result in inaccurate representations of species’ 
abundances and spread (Archaux and others 2006, Leps 
and Hadincova 1992, Gotfryd and Hansell 1985, Hall and 
Okali 1978). Additionally, species diversity and abundance 
estimates are closely correlated with the seasonal sampling 
period, particularly as pertains to herbaceous ground flora, 
and single-season sampling may result in underestimates 
(Small and McCarthy 2002). Typically, vegetation surveys 
in the deciduous forests of the north and southeast are 
conducted during the growing season when flora are in leaf-
on condition and/or are flowering. In some cases, however, 
overarching monitoring goals may result in sampling during 
the dormant season, as with the USDA Forest Service 
Southern Research Station Forest Inventory and Analysis 
(SRS-FIA) program. 

Currently, the increase in the number of plots surveyed for 
invasive plants by using the FIA Phase 2 plots provides 
significant additional data over using the FIA Phase 3 plots. 
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While Phase 3 plots are only surveyed during the growing 
season months, the sample intensity is 1/16th of the Phase 2 
plots. Moreover, the added logistical challenges of sampling 
a subset of the Phase 2 plots along with the fact that the 
invasive plant survey is a secondary goal render such an 
option untenable. 

The SRS-FIA program began tracking forest health 
threats, including NNIPS, on forestland in 2001. The 
NNIPS-monitoring component provides a mechanism 
for monitoring the spread of common (known) invasive 
plants on both public and private land at a large scale by 
utilizing the existing FIA system of forest inventory plots. 
Data collection occurs year-round in all southern states, 
regardless of the expressed phenology of the vegetation (i.e., 
leaf-on, withered, brown, etc…). 

The impacts of this year-round sampling on the quality of 
NNIPS flora data collection have not been quantified. In 
this study we investigate the implications of year-round 
sampling on presence-absence data collected by the southern 
FIA program for states east of the Mississippi river with the 
specific objective of quantifying the impact of year-round 
sampling on the SRS-FIA invasive plant data.

Methods

Data Collection
The FIA program collects data on plots distributed in a 
random, systematic fashion on both private and public 
land across the United States. The plot design consists of 
four 1/6-acre fixed-radius subplots arranged in a “tri-areal” 
configuration (Bechtold and Patterson 2005). A number 
of environmental conditions, tree-level variables, and 
abiotic measures are recorded on each subplot. Detailed 
explanations of the FIA plot design and sampling phases are 
given in Bechtold and Patterson (2005).

Nonnative invasive plant species are among the variables 
sampled on all FIA plots in the Southern region. The NNIPS 
program was implemented in 2001 to meet the needs of 
State forestry agencies and other partners for tracking the 
emergence and spread of species known to cause ecological 
problems in southern forests. Observers are trained in the 
detection of 33 species classified into 6 life forms (trees, 
shrubs, herbs, grasses, vines, and ferns) from a pre-
developed list of NNIPS (Table 1). 

Additional NNIPS are recorded in Florida; however, for the 
purposes of this study the species analyzed were limited to 
those sampled in all southern states. Observers are instructed 
to note the presence/absence and percent cover 
(< 01 percent, 01-10 percent, 11-50 percent, 51-90 percent, 
and 91-100 percent) of (up to) the four most abundant 
species found on the forested portion (condition) of 

each sampled subplot. Sampling occurs year-round, and 
observers are instructed to record an estimate of percent 
cover as though plants are in leaf-on condition when 
sampling occurs during the dormant season. Studies suggest 
that observer bias may be minimized by consistent and 
frequent calibration (training) and quality control procedures 
(Kercher, Frieswyk, and Zedler 2003). Standard FIA quality 
assurance procedures apply to the NNIPS program, and 
include randomly-selected plots subjected to checks by 
certified quality control personnel.

Data Analysis
We used 29,558 SRS-FIA plots from 9 southern States to 
examine the impact of year-round sampling (Figure 1). 
States included in the analysis were Alabama, Florida, 
Georgia, Kentucky, Mississippi, North Carolina, South 
Carolina, Tennessee, and Virginia. We calculated the relative 
occurrence for each NNIPS at the plot level by the month in 
which the data were collected. Plots-by-month were grouped 
into season for analysis (Spring – March to May, Summer 
– June to August, Fall – September to November, and 
Winter – December to February) and subjected to a one-way 
analysis of variance (ANOVA) with Tukey mean separation 
to determine if differences in relative occurrence existed 
among sample seasons. 

Additionally, we calculated the relative occurrence and 
estimate of cover for each NNIPS by subplot and month. We 
share those preliminary results graphically. 
Results – Nonnative invasive plants from the predetermined 
list were detected on 15,720 (53 percent) of the sampled 
plots. Japanese honeysuckle was the most frequently 
observed species, while giant reed was least common (Table 
2). Observers noted 3 or fewer species on most (92 percent) 
of the plots containing NNIPS, though 2 plots contained at 
least 8 species from the list (Table 3). 

While inter-seasonal detection differences were found for 
9 of the 33 species surveyed (p<0.05; Table 4), four species 
appeared to exhibit the most notable differences (mimosa, 
Nepalese browntop, Chinese lespedeza, and shrubby 
lespedeza). The time of observation bias differed depending 
on the individual species and its’ phenotypic expression. 
For example, mimosa is a tree that presents an easily 
recognizable flower in the summer months and, indeed, 
detection rates were higher in the summer than in any other 
season (Figure 2a). Winter detections were least common 
for mimosa, when the plant is in leaf-off phase. Nepalese 
browntop was most frequently detected in summer and fall 
(Figure 2b), when foliage is most noticeable because of its 
height. Chinese and shrubby lespedeza exhibited similar 
patterns wherein relative occurrence was extremely low 
in the winter and highest in the summer and fall periods 
(Figure 2c and 2d, respectively).

Forest Health
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Preliminary graphs of relative subplot occurrence by 
month indicate that detection differences appear to exist for 
species in each life form (Figure 3) with the exception of 
vines (Figure 3c) and possibly shrubs (Figure 3b). Mimosa 
detections occurred most often from April through July, the 
flowering period for the species, and Chinese tallowtree was 
most often detected from June through August (Figure 3a). 

Shrubs and vines showed little monthly variation in 
relative occurrence, though ANOVA indicated that seasonal 
variation in detection did exist for privet species, which 
may be detected more frequently in the winter simply 
because it is an evergreen and perhaps more likely to be 
correctly identified during the months when other species 
are dormant. Two of the 6 grasses varied in their monthly 
detection rates (Figure 3d). 

Microstegium detection rates peaked in July, August, and 
September, while tall fescue detection rates were highest 
from May through November—the typical growing season 
in the southern states. Ferns and other herbaceous species 
exhibited some monthly differences in detection rates 
(Figure 3e). Detection rates for both lespedeza species were 
highest from June through September, with peaks in August, 
while detection rates for Japanese climbing fern peaked in 
July.

Inter-seasonal differences in relative occurrence appeared 
strongest in the smaller cover classes. For example, the 
range in monthly relative occurrence of Chinese lespedeza 
was greatest for the <01 percent cover class, followed 
by the 01-10 percent, 11-50 percent, and 51-90 percent 
cover classes and was smallest for the >90 percent cover 
class (Figure 4a and 4b). Concomitantly, the overall 
relative occurrence was greatest for the smaller cover 
classes (Figure 4c). Moreover, the monthly mean relative 
occurrence deviated very little from the annual mean 
relative occurrence for the larger cover classes (Figure 4d). 
This pattern was similar for the majority of the species that 
exhibited a significant inter-seasonal bias. 

Discussion

Preliminary results from our study indicate that seasonal 
detection bias occurs for some species on the SRS-FIA 
NNIPS list. Species are most likely to be detected during 
the peak of the southern growing season (late spring, 
summer, early fall), or when some distinct characteristic 
(e.g. flowers, herb height, etc…) increases visibility in the 
forest understory. Seasonal detection bias may result in false 
negatives on FIA plots, thus underestimating invasion rates. 
Bias appears to be limited to the winter months, suggesting 
that sampling during the winter is less effective than 
sampling during the other three seasons for a limited number 
of species collected. In addition to underestimating invasion 

rates, seasonal biases in estimates of percent cover add 
error to modeled representations of invasion threats on the 
ground. Underestimating invasion rates and/or extents may 
prevent managers from directing resources to appropriate 
areas for control and eradication efforts.

The most surprising result was that of seasonal differences 
in the relative occurrence of some tally tree species. 
For example, mimosa exhibited a five-fold increase in 
mean relative occurrence from winter to spring. Seasonal 
differences in relative occurrence among tally trees may 
suggest a need for increased winter identification training. 
Moreover, such results suggest that this analysis has 
potential for use within the quality control program of FIA 
in order to identify potential additional training needs. 

The results of this study suggest that SRS-FIA may want 
to reconsider sampling during winter months, limiting 
sampling to the growing season. If sampling continues year-
round, the study results suggest that additional measures 
are needed to train observers to recognize NNIPS during 
the dormant season, and that quality assurance personnel 
may need to pay extra attention to the NNIPS component of 
sampled variables during the winter months.

Data reliability is a key component of inventory and 
monitoring programs. The preliminary results of this study 
indicate that measures may need to be taken to ensure 
high quality NNIPS data are available year-round in the 
south. Further research is needed to quantify the impact 
of potential false-negatives to invasive plant distribution 
modeling using SRS-FIA invasive plant data. In addition, 
further research is needed to better understand this bias 
through multiple plots visits within a given year.
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Figure 1—Approximate plot locations of forested plots where invasive plant data was 
collected by the Southern Research Station Forest Inventory and Analysis program 
between roughly 2002 and 2007.
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Figure 2—Mean relative occurrence of (a) mimosa, (b) microstegium, (c) Chinese lespedeza, and (d) 
shrubby lespedeza across four seasonal categories. Bars with different lettering indicates significant 
inter-seasonal differences (alpha 0.05). 
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Figure 3—Monthly relative occurrence for invasive (a) trees, (b) shrubs, (c) vines, (d) 
grasses, and (e) ferns, forbs and other herbaceous plants collected by the Southern Re-
search Station Forest Inventory and Analysis program between roughly 2002 and 2007.
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Figure 4—Estimates of (a) monthly relative occurrence, (b) boxplot for annual mean of monthly relative occur-
rence, (c) cumulative relative occurrence, and (d) boxplot of average monthly deviation from the annual mean for 
Chinese lespedeza across four cover classes.
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Trees Vines
     Tree of heaven Ailanthus altissima  (Mill.) Swingle     Oriental bittersweet Celastrus orbiculatus Thunb.
     Mimosa Albizia julibrissin Durazz.      Nonnative-yams Dioscorea Spp.
     Paulownia Paulownia tomentosa (Thunb.) Sieb. & Zucc. ex Steud.      Wintercreeper Euonymus fortunei (Turcz.) Hand.-Maz.
     Chinaberry Melia azedarach L.      English Ivy Hedera helix L.
     Tallowtree Triadica sebifera (L.) Small      Japanese honeysuckle Lonicera japonica Thunb.
     Russian-olive Elaeagnus angustifolia L.      Kudzu Pueraria montana var. lobata (Willd.)
Grasses      Nonnative vincas Vinca  Spp. 
     Giant reed Arundo donax L.      Wisteria Wisteria Spp.
     Tall fescue Festuca arundinacea Schreb. Shrubs
     Cogongrass Imperata cylindrica  (L.) P. Beauv.      Silverthorn Elaeagnus pungens Thunb. 
     Nepalese browntop Microstegium vimineum (Trin.) A. Camus      Autumn olive Elaeagnus umbellata Thunb.
     Chinese silvergrass Miscanthus sinensis Anderss.      Winged euonymus Euonymus alatus (Thunb.) Sieb.
     Nonnative bamboos Bambusa  spp.      Chinese/European privet Ligustrum sinense Lour.
Ferns, Forbs/Other Herbaceous Ligustrum vulgare L.
     Japanese climbing fern Lygodium japonicum (Thunb. ex Murr.) Sw.      Japanese/Glossy privet Ligustrum japonicum Thunb.
     Garlic mustard Alliaria petiolata (M. Bieb.) Cavara & Grande Ligustrum lucidum W.T. Aiton
     Shrubby lespedeza Lespedeza  bicolor Turcz.      Bush honeysuckle Lonicera Spp.
     Chinese lespedeza Lespedeza  cuneata  (Dum.-Cours.) G. Don      Sacred-bamboo nandina Nandina domestica Thunb. 
     Tropical soda apple Solanum viarum Dunal      Nonnative roses Rosa spp.

Life Form Plant species Plot Occurrences Percent Occupied

Trees Tree of Heaven 726 2.46
Mimosa 501 1.69
Paulownia 169 0.57
Chinaberry 346 1.17
Tallowtree 321 1.09
Russian olive 16 0.05

Shrubs Silverthorn 60 0.20
Autumn olive 271 0.92
Winged euonymus 49 0.17
Chinese/European privet 5,484 18.55
Japanese privet 553 1.87
Bush honeysuckle 482 1.63
Nandina 88 0.30
Exotic roses 2,077 7.03

Vines Oriental bittersweet 25 0.08
Exotic climbing yams 123 0.42
Wintercreeper 32 0.11
English ivy 69 0.23
Japanese honeysuckle 12,524 42.37
Kudzu 255 0.86
Periwinkle 99 0.33
Wisteria 104 0.35

Grasses Giant reed 1 0.00
Tall fescue 845 2.86
Cogongrass 73 0.25
Nepalese browntop 1,356 4.59
Chinese silvergrass 16 0.05
Exotic bamboo 32 0.11

Ferns, Forbs/Other Herbaceous Japanese climbing fern 859 2.91
Garlic mustard 48 0.16
Shrubby lespedeza 567 1.92
Chinese lespedeza 1,242 4.20
Tropical soda apple 77 0.26

Forest Health

Table 2—Number of individual plots and percent of total forested plots sampled on which each inva-
sive plant was observed by the Southern Research Station Forest Inventory and Analysis program 
during time period covering roughly 2002-2007

Table 1—List of common and scientific names of each invasive plant collected in all states by the Southern Research 
Station Forest Inventory and Analysis program
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Nonnative Plant Count Plots (no.)
1 6,794
2 5,326
3 2,394
4 904
5 246
6 49
7 5
8 2

Species F P
Autumn olive 2.409 0.142
Bush honeysuckle 3.539 0.068
Chinaberry 2.715 0.115
Chinese lespedeza 12.121 0.002
Chinese silvergrass 0.660 0.600
Chinese/European privet 6.205 0.018
Cogongrass 0.476 0.708
English ivy 2.004 0.192
Exotic bamboo 3.778 0.059
Exotic climbing yams 3.712 0.061
Exotic roses 7.629 0.010
Garlic mustard 2.789 0.109
Giant reed 1.000 0.441
Japanese climbing fern 3.831 0.057
Japanese honeysuckle 3.109 0.089
Japanese privet 1.936 0.202
Kudzu 4.655 0.036
Nepalese browntop 6.469 0.016
Mimosa 6.085 0.018
Nandina 0.770 0.543
Oriental bittersweet 2.185 0.168
Paulownia 0.427 0.739
Periwinkle 1.434 0.303
Russian olive 0.438 0.732
Shrubby lespedeza 9.353 0.005
Silverthorn 1.866 0.214
Tall fescue 4.962 0.031
Tallowtree 14.581 0.001
Tree of Heaven 0.586 0.641
Tropical soda apple 1.480 0.292
Winged euonymus 2.790 0.109
Wintercreeper 1.340 0.328
Wisteria 1.664 0.251

Table 3—Number of plots by the num-
ber of unique invasive plant species 
that was observed by the Southern 
Research Station Forest Inventory 
and Analysis program during the time 
period covering roughly 2002-2007

Table 4—F-test statistic and associated p-value 
for one way analysis of variance testing for inter-
seasonal differences in relative occurrence of each 
invasive plant species collected by the Southern 
Research Station Forest Inventory and Analysis 
program during the time period covering roughly 
2002-2007
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ABSTRACT

Following the detection of white ash (Fraxinus americana) 
decline in the Allegheny National Forest (ANF) of 
Pennsylvania, we established an intensified white ash 
monitoring network throughout the ANF. We rated crowns 
using both a categorical system as well as Forest Inventory 
and Analyses (FIA) Phase 3 measures of uncompacted live 
crown ratio, density, dieback, and transparency. Across our 
plots, ash averaged 17.33 trees/acre and made up 
19 percent of the total stand basal area. We found that trees 
on lower slopes were healthier than those on upper slopes. 
Categorical ratings correlated well with density and dieback 
and allowed us to develop and test conversion formulas to 
predict dieback and density using categorical scores. Our 
formulas proved robust in predicting density and dieback 
on an independent ash tree dataset. Erroneous predictions 
were generally linked to differences in what either measure 
defined as dieback. We suggest categorical assessments may 
provide a suitable alternative for rapid crown evaluations.

INTRODUCTION

Ash (Fraxinus spp.) is an important component of eastern 
deciduous forests and a valued timber species; an estimated 
1.25 billion trees (≥ 5 inches DBH) grow throughout the 
24 state region of the Upper Midwest and northeastern 
United States inventoried by the USDA Northern Research 
Station (USDA Forest Service 2010). Throughout much of 
this area, ash species, and in particular white ash (Fraxinus 
americana), have suffered from episodic periods of decline 
and dieback since at least the 1920s with more recent 
escalations in dieback and mortality heightening interest 
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in this problem (Hibben and Silverborg 1978, Sinclair and 
others 1990). Even more recently, the current and projected 
decimation of existing ash populations by the exotic emerald 
ash borer (Agrilus planipennis; EAB) beetle has focused 
attention on the current status and risk of ash regionally 
(Cappaert and others 2005). Indeed, baseline measures 
of ash health and decline status may be critical because 
susceptibility risk and mortality rates from EAB may be 
greater in stressed trees than in healthy trees during the early 
stages of EAB invasion (McCullough and others 2009).
 
While drought, fungal pathogens, and phytoplasmas all 
contribute to regional declines in ash health (Hibben and 
Silverborg 1978, Woodcock and others 1993), several 
lines of evidence suggest nutrient deficiencies may play 
a role in predisposing ash trees to decline. First, several 
studies indicate white ash is a base cation (e.g., Ca2+, Mg2+) 
demanding species that is consistently associated with soils 
with higher pH and greater base cation availability (Bigelow 
and Canham 2002, Finzi and others 1998, van Breemen 
and others 1997). Second, researchers have found strong 
relationships between exchangeable base cation availability 
and regional declines of sugar maple (Acer saccharum), 
another hardwood species with high cation requirements 
(Horsley and others 2000, Long and others 2009). Finally, 
Morin and colleagues (2006) found ash decline was 
primarily responsible for an observed 60 percent decrease 
in ash live basal area/acre in the 1990s in an intensified 
FIA/FHM monitoring plot network established in the 
Allegheny National Forest (ANF) and suggested mortality 
was concentrated on ridgetops and upper slopes. This latter 
finding is critical because within the unglaciated portion 
of the ANF, concentrations of exchangeable calcium and 
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magnesium are often greater on lower slopes than on upper 
slopes, often by as much as an order of magnitude (Bailey 
and others 2004). 

Despite this provocative detection of ash decline on upper 
slope positions, the robustness of this finding is problematic 
because ash is greatly underrepresented with just 60 live 
trees distributed across 16 percent of the intensified 
FIA/FHM monitoring plots throughout the ANF. 
Furthermore, existing individuals are distributed unevenly 
across physiographic or topographic positions 
(e.g., 1 individual on dry, upper ridgetops vs. 40 in rolling 
uplands), making a well replicated analysis impossible. 
Given the small sample sizes and the highly unbalanced 
representation of ash, a definitive assessment of current 
white ash health status and its variability across topographic 
gradients (i.e., soil nutrition) requires enhancement of 
existing data and greater ash canopy sampling. Furthermore, 
given the impending invasion of emerald ash borer to 
the ANF, knowing what landscape positions are likely to 
contain stressed ash trees may lead to better risk models and 
mitigation strategies. 

The objectives of this study were to assess white ash health 
status in the Allegheny Plateau region by establishing an 
expanded network of ash health monitoring plots throughout 
the ANF to complement existing FHM/FIA data. This 
enhanced sampling will allow us to explore, in detail, how 
topographic position and site characteristics (e.g., soil 
pH and nutrition) are related to ash decline and mortality 
patterns across the landscape. Additionally, we created a 
formula to relate FIA Phase 3 (P3) crown ratings (dieback, 
density, etc) to a user friendly categorical rating system. 
Finally, we tested the predicted FIA P3 crown ratings 
derived from our conversion formula on an independent 
dataset of ash crown health from Ohio. 

METHODS

Throughout May – August 2009, we systematically 
surveyed areas across the entire ANF to establish new 
white ash monitoring plots (Figure 1). We superimposed 
a grid over the ANF ownership and, using existing stand 
information on ash basal area and landform classifications 
of both bottom/foot slope positions and shoulder/plateau 
top positions, we searched each 700 ha block to locate 
pairs of ash plots where one plot in the pair was established 
on a lower slope position and the other on an upper slope 
position. Because topographic position itself is not always a 
reliable indicator of site nutrition on the unglaciated portion 
of the ANF, we also conducted herbaceous plant surveys at 
each potential plot to detect species known to be reliable 
indicators of high base cation nutrition (Horsley and others 
2008). At each plot, a focal ash tree was defined as plot 
center and the surrounding tree community was inventoried 

in a variable radius plot using a 10 factor prism. Within each 
pair of upper and lower slope positions, care was taken to 
choose focal trees that were similar in diameter and crown 
class. Trees with two trunks were counted as separate trees 
if they divided below breast height (4.5 ft). 

In summer 2009, we assessed the crown health status of 
all ash trees in the plots using a categorical rating system 
developed for managers for assessing ash decline due to 
emerald ash borer infestation; this rating system is itself a 
modification of protocols developed for bronze birch borer 
(Ball and Simmons 1980, Smith 2006). The rating scale is 
defined as follows:

1.	 Ash tree with a full, healthy canopy 
2.	 Ash tree with a thinning canopy but no dieback 
3.	 Ash tree with dieback, defined as dead twigs 

or branches near the top of the tree, exposed to 
sunlight. Dead branches that are low and shaded 
were not rated and considered a normal part of 
branch senescence

4.	 Ash tree with less than 50 percent of a full canopy, 
which could occur through a combination of 
dieback and thinning

5.	 Ash tree with a dead canopy, defined as no foliage 
in the canopy portion of the tree (The canopy is 
counted as dead even if live epicormic sprouts low 
on the trunk or stump sprouts are present.)

In summer 2010 we revisited each plot and assessed crown 
health using both the categorical measures and FIA P3 
measures of uncompacted live crown ratio (UCLR), crown 
density, dieback, and transparency. UCLR is estimated as 
the percentage of the actual tree length made up of live 
crown. Crown density estimates the amount of crown 
branches, foliage, and reproductive structures that block 
light visibility through the crown. Crown dieback is the 
percentage of the live crown area that exhibits signs of 
recent dieback, excluding snag branches and gaps in the 
canopy. Finally, transparency is calculated by estimating 
the percentage of skylight visible through the live, normally 
foliated portion of the crown (USDA Forest Service 2007). 

We tested for differences in these canopy condition response 
variables using mixed model analysis of variance (PROC 
MIXED; SAS Institute Inc. 2005). Topographic position 
(upper/lower) was modeled as a fixed factor, and each 
700 ha block was modeled as a random factor. We used 
Spearman rank correlations to examine the relationship 
between our categorical rating system and each of the 
FIA P3 crown measures and to identify the P3 measures 
that exhibited the strongest relationship. We then used 
linear and nonlinear regression analyses to derive the most 
parsimonious formula that best (e.g., high r2 value) related 
our categorical measure with P3 metrics. 

Forest Health
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Finally, we tested the predictive ability of our Pennsylvania 
derived formulas on an independent dataset of ash 
canopy conditions from Ohio. This dataset contained 494 
individuals of various native ash species (e.g., green ash, 
white ash) located throughout seven stands that varied in the 
severity of emerald ash borer infestation (Knight, unpub. 
data). We assessed the robustness of the predicted values 
by rounding the predicted value to the nearest 5 percent 
class and allowing a ± 10 percent tolerance (2 classes) as 
indicated in the FIA Phase 3 Field Guide (USDA Forest 
Service 2007). 

RESULTS

Overall, we established 192 plots and assessed 538 white 
ash trees throughout the ANF. Ash basal area relative 
abundance, which is biased toward plots where ash was 
present, averaged 19.03 ± 1.1 percent of the basal area and 
ranged from 4.5 to 75 percent. Mean ash stem density was 
17.33 ± 1.2 trees per acre and ranged from 2 to 
111 trees per acre. Neither measure of ash abundance 
differed significantly between topographic positions: 

Crown health assessments determined by the categorical 
method and FIA P3 variables of density, dieback, and 
transparency all indicated crowns were healthier on lower 
slope positions than on upper slopes (Figure 2). The P3 
variable of uncompacted live crown ratio did not differ 
significantly between topographic positions 

(x = 31.6 ±0.7 and x= 31.2±0.7, P=0.73).

Correlation analyses revealed that all three FIA P3 ratings 
were significantly correlated with our categorical measure 
(Table 1); however only density and dieback exhibited 
moderately strong correlations (r values > 0.7 or < -0.7). 
We therefore further explored the relationship between the 
categorical rating and these two measures.

Regression analyses indicated our categorical rating was 
linearly related to Crown Density (adjusted r2 = 0.65; Figure 
3) and yielded the following formula:

The best relationship between our categorical rating and 
Crown Dieback was obtained using an exponential model 
(adjusted r2 = 0.91; Figure 4):

Predictions of crown density derived from the categorical 
ratings were accurate in 81.6 percent of the cases including 

all trees and dropped to 71.2 percent excluding dead trees. 
The failure rates (i.e., predicted value fell outside actual 
value by > 10 percent) were 32, 20, 42, and 7 percent 
for condition classes 1, 2, 3, and 4, respectively. Crown 
dieback predictions derived from the categorical ratings 
were accurate in 96.8 percent of the cases including all trees 
and 92.8 percent excluding the dead trees. The prediction 
failure rate for classes 1 – 3 was negligible (< 1 percent). 
For condition class 4, the formula routinely overestimated 
dieback, resulting in a 92 percent failure rate.  

DISCUSSION

Landscape Level Patterns of Ash Health 
on the Allegheny National Forest
We found that white ash was distributed throughout the ANF 
on both upper and lower slope positions. Nevertheless, we 
documented stark differences in crown health as measured 
by both a categorical condition class rating system and by 
the more quantitative FIA P3 measures of density, dieback, 
and transparency. White ash individuals located on upper 
slope positions throughout the ANF were generally rated 
more poorly, had less dense crowns, exhibited greater 
dieback, and appeared more transparent than similarly sized 
individuals at nearby lower slope positions. Although all 
four measures differed statistically between slope positions, 
we suggest that only the categorical condition rating and the 
FIA P3 measure of dieback differed enough (~ 1 condition 
class or 10 percent dieback) to operationally evaluate 
differences in crown health throughout the plateau. 
 
We hypothesize that these stark differences in canopy 
health may be related to known site quality differences 
across topographic positions, and more specifically, 
the low concentrations of extractable pools of calcium 
and magnesium. Although we do not directly confirm 
differences in soil nutrition between our slope positions 
(e.g., soil analyses) several lines of evidence suggest 
these differences exist. First, research in the region has 
consistently documented that the highly weathered parent 
materials available to tree roots on the plateau and shoulder 
slopes in the unglaciated Allegheny Plateau region contain 
low concentrations of these ions. In contrast, lower slope 
positions tend to have higher concentrations due to delivery 
of these ions via water flow paths that percolate through 
deeper, mineral containing layers and enrich the soil as the 
water flows back out to the soil, sometimes in the form of 
seeps (Bailey and others 1999, 2004). Second, 50 percent 
of our selected lower slope plots had ≥ 1 herbaceous plant 
species known to be robust indicators of soils rich in base 
cations, and several other sites were characterized by the 
presence of seeps, which often transport cation supply to 
the soil complex (Horsley and others 2008). In contrast, 
only 7 percent of upper slope positions contained any of 
these indicator species. Finally, foliar nutrition analyses 
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from a subset of our focal trees found that both calcium and 
magnesium foliar concentrations were 39 and 29 percent 
greater, respectively, on trees found on lower slopes than on 
trees sampled on upper slopes (Royo, unpub. data). 

On the Utility of an Easy Categorical 
System
Categorical rating systems have a rich history in forest 
ecology and management as a method to rapidly assess tree 
health and position (Ball and Simmons 1980, Fajvan and 
Wood 1996, Gottschalk and MacFarlane 1993, Mader and 
Thompson 1969, Millers and others 1991). These protocols 
generally divide a relevant continuous variable into a 
few categories that are simple to recognize, biologically 
relevant, and easy to assess. Often, such protocols can 
be reliably used in the field by new users after just a 
few days of practice (e.g., Meadows and others 2001). 
Such rating systems allow forest managers to improve 
stand management via rapid assessments of current stand 
conditions. The FIA Phase 3 measures, in contrast, offer a 
far richer and detailed assessment of crown conditions, but 
are concurrently more complex involving as many as 14 
categories in 5 percent classes and may require a week long 
training session to competently assess these in a reliable and 
repeatable manner. Finally, the rapid assessments possible 
using the categorical system may allow repeated sampling 
of an intensified plot network to monitor the rapid canopy 
decline and mortality that occur when outbreaking or 
invasive pests invade an area (e.g., EAB); at existing FIA 
implementation rates of 5 to 10 years (Bechtold and others 
2008), regional or state level monitoring may miss the 
decline and only capture the end result. 

Overall, our conversion formula proved fairly robust in 
correctly predicting crown density within tolerance in nearly 
three quarters of the cases in which it was tested. This 
finding is remarkable given that the conversion formula 
was generated on only white ash trees, 89 percent of which 
were in dominant or codominant crown positions, in an 
area without any signs of EAB. In contrast, the Ohio data 
contained five species of ash, 68 percent of which were in 
dominant or codominant crown positions, in stands spanning 
the full range of EAB infestation. Our dieback formula 
was highly reliable for classes 1 – 3, but had virtually no 
power in predicting crown dieback when trees were rated 
as a category 4. We believe the primary explanation for 
this inconsistency lies in the characterization of what is 
measured as dieback. Phase 3 dieback refers only to the 
severity of “recent stresses on a tree” on the upper and outer 
branches with fine twigs of the live crown and excludes 
snag branches (USDA Forest Service 2007). In contrast, our 

categorical ratings were developed to assess the progressive 
decline and dieback of trees, and thus a categorical value 
of 4 includes any tree crown that contains 50 percent or 
greater dieback, including snag branches. Thus, trees may 
rate a 4 under scenarios of high recent dieback detected only 
in twigs or the cumulative dieback over a longer period of 
time that is evidenced by presence of dead twigs and snag 
branches. Indeed, examination of the range of dieback 
values of our trees in either Pennsylvania or Ohio reveals 
that P3 dieback assessments in our category 4 rating range 
from 1 to 80 percent. Additionally, our category 4 rating 
may encompass too great a range of conditions because 
any tree that is not completely dead but has >50 percent 
dieback is placed in category 4. Dividing this category into 
two distinct categories (e.g., 50 to 74 percent dieback and > 
75 percent dieback to dead) may improve model reliability 
without complicating the rating system excessively. Indeed, 
other crown health and vigor rating systems often employ 
slightly more partitioned rating systems where dead trees are 
a sixth category (e.g., Fajvan and Wood 1996, Mader and 
Thompson 1969). 

In summary, our survey of white ash throughout the 
ANF confirms Morin and colleague’s (2006) reports that 
white ash decline appears most prevalent on upper slope 
positions. Furthermore, we provided evidence that a simple, 
categorical rating system correlates well with FIA P3 
crown measures of density and dieback. The advantage of 
this system is that it can readily and rapidly be assessed 
by managers and practicing foresters. With the use of 
our conversion formulas, these categorical ratings can 
estimate FIA P3 density and dieback with a fair amount of 
confidence. Finally, the establishment and assessment of ash 
monitoring plots in stands varying in ash abundance and 
crown health conditions may now be used as the basis of an 
EAB risk assessment and monitoring network.
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  Condition Density Dieback Transparency 

1    
Condition 

    

-0.223    
UCLR 

<0.0001    

-0.723 1   
Density 

<0.0001    

0.719 -0.551 1  
Dieback 

<0.0001 <0.0001   

0.562 -0.539 0.434 1 
Transparency 

<0.0001 <0.0001 <0.0001   

For each cell, the upper value is the Spearman correlation 

coefficient (ρ) and the lower value is the significance (P value) of 

relationship. 

 

Table 1—Spearman rank correlation matrix among FIA 
Phase 3 crown condition variables of uncompacted 
crown live ratio (UCLR), crown density, dieback, and 
transparency, and a user friendly categorical rating 
of health conditions where 1=healthy, 5=dead, and 2 
through 4 represent increasing stages of crown decline 
and dieback

 

 

Figure 1—Approximate locations of the expanded network of ash 
health monitoring plots throughout the Allegheny National Forest 
proclamation boundary.
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Figure 2—Mean crown health values (±1 SE) of FIA Phase 3 measures of density, dieback, and transparency as 
well as a categorical rating (1=healthy, 5=dead, 2-4 increasing dieback) of white ash trees on stands on upper 
and lower slope positions. Asterisks denote significant differences from analysis of variance (*= < 0.05, ** = < 
0.01, *** = <0.001).

 

 

 

Figure 3—Linear regression between categorical crown rating 
system and FIA Phase 3 measure of crown density.

 

 

 Figure 4—Exponential regression between categorical crown rating 
system and FIA Phase 3 measure of crown dieback
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Abstract
Multiflora rose (Rosa Multiflora Thunb.) (MFR) is widely spreading across 
the United States, with up to 38 states in the contiguous United States 
reporting the presence of this species. In this study, U.S. Forest Service, 
Northern Research Station Forest Inventory and Analysis (FIA) data 
from the Upper Midwest states for the period of 2005-2006 were used to 
calculate MFR presence probability at the county level. The classification 
and regression tree technique is used to classify the counties into invasive 
stages based on the estimated presence probability and a map of invasive 
stages is obtained, which is helpful for forest managers to optimally 
allocate resources. A simultaneous autoregressive model (SAR) was used to 
identify the driving factors of the spread of MFR. The contiguous invasive 
stages indicated a strong invasive pattern in all directions, particularly 
southward and eastward. MFR presence shows a positive spatial 
autocorrelation and is negatively associated with latitude and county forest 
cover percentage. Our results suggest that the distribution of MFR is likely 
limited by its intolerance to extreme cold temperatures and anthropogenic 
disturbance (forest fragmentation and deforestation) plays an important role 
in the spread of MFR. 

INTRODUCTION

Non-native invasive plants (NNIPs) are defined as those 
plants that: 1) are not indigenous to the ecosystem and 
2) have a competitive advantage that causes deleterious 
impacts on structure, composition, and growth in forested 
ecosystems (Moser et al., 2009). Due to their competitive 
advantages compared with the native plants, some NNIPs 
can expel the native plants, alter the local ecosystem, 
threaten native biodiversity, and lower value of local 
ecosystem (Macdonald 1994). In the USA, the estimated 
loss due to NNIPs is more than $33 billion per year 
(Pimentel et al., 2005). 

The invasive process is classified into four stages: 
introduction, colonization, establishment and spread 
(Theoharides and Dukes 2007). The factors that affect the 
spread of NNIP include temperature, site quality, stand size, 
forest fragmentation, distance to road, county percent forest 
etc (Moser et al 2009). A factor may play a role in one or 
more stages. The management of NNIPs depends on the 
stages of invasion since the cost dramatically increases as 

ESTIMATION OF INVASIVE PROBABILITY 
OF MULTIFLORA ROSA IN THE UPPER 
MIDWEST
Weiming Yu, Zhaofei Fan, W. K. Moser, M. H. Hansen and M. D. Nelson

Weiming Yu, Zhaofei Fan. Department of Forestry, Mississippi State University, Mississippi State, MS.
W. K. Moser, M. H. Hansen and M. D. Nelson, US Forest Service Northern Research Station FIA Program, St. Paul, MN

the population of NNIPs expands (Hobbs and Humphries 
1995). It is prohibitively expensive to remove most of 
the NNIPs from the invaded region after they are well 
established. Webster et al. (2006) pointed out that the efforts 
to control invasive plants should focus on the establishment 
or earlier phases. Thus, the early detection of the NNIPs is 
very important. 

In this study, we focus on multiflora rose (Rosa multiflora 
Thunb.) (MFR), which is widely established across United 
States. In fact, 38 states in the contiguous United States 
report the existence of MFR. MFR can exclude native 
ground flora and suppress tree regeneration and has been 
designated as a noxious weed in many states (Munger 2002, 
Denight el al., 2008). MFR was introduced to the North 
America in 1866 as rootstock for ornamental roses. Later, it 
was used for erosion control and “living fences” to confine 
livestock from the 1930s to the 1950s (Doll 2006). MFR is 
extremely prolific and its seeds are dispersed by birds and 
may remain viable in the soil for many years.

In this study, based on the estimated presence probability 
at the county level, we investigated the distribution of 
MFR, classified each county into four invasive stages using 
Classification and Regression Tree (CART) technique and 
identified the driving factors that affect MFR establishment 
and spread.

DATA AND METHODOLOGY

Study Area
The Upper Midwest study region is comprised of seven 
states: Indiana, Illinois, Iowa, Missouri, Michigan, 
Wisconsin, and Minnesota. At the nexus of several 
ecoregions, this area is characterized by diverse vegetation 
compositions and structures. Northern Minnesota, and 
Wisconsin, northern Michigan, and southern Missouri are 
the most heavily forested areas. The middle of this region, 
most of it prairie during pre-European settlement times, is 
currently a mosaic of agricultural lands, with embedded 
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urban areas. Extensive human activities and fertile soil in 
this region can favor the establishment of NNIPs.

Data

In this study, U.S. Forest Service, Northern Research Station 
Forest Inventory and Analysis (FIA) data from the Upper 
Midwest states for the period 2005-2006 were used. Phase 
2 (tree inventory) data were collected on the standard FIA 
plot grid (1 plot per 2400 ha). Each Phase 2 plot consists 
of 4 subplots with radius 7.3 m. Associated with this 
overstory inventory data was sampling for 25 invasive 
plants species of interest. These 25 species were categorized 
as either grasses, vines, herbaceous, or woody species, 
such as multiflora rose. In total, 8663 phase 2 forested plots 
were assessed for MFR, where 1320 plots (15.3 percent), 
were invaded by MFR. Related factors including county 
forest percentage, inter-state highway density, forest type, 
and fragmentation were measured or calculated by using 
auxiliary GIS layers. The coverage of MFR is classified into 
7 categories (Moser et al. 2009) and the midpoint values of 
each cover class are used. 

Methodology

The presence probability of MFR—We are 
interested in the presence probability of MFR at the county 
level. Therefore, the plot data were aggregated to the county 
level in order to obtain the number of the MFR-presence 
and total plots at each of the 649 counties. Mathematically, 
the presence probability is estimated by the ratio between 
the number of the MFR-presence and the total plots in each 
county. However, this estimation is severely biased due to 
the sample size of each county. For example, some counties 
only have a couple of plots and others may have more than 
100 plots. In order to correct the bias due to the sample size 
in each county, we redefined the presence probability: 

                       ,

where: sj is the number of the MFR-presence plots in the 
county j, nj is the total plots in the county j, ηi is the set of 
neighbor for the county i, including the county i. 

Classification and Regression Tree 
(CART)—Then we used the CART (Breiman et al. 1984) 
to classify each county, based on the estimated presence 
probability, into different stages: introduction, colonization, 

establishment, and spread (Theoharides and Dukes 2007).
The rpart package in R are used to implement CART (John, 
M. and John, B. 2003). Based on the classification of the 
estimated presence probability, we plot the map of invasive 
stages for the studied area.

Moran’s I, and Geary’s C (Waller and 
Gotway 2004)—To investigate the spatial correlation of 
the presence probability of MFR, Moran’s I and Geary’s C 
were calculated via,

and 

where N is the number of counties; Y is the presence 
probability at each county; wij is a matrix of spatial weights. 

The range of Moran’s I is (-1, 1). The negative (positive) 
value of Moran’s I indicates negative (positive) spatial 
autocorrelation. The value of Geary’s C lies between 
0 and 2. If Geary’s C is less than 1, then it indicates 
positive spatial autocorrelation; otherwise, it indicates a 
negative spatial autocorrelation. Geary’s C is inversely 
related to Moran’s I and is more sensitive to local spatial 
autocorrelation. 

Simultaneous Autoregressive Model 
(SAR) (Waller and Gotway 2004)—We used the 
simultaneous antoregressive model (SAR) to identify the 
driving factors of the spreading of MFR with the estimated 
presence probability (PP) as the dependent variable. The 
independent variables are: Longitude (Lon), Latitude (Lat), 
forest fragmentation (Frag), ecoregion (Eco), road density 
(Rdens), and county-level forest cover percentage (CFP). 
Though we had tested other driving factors such as forest 
type, but they were not significant and were not included in 
the model. 

The SAR model is espressed as:

where: βis are the parameters that need to be estimated, 
ν is the independent error vector, ρ is the simultaneous 
autoregressive error coefficient, W is the spatial weight 
matrix. 
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RESULTS AND DISCUSSION

MFR is established in Missouri, Illinois, Indiana, Iowa, 
and the south of Wisconsin and Michigan and prevalent 
in northern Missouri, southeast Iowa, central and 
northern Illinois and Indiana. The forests ofthe northern 
of Minnesota, Wisconsin, and Michigan are not severely 
infected by MFR (Fig. 1). From this central core, MFR is 
spreading northward into the forested lands in southern 
Wisconsin and Michigan, and southward into the Ozark 
Highlands in southeast Missouri (Fig 3). There is a positive 
spatial autocorrelation among the MFR presence (Moral’s 
I = 0.93, Geary’s C = 0.08). The contiguous introduction, 
establishment and spread stages indicated a strong invasive 
pattern in all directions, but particularly southward and 
eastward.

The plot of X relative error vs. the tree size (Figure 2, 
left) suggests that tree size should be 4. And Figure 2 
(right) suggested that each county should be classified into 
one of the four invasive stages: Introduction, <29.55%; 
Colonization, 29.55%-51.05%; Establishment, 51.05%-
66.65%; and Spread, >66.65%. For each stage, we calculate 
the proportion of the plots for each cover class for each 
stage. Then the plot of proportion of plots of each class vs. 
the midpoint value of cover class (Figure 3, left) shows that 
this classification is reasonable. Finally, the map of invasive 
stages (Figure 3, right) is obtained based on the above 
classification. 

SAR (Table 1) shows that county forest cover percentage, 
latitude and proportion of Lower Mississippi Riverine Forest 
are significantly negatively associated with the presence 
probability of MFR, while longitude and proportion 
of Eastern Broadleaf Forest and Prairie parkland are 
positively associated with the presence probability of MFR. 
Forest fragmentation and inter-state road density are not 
significantly related to the presenece probability of MFR. 

Denight el al (2008) observed that the northern distribution 
of MFR is likely limited by its intolerance to extreme cold 
temperatures as suggested by the negative association with 
latitude-a surrogate for the winter temperature gradient. 
The negative association between county forest cover 
percentage and MFR presence indicated the significance 
of human disturbances in the spread of MFR. Actually, 
MFR was widely planted for erosion control in many less 
forested counties in northern Illinois, southeastern Iowa and 
northern Missouri between 1930s and 1960s (Doll 2006). 
As reported, MFR frequently colonizes roadsides, old fields, 
pastures, prairies, open woodlands, and forest edges but is 
not found in standing water or in extremely dry areas (Doll 
2006), which conforms to the findings of its distribution in 
different ecoregions/forest types in our study. The positive 
relationship with longitude also reflects a strong eastward 

spreading pattern. Today, the species has become widely 
distributed in the eastern United States (Doll 2006). The 
non-significant relationship with forest fragmentation and 
road density seems to be a “scale” effect, for at the plot 
level; forest fragmentation and distance to roads have been 
suggested to be important influences of the establishment 
and spread of MFR.

SUMMARY

The strong spatial autocorrelation of MFR presence and 
its aggressive spreading southward and eastward reflects 
the fact that human disturbances and climatic factors, as 
well as forest conditions play an important role. Even 
though MFR’s spread to the northern states seems to be 
curbed currently due to cold temperatures, climate change 
(warming) and the increasing number of anthropogenically-
derived deforestation disturbances such as land clearing 
and urban development may increase the probability of 
infestation in the forests of the northern part of our study 
region. To prevent MFR from spreading into the highly 
forested areas in the northern states, a practical strategy is to 
eliminate MFR in the counties in the introduction stage and 
reduce MFR presence in the counties in the establishment 
stage. And the map of invasive stages can help forest 
managers to identify the counties in the introduction or 
establishment stage. Thus it provides a tool for forest 
manager to optimally allocate resources.
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Figure 1—(Left) The distribution of FIA Phase 2 Plots without (black) and with the presence of Multiflora Rose (gray); and (right) 
the smoothed presence probability of MFR in the Upper Midwest, 2005—2006. 
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 Figure 2—(Left) The plot of X relative error vs. the classification tree size; and (right) the Classification and regression tree 
partition of the estimated presence probability of MFR in the Upper Midwest, 2005—2006. 
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Figure 3—(Left) Proportion of plots vs. the midpoint value of cover class (see Moser and others, 2009 for the cover class 
categories); and (right) the maps of invasive stages based on the estimated presence probability of MFR in the Upper Midwest, 
2005—2006.
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Abstract

A rigorous quality assurance (QA) process assures that the data and 
information provided by the Forest Inventory and Analysis (FIA) 
program meet the highest possible standards of precision, completeness, 
representativeness, comparability, and accuracy. FIA relies on its analysts to 
check the final data quality prior to release of a State’s data to the national 
FIA database (FIADB). The analytical portion of the QA process varies 
considerably from region to region, aided by a variety of tools developed 
within each region. Recognizing that a QA process consisting of national 
standards would result in greater consistency and transparency, the 
national analytical QA task team is developing guidelines for analysts and 
oversees the development of QA Tools, a desktop charting and graphing 
application for checking compiled data prior to release. QA Tools includes 
a rigorous estimation engine based on national standard FIA estimation 
procedures. Batch processing is utilized to save time and reduce the cost of 
extensive QA. National consistency results in fewer resources allocated to 
maintaining multiple processes, thus allowing analysts to spend more time 
on error resolution. 

INTRODUCTION

The U.S. Department of Agriculture Forest Service, Forest 
Inventory and Analysis (FIA) program is charged with 
assessing the status and trends in the Nation’s forests. 
The FIA quality assurance (QA) program assures that the 
inventory produces complete, accurate, and unbiased forest 
information of known quality. FIA analysts play a critical 
role in the QA process, with primary responsibility for the 
quality of data released for publication. This paper outlines 
the flow of FIA data from the initial field planning stage 
through the collection, editing, storage, and compilation of 
data to analytical QA and publication. We highlight the role 
of QA within each step, with emphasis on the analytical QA 
stages in which analysts review the data prior to publication. 
Finally, we introduce QA Tools, a recently developed QA 
analysis tool.

Quality assurance, the overall system of management 
activities designed to assure that quality data are generated, 
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is composed of two components: quality control and 
quality assessment. Quality control includes the operational 
techniques used to reduce random and systematic 
errors, such as identifying and adopting standards for 
producing quality products, training, data collection 
field checks, developing efficient data flow procedures, 
data error checking, and assuring consistency through 
well documented procedures guides. Quality assessment 
evaluates how well our established standards are met by the 
program, telling us whether the FIA quality control system 
is satisfactory. The assessment procedure compares field 
production data with an independent “blind” measurement 
to evaluate the relative uncertainty associated with FIA field 
collected data.

FIA DATA FLOW AND QUALITY 
ASSURANCE

The FIA QA program includes comprehensive quality 
control and quality assessment steps from prefield 
preparation and field data acquisition to processing within 
the National Information Management System (NIMS) and 
post compilation analytical QA procedures that prepare 
the data for posting in public databases. Prior to presenting 
details about analytical QA, the primary focus of this 
paper, we describe the overall FIA data flow process. 
The flow of FIA data and the integral QA components 
are described through seven stages: 1) Prefield, 2) Data 
collection, 3) Precompilation data editing, 4) Stratification, 
5) Data compilation in NIMS, 6) Analytical QA, and 7) 
Data delivery (fig. 1). As the FIA program evolved into a 
national program with the advent of the annual inventory 
design, procedures became more consistent. For example, 
a nationally consistent data collection protocol was defined 
and documented in national FIA field manuals and NIMS 
was implemented to store and process FIA data. National 
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consistency improves operating efficiency and the ability 
to deliver higher quality data. Furthermore, inconsistent 
protocols and QA procedures make assessments of the 
accuracy and repeatability of each regional program 
difficult to compare. Process documentation that increases 
consistency across FIA regions is described for each stage 
and diagrammed in figure 1.

Prefield Planning
The FIA data flow process begins with the prefield stage. 
This stage includes activities that occur in advance of field 
visits to FIA plot locations, such as land-use interpretation 
based on high-resolution imagery, assembling hard copy 
materials in support of the field staff, and verifying 
plot coordinates. Prefield programs have developed 
independently at each of the four FIA regions, leading to 
parallel, yet different, procedures, QA processes, tools, 
and database items. For example, multiple tools have been 
created to solve similar problems, and overlapping software 
programs have been developed. FIA land use definitions are 
not necessarily applied consistently across regions. Regional 
QA protocols generally include prefield determination of 
plot visit/nonvisit quality assessment. National prefield 
protocols and QA procedures are under development and 
will be documented in a prefield manual, adding consistency 
and transparency to the process.

Data Collection
Data are collected on FIA plots using national protocols. 
Field procedures and protocols are documented in the 
national FIA Field Manual. QA procedures in this stage have 
been formalized and are well documented in national and 
regional FIA QA plans. The QA effort is primarily focused 
on error control during the field measurement and data 
collection process. This is accomplished through extensive 
crew training, documentation of protocols and procedures 
used in the inventory, and field checks. 

Precompilation Data Editing
Raw field collected data undergo three different checks 
prior to database compilation: personal data recorder (PDR) 
logic checks, postfield data cleaning edits by field or office 
staff, and NIMS load error checks. Field data are collected 
using field data recorders that are programmed with multiple 
logic checks applied during data entry in the field. In 2007, 
a national task team was formed to develop the FIA Mobile 
Integrated Data Acquisition System (MIDAS), a data entry 
program that is used by all regions to collect both national 
and regional data. The MIDAS system is being integrated 
into the overall FIA information management structure. 
Postfield procedures that include various algorithms are 
used for checking and editing raw data. These procedures 
vary from region to region. Finally, prior to populating the 
NIMS database, additional NIMS load checks are applied to 
the data by the NIMS system.

Stratification
Stratification is applied to the inventory data prior to 
compilation to reduce the variance of estimates associated 
with forest land area and volume. Field data are grouped 
into broad strata using the stratification approach outlined 
in Bechtold and Patterson (2005). The number and type of 
strata used in the stratification process vary with regional 
requirements. Strata may include forest/nonforest, public/
private ownership, or boundaries such as state, county, and 
ecological unit. High-resolution imagery and ownership 
maps are used to classify sampled plots into each stratum. 
Quality control and assessment of the stratification process 
is completed regionally, including checking plot locations, 
matching total area estimates to those provided by the 
Census Bureau, and double-checking boundary locations on 
GIS layers.

NIMS Database Compilation
NIMS compilation includes calculating a variety of derived 
variables using estimation equations defined by Bechtold 
and Patterson (2005). NIMS design and implementation 
procedures as well as the compilation process are described 
in various unpublished documents produced by national 
implementation teams. Data checks of tables are performed 
informally on the database prior to analyst review. Data 
checks include an evolving list of data queries to identify 
errors. These include checks for missing values and checks 
for consistency between populated values of related 
variables, such as site index, stand age, and stand size class. 

Analytical QA
After the data are compiled and summarized, FIA resource 
analysts conduct regional postcompilation checks and 
audits to ensure that core FIA data are complete and as 
accurate as possible before publication in FIADB (Miles and 
others 2001). There is presently no formal review process 
for all FIA analysts to follow, although each region’s QA 
process generally includes a variety of standard checks and 
additional analyses that may be needed for unique resource 
issues. Documentation to define a rigorous nationally 
consistent process is being drafted. Additionally, tools have 
been and/or are being developed within each region to help 
analysts with QA.

Data Delivery
Analyses and reports about status, trends, and location by 
land use class are generated as annual and 5-year reports 
and special reports. Data are posted to FIADB, FIA’s 
public Web based database, with its suite of reporting 
tools. National FIADB tables are populated with regional 
data and displayed in standardized output tables. Detailed 
documentation is available in a Database Description and 
Users Manual (Miles 2008). Additional reporting includes 
peer-reviewed journal articles, articles in trade journals, 
extension publications, and other user-oriented outlets. 

Data Integrity
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ANALYTICAL QUALITY ASSURANCE

The primary task of FIA analysts is to interpret and extract 
meaning from compiled inventory data and to communicate 
these findings to the public. Each State is assigned to an 
analyst who checks the State’s compiled data prior to release 
to the public as FIADB tables, as annual and 5-year reports, 
or as peer-reviewed publications. Analysts must be experts 
on forestry and ecological issues in their assigned States and 
regions. They conduct research that adds value to the basic 
inventory products, and they participate on national FIA task 
teams. 

FIA analysts play a critical role in the QA process; they are 
responsible for checking compiled data to assure the quality 
of data released to the public and the accuracy FIADB and 
FIA’s annual and 5-year State reports. This is not a trivial 
task; in spite of extensive precompilation error checking; 
some errors are impossible to detect until analysts have 
attempted to interpret the numbers. After analysts conduct 
annual QA checks of information, they submit core tables to 
State contacts for annual review.

This analytical QA process varies considerably from region 
to region. Typically, FIA analysts use many different 
approaches, ranging from reviewing summary tables for 
suspicious values and checking map products carefully 
to a variety of in depth investigation methods. As the FIA 
program has expanded and moved to a fully annualized 
inventory, the need for a more thorough and efficient 
approach to data QA has increased dramatically. Thus, 
the national FIA analytical QA task team has proposed 
a nationally consistent process with standard minimum 
requirements for checking data prior to release for 
publication. The team’s objective is to increase efficiency 
with well documented quality control standards and a 
consistent analytical QA process. Guidelines and checklists 
for analysts will outline routine QA steps required prior to 
releasing data to the public.

Analysts’ toolboxes contain a variety of tools for data 
checking, including algorithms developed within each 
region. For example, FIA analysts may use a statistical 
application such as SAS (2002) to perform specific data 
queries and summaries. The same analyst may then 
use another application such as Microsoft (MS) Access 
that performs different summaries with the same data. 
Experienced analysts know what sorts of QA checks to 
apply to these data, and they generally have extensive 
knowledge of field collection methods to detect possible 
errors. But, what happens if the analyst is inexperienced 
with FIA protocols and the necessary understanding of how 
to query and summarize these data is not fully understood? 
Data errors may be missed and summary estimates may 
be incorrect. Each analyst within the four FIA regions of 

the United States shares these analytical QA challenges. 
Similar analytical QA checks are repeated each year on that 
year’s data. In this manner, analyst amasses a collection of 
queries that can summarize estimates and provide sampling 
errors from tables within NIMS or FIADB. They must 
evaluate both measured data collected in the field and 
compiled estimates (such as volume and biomass estimates). 
Attempting to streamline this process, the analytical QA 
team has overseen the development of QA Tools, a charting 
and graphing application for checking compiled data prior 
to release. QA Tools is a software application that addresses 
these issues and moves the FIA program toward a more 
thoughtful and comprehensive approach to analytical QA.

QA TOOLS: TOWARD A COMPREHENSIVE 
APPROACH TO ANALYTICAL QA 

QA Tools is a desktop application developed as a joint 
effort by FIA analysts, programmers, and statisticians 
working toward a single integrated solution that provides 
a rigorous estimation engine based on national FIA 
statistical estimation procedures as described in Bechtold 
and Patterson (2005). The application allows an analyst 
to methodically, consistently, and efficiently perform QA 
checks and document the QA checks that were performed. 
The application can be quickly modified to reflect any 
changes in data storage, collection, and processing 
procedures within FIA. Batch mode processing improves 
efficiency by producing a predefined set of output reports, 
such as tables of estimates and graphics, during a single 
session. In setting up a specific QA query, the user can 
customize any input or output tables and charts. FIA data 
are brought into the tool directly from NIMS Oracle tables, 
as FIADB formatted tables, or as custom MS Access tables. 
User ‘wizards’ are utilized for quick access and ease of 
use in defining specific queries and outputs (fig. 2). The 
current version of the application works with FIADB 4.0 
(Woudenberg and others 2010) structure, however it is not 
currently designed for general public use, but rather accesses 
prereleased data to perform analytical QA procedures. Any 
FIA analyst can load standard (or customized) tables and 
perform the same set of QA checks on data from any State 
in the country. 

Estimation Engine
A key strength of QA Tools is the built-in estimation engine 
that uses estimation procedures as described by Bechtold 
and Patterson (2005). Prior to QA tools, an analyst who 
wanted to calculate summary estimates not included as part 
of standard output tables had to understand the NIMS table 
structure and estimation procedures well enough to make 
this calculation. This is not an easy task for new analysts. 
In addition, a further level of statistical understanding is 
required to produce error estimates. Each analyst develops 
their own method to perform these calculations, all with 
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varying degrees of complexity and ease of customizing for 
specific inquiries. QA Tools provides the user with easy 
access to a complex database and a simplified approach for 
obtaining estimates with sampling errors. Interface ‘wizards’ 
guide the user through a choice of either basic estimation or 
more advanced reporting. Advanced estimation calculations 
include adding custom tables, user defined variables, and 
custom sub-groupings for reporting. With the estimation 
engine in QA Tools an analyst can also more easily evaluate 
FIA data as a ratio of means (e.g., estimates on a per acre 
basis). 

Batch Processing
In addition to having the built-in estimation engine, another 
key strength of QA Tools is the ability for batch processing. 
The batch process approach allows each analyst to quickly 
produce tables and charts for error checking and QA 
documentation. QA Tools includes a ‘wizard’ to define and 
simplify a batch process session. Output tables and graphics 
are defined in report definition files (RDF) that can be saved 
for subsequent batch processing. These RDF files are loaded 
into a batch session and processed at one time. Each RDF 
file is simply a set of Extensible Markup Language (XML) 
code that tells QA Tools which input data to use, which 
statistical estimates or summaries are required, any filters 
applied to the data, format of the output table, and how to 
build each output graphic requested. The user can select an 
output table and/or graph for each report (fig. 3), and can 
designate where all input and output files are stored. Tables 
are output as MS Excel files and graphics are saved as 
either Joint Photographic Experts Group (JPEG) or Portable 
Document Format (PDF) files. Current and future releases 
of QA Tools include an initial set of RDF files that produce 
some of the nationally defined FIA tables.

With batch processing in QA Tools, analysts can now easily 
perform many QA checks by producing output graphics and 
tables, such as scatter and bar charts, for review. Scatter 
charts are useful for rapidly evaluating many individual 
measurement relationships at the tree level, such as diameter 
and height (fig. 4). Scatter charts also allow the analyst to 
quickly spot outliers or other unusual patterns in the data. 
Bar charts are another output graphic type available in QA 
Tools. Annual estimates of attributes such as forest area, 
tree volume, and tree biomass and their statistical reliability, 
can be depicted in bar charts if year by year regional 
stratification files were produced (fig. 5). A chart ‘wizard’ 
within QA Tools is available to help walk the user through 
the bar chart setup and evaluation process. Bar charts are 
useful as a QA check for errors or unusual changes over 
time within summary groups or series of estimates. Each 
batch process session can be saved as a Batch Definition 
File (BDF) which is essentially a set of RDF files that 
are processed at one time. Any BDF can be later loaded 
into QA Tools and reprocessed with the same dataset, 

applied to another dataset such as an added panel of field 
measurements or a dataset from another State. 

CONCLUSION

The objective of the analytical QA task team is to promote 
the collection and dissemination of high quality FIA data 
through the use of a nationally derived QA process. The 
task team is developing guidelines to facilitate this process 
and is promoting the development and use of analytical 
tools that support this objective. A nationally derived 
approach to QA promotes a consistent process across all 
FIA regions leading to the delivery of quality data products 
with known precision, completeness, representativeness, 
and comparability. Efficiencies are gained from national 
consistency because fewer resources go into maintaining 
separate processes, leaving more resources available to look 
at the data in greater detail and from many directions. 

Consistency facilitates a nationally cohesive program 
through thorough documentation of FIA processes and 
methodologies that benefits quality control and leads to 
greater transparency. Examples include a draft guide to 
prefield procedures, data collection protocols outlined 
in a national FIA field manual, a national PDR program 
(MIDAS) with accompanying documentation and error 
checking logic, and published FIADB documentation and 
user guide. In addition, changes and updates in NIMS 
procedures are applied more consistently when accompanied 
by documentation. Data delivery procedures and tools, such 
as standard tables and FIA Web tools have been developed 
to assist clients in obtaining information.

Consistency is also achieved through the development of 
QA Tools, a desktop application available to FIA analysts 
for performing analytical QA of unprocessed data and 
compiled estimates. The estimation engine within QA Tools 
provides a quick method to calculate summary estimates and 
sampling errors. Efficiencies are realized by using QA Tools, 
especially with the batch processing capability, enabling a 
large set of predefined analytical QA checks to be completed 
expeditiously each year. 
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Figure 2—QA Tools “New Report” layout shows the user interface 
when defining a new analytical QA check.

 

 
Figure 3—QA Tools “batch process” set-up window shows a group of selected, pre-defined QA checks 
that will be output as both tables and charts during this session.
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Figure 4—QA Tools scatter charts allow analysts to quickly evaluate many measurements for obvious data 
errors. 

 

 
Figure 5— Bar charts from QA Tools enable an analyst to evaluate a current estimate 
against previously collected data, providing a quick method to spot potential errors. 
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Abstract
The Resource Use section of the Forest Inventory and Analysis (FIA) 
Program has done a canvas of wood processing mills for timber product 
output (TPO) throughout the southern United States. Pulpmills in the South 
are canvassed on an annual basis, while all other mills (e.g., sawmills, 
veneer mills, etc.) are canvassed every two years. Attempts have been made 
to graph and map the amount of pulpwood harvested compared to the acres 
of forest treated (cut) in order to provide more information on harvesting 
rate or intensity (i.e., volume harvested per acre). It appears that one 
county’s worth of plots is not enough data to accurately estimate the cutting 
rate in a county. The authors advocate smoothing the apparent cutting rate, 
with one suggested model being logistic regression based on forest density 
and ownership patterns in a county. 

Keywords: Timber Products Output (TPO), Forest Inventory and Analysis 
(FIA), logistic regression, pulpwood harvest, harvesting rate. 

INTRODUCTION

Each year since at least 1953, the Timber Products Output 
(TPO) section of the Forest Inventory and Analysis (FIA) 
unit, or their predecessor programs, has conducted a canvass 
of pulpwood mills in the Southern United States. The data 
have been reported tabularly, by county, and by a variety 
of maps. Maps have included dot density maps, starting 
with Cruikshank (1954) to Bertelson (1972). Bertelson 
(1975) experimented with some type of contouring for the 
1974 report. Dennis May (1986) used raw choropleth maps 
(polygon maps with varying patterns to indicate the level of 
the response variable) for the 1984 report then experimented 
(1988) with a choropleth map based on acres of timberland. 
Johnson et al. (1997) used a choropleth based on acres of 
land, then used a choropleth based on acres of timberland 
(2010). 

FIA field crews collect data on survey plots—including 
whether trees were harvested or not. Another variable that 
field crews collect is: TRTCDx, where x = 1, 2, or 3, as 
appropriate. This is the “treatment code” that field crews 
believe a plot has received. For example, TRTCDx = 10 
indicates some type of cutting. Theoretically, a plot may be 
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cut twice, or even three times, in a cycle. In practice it will 
rarely happen more than once. In the Southern Research 
Station, if a condition of a plot receives TRTCDx =10, field 
crews will further classify that code into clearcut harvest, 
partial harvest, shelterwood harvest, commercial thinning, 
or timber stand improvement. In this study, all field calls of 
TRTCDx = 10 were used and weighted equally. 

Pulpwood production represents about 43 percent of overall 
harvesting (Johnson et al. 2009). However it would still be 
useful to see how the pulpwood canvass matches the Phase 
2 survey. 

The traditional calculation of acres treated per year is this 
one:

                                                                                             [1]

where

EXPCURRi is the current expansion factor for condition i,
ADJ_EXPCURRi is the adjustment factor for condition i,
CONDPROPi is the condition proportion of the plot in forest,
Ix is an indicator function for condition i; if TRTCDx = 10, then Ix = 
1, and 0 otherwise,
REMPERi is the remeasurement period for condition i.

ADJ_EXPCURR is an adjustment factor that compensates 
for inaccessible portions of otherwise accessible plots. 
REMPER is the time since the previous plot visit. In the 
case of a new plot, REMPER is assumed to be 5 years in the 
eastern United States and 10 years in the western United 
States (in the South, this restriction includes only western 
Texas and Western Oklahoma). See Rudis et al. (2008) and 
Harper (2010) for boundaries. Further details on the FIA 
database may be found in USDA (2007). 

In standard pulpwood reports, softwood and hardwood are 
broken out separately, however in the interest of brevity they 
have been combined for this analysis. Figure 1 shows a map 
of pulpwood harvest per treated acre. 
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 A CLOSER LOOK AT PHASE 1

There are 98 counties (parishes in Louisiana, but often 
called counties hereinafter) with pulpwood harvest data but 
no treated acres identified by the P2 FIA plots. 25 of these 
counties have less than 100 cords of production, but another 
25 counties show more than 10,000 cords of production. 
According to the FIA Database, there were about 357 billion 
cubic feet of wood on forestland on 257 million acres in 
the south. The average yield, then, is 19 cords per forested 
acre. Among 1227 forested counties, the median value is 
20.6 cords per forested acre, with the 95th percentile being 
35.4 cords per acre. The highest is Hampton City, VA at 
127 cords per acre, based on one plot, followed by Carlisle 
County, KY with 4 plots at 66 cords per acre and Fayette 
County, KY and then several counties at 52 cords per acre. 
So, some of the 15 counties in the 32 – 569 cords per acre 
range should be considered suspect as well. 

West Texas has 4 of 10 panels processed; West Oklahoma 
has no data processed at all. All other states have a full cycle 
of data. A cycle is a full set of plots. In general, there is 
one plot for every 5937 acres. Plots are divided into 5 to 7 
panels in the Eastern United States, and one panel is done in 
roughly one year. In the Western United States, the plot list 
is divided into 10 panels, with one panel done roughly each 
year. At the end of one cycle, the next cycle begins.

Only three counties stood out in the 2008 canvass in terms 
of infinite production per acre of timberland: Johnston 
County, OK is in west Oklahoma. Dallas County, TX shows 
a small amount of production but no timberland according to 
the Phase 2 survey. Orleans Parish, LA shows no forestland, 
let alone any timberland; it too shows a small amount of 
production. 

Potentially small amounts could be due to landowners or 
utility companies cutting down trees and sending them to 
a pulpwood mill. However, FIA’s understanding of urban 
forestry is too weak to model this sort of activity. 

A rigorous examination of the Phase 1 data shows that there 
just might be some forestland present in Orleans Parish. 
Phase 1 is the first phase of forest inventory. It involves 
taking a classified satellite scene, totaling the pixels, and 
overlaying the plots on the scene. EXPCURR is equal to the 
stratum size within a survey unit divided by the number of 
plots in the stratum. Results for the South Delta of Louisiana 
are shown in Table 1. 

Survey unit lines were established because FIA believed 
contiguous counties to be ecologically similar. If we apply 
these correction factors to the results specifically for Orleans 
Parish, we get the result shown in Table 2.

The phase 1 map of Orleans Parish is shown in Figure 2. 

The water layer was not used for plot stratification but it 
is included to give the reader context. One can see there 
are areas of likely forest in New Orleans East, between 
Interstate 510 and Bayou Sauvage National Wildlife Refuge, 
as well as on the West Bank of the Mississippi River near 
English Turn, and then a small amount along the intracoastal 
waterway.

While the method described in Table 2 gives the same 
number of acres in each survey unit as the current method, 
it distributes acres among counties differently. However 
there are no forested plots in Orleans Parish among which 
to distribute these acres. The current problem requires only 
calculation of forested acres rather than volume or biomass, 
but there are still no treated acres for Orleans or any of the 
other 97 county-equivalents with no observed cutting. 

A CLOSER LOOK AT TRTCDx

It would appear then, that one county’s worth of plots is not 
enough to accurately determine the cutting rate. The data 
need to be smoothed. There are many ways to accomplish 
this task. 

Reams and McCollum (1999) found that important factors 
in probability of harvest were geographic region and 
ownership. Other factors were trees per acre and stand 
diameter. 

It occurs to the authors that percent forest is a relevant factor 
as well, at least for privately owned forests. In most states 
the data appear to bear that out. For instance, in Louisiana, 
Figure 3 shows a graph of percent forest in a county to 
percent cut.

The regression line is a logistic regression, weighted by the 
number of plots, determined by the equation 

                                     ,
where Y is the percent of privately held acres treated and 
X is the proportion of acres in private forest, as a percent 
of total area of the county. The one severe outlier is St. 
Bernard Parish, based on two forested plots. Possibly there 
is particularly heavy cutting in this parish, but the cost of 
increasing the estimate in parishes with no observed cutting 
is reducing the high estimate of the high outliers as well. 

 
The results for public lands in Louisiana are shown in 
Figure 4. These results are quite a bit noisier. Grant Parish, 
home to the Kisatchie National Forest, is the one over 40 
percent publicly forested. The parishes with the highest 
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observed rates of public cutting are: Sabine (Ft. Polk), West 
Feliciana (Cat Island National Wildlife Refuge), Caddo 
(County/Municipal lands), and St. Landry (Other federally 
owned lands). 

Most other states have fairly similar graphs for private 
land. One notable exception is Kentucky; the regression 
line is nearly flat. Georgia’s and Mississippi’s graphs are 
somewhat less steep as well. Table 3 has coefficients for all 
the southern states. One can see that management patterns 
on public lands are relatively diverse. There may be some 
accessibility issues in Kentucky. There would appear to be 
too much cutting in lightly forested counties for all to be 
flukes. 
Another special case is Texas. Ordinarily, FIA processes 
Texas as though it were two separate states. From Figure 
6, one can see that there is valid reason for doing that. 
Open circles represent counties in East Texas, open squares 
represent counties in West Texas that did not appear on the 
TPO canvass, and filled circles represent counties in West 
Texas that appeared on the TPO canvass. Only the counties 
that appeared on the canvass were used to compute the 
regression. 

Public land in Texas has an extremely low cutting rate, as 
shown in Figure 7. The one outlier is Upshur County (other 
public land). 
 

RESULTS

The next step is to fit these coefficients with the Phase 1 
(not the raw Phase 2) derived area estimates, and divide the 
estimated treated acres into production. The combined result 
for softwood and hardwood is shown in Figure 6.

There are three counties with more than 32 cords per treated 
acre in the 2008 canvass, with Clay County, FL leading the 
way at 39 cords per treated acre. 

There were five counties with more than 32 cords per acre in 
the 2009 canvass, with Washington County, TN leading the 
way. 

CONCLUSIONS

The plan for the 2009 Southern Pulpwood Report, to be 
published in Fiscal Year 2011, is to use a method similar to 
this one. It marks a drastic shift in the way pulpwood data 
and FIA Phase 2 data has been processed and visualized. 
The authors welcome suggestions for improving the model. 
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Stratum Acres   Plots   EXPCURR   Percent 
              Forest 
Nonforest 10062566  1681  5985.955  0.53 
Nonforest Edge 669614  99  6763.374  13.54 
Forest 315246  46  6852.933  66.71 
Forest Edge 370913  76  4880.275  27.56 
        
Bottomland Hardwoods 2336656   333   7016.816   81.20 
Total 13754994   2235         

 

Table 1—Stratum statistics for the South Delta of Louisiana

1 
 

Stratum Acres   Plots   Percent   Forested 
          Forest   acres 
Nonforest 201061  31  0.53  1070 
Nonforest Edge 5381  1  13.54  729 
Forest 3965  1  66.71  2645 
Forest Edge 3243  0  27.56  894 
        
Bottomland Hardwoods 10487   0   81.20   8516 
Total 224137   33       13853 

 

Table 2—Stratum statistics for Orleans Parish, Louisiana
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State Year Private Public
b0 b1 b0 b1

Alabama 2008 -4.1648 1.3859 -3.7556 -9.6544
Arkansas 2008 -4.1318 1.7803 -4.6951 1.5249
Arkansas 2009 -4.1513 1.7245 -4.5311 1.1438
Florida 2007 -4.1368 1.0346 -3.9876 -3.0698
Georgia 2008 -3.5806 0.4201 -4.0208 -1.8821
Kentucky 2007 -3.6491 0.0664 -3.9594 -3.8556
Louisiana 2005 -3.7813 1.1720 -4.4667 2.3616
Mississippi 2006 -3.6625 0.4711 -4.317 0.6019
North Carolina 2007 -3.9513 0.7585 -5.1279 -0.4179
Oklahoma 2008 -5.2298 2.7946 -5.6821 3.5580
South Carolina 2007 -3.9947 1.1854 -4.2465 0.2546
Tennessee 2007 -4.7584 1.5121 -5.3849 -1.0712
Texas 2007 -3.9199 1.1900 -5.7037 7.3037
Virginia 2008 -4.6398 1.5253 -3.9773 -5.3726

1 
 

 

 Figure 1—Choropleth map of pulpwood harvest per treated acre, 
2008.

1 
 

 

 

Figure 2—Phase 1 map of Orleans Parish, Louisiana.

Table 3—Regression coefficients for southern states
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 Figure 3—Percent of county in private forest versus percent treated, LA 2005.

Figure 4—Percent of county in public forest versus percent treated, Louisiana 2005.



153

1 
 

 
  

Figure 5—Percent of county in private forest versus percent treated, Kentucky 2007. 
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Abstract
The U.S. Department of Agriculture, Forest Service, Forest Inventory and 
Analysis (FIA) program maintains the National Information Management 
System (NIMS) that provides the computational framework for the annual 
forest inventory of the United States. Questions regarding the impact of 
key elements of programming logic, processing criteria, and estimation 
procedures were raised by national FIA Information Management Band 
(IMB the review of the estimation procedures for forest “inventory” 
change, i.e. growth, removals, and mortality (GRM). The goal of the 
study was to review these questions and develop Decision rules to provide 
transparency to otherwise undocumented algorithmic pathways. These 
questions are important because they are the basis of FIA’s timber volume, 
tree biomass, and carbon stock GRM estimates for the United States. This 
study highlighted an incremental benefit of the annual system—the benefits 
of consistent rules, transparent methods, and reliable trend estimates for 
tracking forests in time and space accrue with each new panel. 

INTRODUCTION

The U.S. Department of Agriculture Forest Service, 
Forest Inventory and Analysis (FIA) program maintains 
the National Information Management System (NIMS) 
that provides the computational framework for the annual 
inventory of the United States. (NIMS version 4.0 was used 
for this study.) The NIMS algorithms process all FIA field 
and other base measurements and provide all classified and 
estimated data for the national web service (Woudenberg 
and others 2011). NIMS is continually being revised to 
incorporate new field protocols and variable definitions, 
eliminate regional differences, and improve estimation 
procedures. The algorithms contained in NIMS follow the 
work of Patterson (2005). Although NIMS is a national 
system, it still uses regional procedures for estimating 
volumetric variables: timber volume, tree biomass, and 

ALGORITMIC DECISION RULES FOR 
ESTIMATING GROWTH, REMOVALS, AND 
MORTALITY WITHIN A NATIONAL-SCALE 
FOREST INVENTORY (USA)
William H. McWilliams, Carol L. Alerich, William A. Bechtold, Mark Hansen, 
Christopher M. Oswalt, Mike Thompson, and Jeff Turner
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carbon. Some key stem measurements are diameter, height, 
and rotten or missing portion. Questions concerning the 
estimation procedures for forest “inventory” change; or 
growth, removals, and mortality (GRM) from the national 
FIA Information Management Band (IMB) have resulted 
questions regarding the impact of key elements of the 
programming logic, processing criteria, as well as estimation 
procedures. The IMB submitted these questions to the 
Techniques and Remote Sensing Band (TRSB) for decision 
rules. The TRSB convened the national Review Team. This 
paper represents the Review Team’s findings.

The goal of the study was to review these questions and 
develop Decision rules to provide transparency to otherwise 
undocumented algorithmic paths. More specific objectives 
include: compare of regional approaches, evaluate the 
impact of implementation options on the estimates, 
recommend implementation options for questions that 
significantly impact the results, and provide procedural 
recommendations for processing current and past GRM 
estimates. These questions are important because they 
are the basis of timber volume, tree biomass, and carbon 
GRM estimates for the United States. A national team was 
chartered to address these needs and to report findings. 

METHODS

This national Review Team was comprised of 
representatives of all FIA Bands with direct experience with 
repeated FIA measurements, specifically field protocols, 
information technology, estimation, and quantitative 
analysis. 
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A series of criteria were used for sensitivity analysis of the 
impact that decision rules have on NIMS GRM estimates. 
The decision criteria included the level and degree of impact 
on estimates, and the degree of concurrence among the 
reviewers. The level of impact includes frequency and scale 
of occurrence (state, regional, or national) and whether the 
algorithm is for periodic inventories or annual inventories. 
The degree of impact was estimated by running simulations 
under various scenarios. 

The NIMS algorithms contain many “pathways” for tree 
variables as they flow from input to output as volumetric 
estimates of average annual change. The complete NIMS 
system contains hundreds of thousands of program code 
and continues to expand. The pathways for “growing-
stock” trees are particularly intricate. NIMS includes major 
pathways for periodic-to-annual (P2A) and annual-to-annual 
(A2A) change components. The P2A pathways are much 
more complicated because of changes in measurement 
protocols, methods, and procedures both in time and space. 
The A2A algorithms center on measurements that have 
been common since their inception around 2000. The 
team focused on A2A for context in providing transparent 
decision rules for current and future needs. 

RESULTS

The national Review Team addressed nine questions. Some 
of these questions have been discussed for decades in 
various forms within FIA regions and national teams. The 
questions are listed below along with the Review Team’s 
final decision rules.

Question One: What should be done with trees that were 
recorded at T1 but missing at T2 with no explanation, or 
“non-reconciled” trees?

Decision rule: The occurrence of this situation is low and 
the degree of impact on estimates is very low. All trees 
loaded into the national database at T1 (Woudenberg 
and others 2011) must be reconciled and corrected at the 
regional level.

Regional estimation methods for reconciling parameters are 
a common theme in many of the questions. Each of four 
regional systems was built with specific models to predict 
volume for species or species groups. Independent variables 
typically include diameter, rotten portion, and other related 
variables, e.g. tree class. Approaches use modeled and 
measured independent variables and some use combinations 
of both. To illustrate one approach, NRS-FIA computes 
gross volume (cubic and board foot) using equations by 

Scott (1979 and 1981). The independent variables are 
diameter and merchantable length. Length is estimated using 
a taper model (Westfall and Scott In Press). Percent rotten 
cull is also modeled and subtracted to provide “net” volume. 
It is important to note that precision requirements are the 
same for regions.

Tree biomass, and hence carbon, is estimated using a 
national approach termed Component Ratio Method (Heath 
and others 2009), which provides national harmonization for 
these variables.

The national annual inventory GRM algorithm has 
introduced many improvements to existing systems. For 
example, a method for “growing” trees to the midpoint of 
the inventory cycle (2.5 years for a five-year cycle) replaced 
previously disparate methods. The overall net change 
is equivalent under the new and previous theories, but 
individual components of change will vary. Not all regions 
had fully developed approaches for these calculations when 
the approach was implemented.

Question Two: What should be done about trees that are 
measured at T2 and found to be too large to be considered 
ingrowth, e.g., missed at T1?

Decision rule: The degree of impact is low. It is 
recommended to follow current NIMS procedures with 
some added details. First, it is recommended to assign 
T1 tree status to “live.” Then use regional-scale growth 
estimators to calculate T1 tree diameter. This Rule is subject 
to two sub-rules: if a tree is alive at T2, set T1 and T2 tree 
status to live; if tree status is “dead” at T2, set T1 tree class 
to “rotten cull.” The Team determined it was not possible for 
a tree to be considered alive at T1 then missed and removed 
at T2 due to data recorder edit procedures.

Question Three: What should be done about species 
mismatches between T1 and T2?

Decision rule: The impact is low and occurrence is 
relatively rare. The NIMS procedures for current estimates 
do not consider species code at T1. No suggested change is 
recommended. The Team did note that this will introduce 
some minor discrepancies for “net change” estimates. This 
is because NIMS estimates volumetric variables in both the 
GRM and the inventory estimation modules. With- in the 
GRM context, net change is defined as gross growth minus 
mortality and removals. Net change can also be computed 
using inventory estimates by subtracting volume at T1 
from T2. With no discrepancies, the GRM and inventory 
modules would provide identical estimates of net change. 
Discrepancies should not be significant for population totals, 

Data Integrity
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such as the total volume of loblolly pine in Georgia. The 
discrepancy would be apparent for data cells or summaries 
with small sample size, e.g., loblolly pine in southern 
Georgia, on National Forest Land for growing-stock trees 18 
inches and larger only.

Question Four: What should be done about trees with very 
large positive values or negative growth values?

Decision rule: The impact on estimates for trees with growth 
that is outside a normal range is considered low. Currently, if 
the diameter measurements at T1 and T2 are not taken at the 
same height, NIMS recalculates T1 diameter and associated 
T1 attributes. It was decided that other valid negative values 
for change in these attributes should be allowed to flow 
normally, as is the case with height discrepancies.

Question Five: What should be done about trees that change 
tree class between T1 and T2 (growing stock to rough or 
rotten and rough or rotten to growing stock)?

Decision rule: This question required simulations of the 
various combinations of tree class for T1 and T2, as well as 
related implications for all the various sub-components of 
GRM, e.g. growth on mortality of growing-stock trees on 
land that changed from forest to non-forest.

After evaluation of simulated results of the pathways that 
such a growing-stock tree could follow, the decision rules 
included in Table 1 are recommended.

The purpose of changing T1 attributes is to ensure variables 
used for volumetric estimates are as consistent as possible 
across the Nation and that the approach is transparent. The 
reason for changing T1 variables when a tree class changes 
from rough or rotten to growing stock is that these are often 
due to inconsistent methods and have significant impact 
on GRM estimates for growing-stock trees. Changes from 
growing stock to rough or rotten occur naturally and often, 
and hence, should not be changed. Any changes are made at 
T2 to integrate with estimates that are calculated separately 
in the inventory and GRM algorithms. 

Monitoring real change in tree class is challenging 
because of objectivity in the classification. Suggestions 
for improved control include asking field staff to verify T1 
tree class for all re-measured trees. Procedures used at the 
Southern Research Station provide a model for national 
implementation. Some trees may need to be added to the 
national database prior to implementing the rules. For these 
trees, it is recommended that if the tree is alive at T2, tree 
class at T1 should be set equal to tree class at T2; it the 
tree is dead at T2, set tree class at T1 to “rotten cull.” In 

the highly unlikely event that a tree was live and missed at 
T1 and removed at T2, set tree class to “growing stock.” 
It should be noted that pathways for estimating growing-
stock GRM’s could be the most complicated programming 
component of NIMS.

Question Six: What should be done with trees that were 
classified as dead at T1 and found to be alive at T2?

Decision rule: The impact on estimates and frequency are 
both very low. This question addresses the same phenomena 
as Question Two and so, the decision rule for missing trees 
should be followed, i.e., compute missing variables using 
regional approaches.

Question Seven: How should NIMS accommodate storage 
of adjusted tree-level variables?

Decision rule: A fundamental paradigm of FIA has been 
that continuous improvement processes should address 
systematic differences in any field measurement or 
algorithm that is used to assign or estimate variable values, 
e.g., tree class, height, or rotten portion. This issue is very 
important because of the very large size and temporal nature 
of FIA data sets. It was decided that corrections to erroneous 
data should be replaced with corrected data; however, it is 
imperative that all original data is permanently archived and 
documented. The NIMS structure allows for this kind of 
archival and has more than one option that can be used.

Question Eight: Should trees with diameter measurements 
taken at different locations at T1 and T2 be used in GRM 
computations?

Decision rule: The degree of impact was considered low and 
the resolution follows other rules. These trees are used in the 
NIMS GRM calculations, so they are given T1 diameters 
and other variables needed to re-calculate volumes. As 
before, this assures consistent trend information to the extent 
possible.

Question Nine: Are denied/hazardous (DH) plots included in 
GRM calculations?

Decision rule: Access to the FIA samples can be denied by 
the landowner or have conditions too hazardous to conduct 
measurements (DH). The impact is considered to be non-
existent because Bechtold and Patterson (2005) reviewed 
this issue in forming the theoretical constructs for the 
national FIA program. The existing rules are: 

• if a sample is DH at T1 and visited at T2, do not include in 
GRM calculations, 
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• if visited at T1 and DH at T2, do not include in GRM 
calculations, 

• if a part of the sample is DH at T1 and fully measured at 
T2, the portion included at both occasions is used in the 
GRM calculations,

• if fully measured at T1 and partially DH at T2, the portion 
included at both occasions is used in the GRM calculations, 

• if partially DH at T1 and T2, the portion included at both 
occasions is used in the GRM calculation. 

DISCUSSION AND CONCLUSIONS

As part of the review process, the Team developed a set of 
tenets to guide the sensitivity analyses, e.g. future questions. 
The tenets include: maintain temporal consistency; provide 
balance between regional and national needs; emphasize 
the need for field-level checks for temporal consistency; 
allow for correction of variables with inconsistent temporal 
measures, recognize the need to re-process delinquent data 
sets to current standards by allowing as much field checking 
of previous measurements as possible; and archive all 
existing raw and computed data sets. These may be useful to 
others grappling with similar questions.

Many of the questions considered conditions with low 
occurrence and impact, however, trees with the conditions 
described can be problematic if they do not have a specific 
pathway to follow, e.g., contribute to the wrong change 
component/sub-component or follow a terminal pathway 
incorrectly. Growing-stock computations account for the 
majority of the GRM algorithmic pathways of NIMS and 
are quite complicated due to the number of pathways and 
junctures.

Efforts to develop nationally consistent and harmonized 
estimates of volume, wood and carbon weight should 
continue. Currently, modeled and measured independent 
variables are used in estimation and vary by region, e.g., 
height and rotten portion. As harmonization continues, the 
national system will continue to use models appropriate for 
the biomes that span FIA regions and become more seamless 
in application.

During the discussion of tracking trees and attributes over 
time, a related issue was noted that may need addressed in 
the future. It was clear that approaches and protocols for 
re-measuring trees with diameter measurement at the root 
collar are needed. All four regions of the country utilize 
root-collar diameter measurements and are challenged by 
the task of reconciling data and producing meaningful trend 
estimates.

It was very clear from this experience that the entire NIMS 
program code lacks the kind of documentation needed to 
understand the critical estimation components. The little 
information that is available publicly does not begin to 
address the need for transparency for details; although 
there is considerable documentation housed within regional 
FIA units. This report highlights the major incremental 
benefit of the annual system: the benefits of consistent 
rules, transparent methods, and reliable trend estimates for 
tracking forests in time and space accrue with each time 
step.

ACKNOWLEDGMENTS

The authors would like to thank John Couslton and Frank 
Roesch for providing important review comments.

LITERATURE CITED

Bechtold, William, A.; Patterson, Paul L., Editors. 2005. The enhanced 
Forest Inventory and Analysis program – national sampling design and 
estimation procedures. Gen. Tech. Rep.SRS-80. Asheville, NC: U.S. 
Department, Forest Service, Southern Research Station. 85 p

Heath, L.S.; Hansen, M.H.; Smith, J.E.; Smith, W.B.; Miles, P.D. 2009. 
Investigation into calculating tree biomass and carbon in the FIADB 
using a biomass expansion factor approach.In: McWilliams, W.; Moisen, 
G.; Czaplewski, R., comps. 2008 Forest Inventory and Analysis (FIA) 
symposium; 2008 October 21-23; Park City, UT. Proc. RMRS-P-56CD. 
Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky 
Mountain Research Station. CD.

Scott, C.T. 1979. Northeastern forest survey board-foot volume equations. 
Res. Note NE-271. Broomall, PA: U.S. Department of Agriculture, Forest 
Service, Northeastern Forest Experiment Station. 2 p.

Scott, C.T. 1981. Northeastern forest survey revised cubic-foot volume 
equations. Res. Note NE-304. Broomall, PA: U.S. Department of 
Agriculture, Forest Service, Northeastern Forest Experiment Station. 2 p.

Westfall, J.A., Scott., C.T. (in press) Taper equations for commercial tree 
species in the Northeastern U.S. Forest Science.

Westfall, J.A.; Frieswyk, T.; Griffith, D.M. 2009. Implementing the 
measurement interval midpoint method for change estimation.In: 
McRoberts, R.E.; Reams, G.A.; Van Deusen, P.C.; McWilliams, W.H., 
eds. Proceedings of the eighth annual Forest Inventory and Analysis 
symposium; 2006 October 16-19; Monterey, CA. Gen. Tech. Rep. WO-
79. Washington, DC: U.S. Department of Agriculture, Forest Service: 
231-236.

Woudenberg, S.W.; Conkling, B.L.; O’Connell, B.M.; LaPoint, E.B.; 
Turner, J.A.; Waddell, K.L. 2011. The Forest Inventory and Analysis 
database: database description and users manual version 4.0 for Phase 2. 
Gen. Tech. Rep. RMRS-GTR-245. Fort Collins, CO: U.S. Department of 
Agriculture, Forest Service, Rocky Mountain Research Station. http://fia.
fs.fed.us/library/database-documentation/ Accessed February 2011

Data Integrity



159

2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists

1 
 

 1 

Tree Class at T1 Tree Class at T2 Rule 

growing stock growing stock no change to the variable 

growing stock rough no change to the variable 

growing stock rotten no change to the variable 

rough growing stock change T1 value of tree class and 
percent cull to T2 values 

rough rough no change to the variable 

rough rotten no change to the variable 

rotten growing stock change T1 value of tree class and 
percent cull to T2 values 

rotten rough change T1 value of tree class and 
percent cull to T2 values 

rotten rotten no change to the data 

   

 2 

Table 1—After evaluation of simulated results of the 
pathways that such a growing-stock tree could follow, 
the following decision rules are recommended
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Abstract

We recently developed an assessment protocol that provides information 
on the magnitude, location, frequency and type of error in geospatial 
datasets of continuous variables (Riemann et al. 2010). The protocol 
consists of a suite of assessment metrics which include an examination of 
data distributions and areas estimates, at several scales, examining each 
in the form of maps, graphics, and summary statistics. In this study we 
have applied this protocol to the modeled total and species-level basal 
area/acre datasets recently completed for the eastern coterminous United 
States (Wilson et al. in review). We were interested in the answers to two 
questions: (1) how can assessment results be effectively presented over 
extensive areas, and (2) what is the accuracy of modeled datasets of much 
less common forest characteristics such as the presence of an individual 
species, and what might that tell us about the limitations of the current 
modeled dataset for other less common variables. Results from this study 
will help fine-tune the type of assessments applied and how they are 
presented in the metadata available with all geospatial datasets produced by 
Forest Inventory and Analysis (FIA). 
 
Keywords: Accuracy assessment, uncertainty, geospatial data, continuous 
variables, species distribution

INTRODUCTION

Modeled geospatial datasets benefit greatly from detailed 
accuracy assessment. Every geospatial dataset is a model 
of real conditions on the ground and thus inevitably 
contains some error. This error can take the form of 
truncated distributions, a loss of local variability, and/or 
an underestimation or overestimation of values that can be 
random (unsystematic error) or represent a bias (systematic 
error) across the entire dataset or in some areas. Similarly, 
the type of error present and its magnitude frequently varies 
with scale, and by the subpopulation being examined. 
Such inaccuracies do not usually render a modeled dataset 
useless, but these errors do affect interpretation and 
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AND TOTAL BASAL AREA PER ACRE 
DATASETS FOR THE EASTERN 
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appropriate use of the dataset, and may suggest different 
approaches for iterative improvement of the modeled 
geospatial dataset. In addition, for an assessment to be truly 
effective it must be consistent, to facilitate the comparison 
of results between datasets of the same variable, and timely, 
ideally available as soon as the dataset itself. In a previous 
study we developed a protocol for assessing geospatial 
datasets of continuous variables (Riemann et al. 2010). 
This protocol consists of a suite of assessment metrics that 
together describe the location of errors, the frequency of 
errors, the magnitude of errors, and the type/nature of errors 
(Foody 2002) (Canters 1997), and improves timeliness by 
taking advantage of USFS Forest Inventory and Analysis’ 
(FIA’s) existing extensive plot database as the reference data 
source. 

U.S. Forest Inventory and Analysis (FIA) is in the process 
of developing a broad set of modeled geospatial datasets 
of forest characteristics across the entire United States, and 
needs to provide information on the accuracies of those 
datasets in the accompanying metadata as soon as datasets 
are released. One such set of datasets has been produced 
using an approach developed by Wilson et al. (in review) 
and will soon be available for the coterminous United 
States. 

In this study we applied the existing assessment protocol 
to the eastern half of this extensive modeled geospatial 
dataset, and in particular to datasets of total basal area/acre 
(ba/acre) as well as six individual tree species ba/acre. We 
were interested in: 1) how assessment results could be most 
effectively presented for such extensive areas, and 2) the 
accuracy of individual species datasets given the wide range 
in their frequency of occurrence, in their spatial patterns of 
distribution, and in their level of canopy and/or basal area 
dominance in the stands in which they occur. 
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DESCRIPTION OF THE ASSESSMENT 
PROTOCOL

The protocol recommends a suite of assessments, including: 
• assessment of data distributions – at several scales
• assessment of overall agreement of area estimates – at 
several scales
• examining differences in local variability
• examining spatial and distribution patterns of local 
differences

First, assessment of data distributions is accomplished 
by comparing the empirical cumulative distribution 
functions (ecdf’s) of the modeled and reference datasets. 
A Kolomogorov-Smirnov (KS) statistic can also be used 
to summarize the largest distance between the two curves 
(Figure 1a). Second, assessment of overall agreement of 
estimates is accomplished by comparing a scatterplot of 
model-derived vs. FIA plot-based estimates against the 
1:1 line (Figure 1b). Metrics can be calculated from this 
scatterplot to quantitatively describe the overall agreement 
(agreement coefficient, AC), systematic agreement (ACsys), 
unsystematic agreement (ACuns), and root mean square 
error (RMSE) (Ji and Gallo 2006). Systematic agreement 
quantifies the difference between the 1:1 line and the 
geometric mean functional relationship (GMFR) regression 
line, which describes the level of bias present. Unsystematic 
agreement quantifies the level of scatter about the GMFR 
regression line, which describes the magnitude of remaining 
random or unexplained error. The GMFR regression line is 
used instead of the linear regression line because GMFR is 
a symmetric regression model that assumes both X and Y 
datasets are subject to error, unlike least squares regression. 
All three agreement coefficient metrics are symmetric and 
standardized, facilitating easy comparison between datasets. 
RMSE values are also symmetric, and are in data units, 
providing a measure of the magnitude of the error in data 
units. As many studies have pointed out, dataset accuracy 
changes with scale (e.g. (Blackard et al. 2008), (Nelson 
et al. 2009)). Thus, these first two assessments should 
be calculated at a range of scales to provide information 
on how dataset accuracy changes with scale. We have 
recommended choosing that scale at which we have 
reasonable confidence in FIA estimates (216,500 ha), plus 
one or two below and above that (Riemann et al. 2010). 

The third assessment examines differences in local 
variability (figure 1c), and the fourth examines the spatial 
and distribution patterns of local differences between the 
modeled and reference datasets, (figures 1d,e). These last 
two assessments can be effective if calculated at a scale at 
which a sufficient number of FIA plots are available to have 
reasonable confidence in the FIA plot-based estimates for 
mean, standard deviation, and a reasonably small confidence 
interval. When working with hexagons as the spatial unit, 

a hexagon 50 kilometers in diameter is 216,500 hectares 
in size and contains an average of 35 FIA plots (forest and 
nonforest) per hexagon. A full description of all metrics can 
be found in Riemann et al. (2010). A complete description 
of the Agreement Coefficient metrics can be found in Ji and 
Gallo (2006).

 The last two assessments calculate and present assessment 
results for local areas (i.e. at a fixed scale defining that local 
area) and can thus be easily expanded to cover large map 
extents without any loss of descriptive power for local areas. 
The first two assessments, however, are initially calculated 
for the dataset as a whole, making them less valuable as 
the extent of the dataset increases. Thus, when working 
with datasets as extensive as the Eastern CONtinental 
United States (ECONUS), calculating these metrics for the 
dataset as a whole is not sufficient. Over such a large area 
both the type and magnitude of errors can and will vary by 
region, and thus the summary metrics should be calculated 
and available by smaller regions as well as the dataset 
as a whole, which requires choosing both the regions of 
assessment and the scale at which it will be assessed.

In this study we calculated assessments using both level 
3 ecoregions and 3.5 million ha hexagons to examine any 
differences resulting from choice of region. We selected the 
78,100 ha scale because of its reasonably high comparative 
accuracies reported in the dataset-wide assessment (Figure 
2)—AC=0.95, ACsys=1.0, ACuns = 0.95. The 78,100 ha scale 
also represents a compromise between having a sufficient 
number of plots within each hexagon (an average of 20) 
so that the FIA estimate is a reasonably robust estimate 
of the mean for the area, and having a sufficient number 
of hexagons within each region so that there are enough 
points from which to calculate reasonably robust assessment 
metrics for each region, whether level 3 ecoregions or 3.5 
million ha hex-regions are used (Figure 3). With respect 
to the choice of region, ecoregions have the advantage of 
including the entire land area, and of dividing the area by 
one characteristic which could contribute to differences in 
accuracy, such as different ecosystem types. However, they 
have the disadvantage of varying widely in area (which 
means one cannot simply use the histogram to display the 
amount of area in each error category), of sometimes being 
very long and narrow and even containing exclusions which 
inevitably translates into a greater number of summary units 
(the 78,100 ha hexagons) that include area from neighboring 
ecoregions. Using a 3.5 million ha hexagon as the region 
of assessment has the advantage of being equal land area 
unless we include the edge hexagons that reach beyond the 
extent of the land area and plot data in the study. They have 
the disadvantage of not being based on any factor suspected 
of affecting accuracy other than geographic location, 
however since there could be many factors, perhaps this is a 
less important criteria. 

Data Integrity
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DESCRIPTION OF THE DATASETS

In this paper we assess datasets generated for the 
Eastern CONtinental United States (ECONUS) using 
an approach developed by Wilson et al. (in review), 
which is a modification of the gradient nearest neighbor 
technique developed by Ohmann and Gregory (2002). 
The approach uses MODIS (MODerate-resolution 
Imaging Spectroradiometer) composites taken from the 
entire growing season to take advantage of phenological 
differences between species, along with climate and 
topographic variables. The datasets are both modeled and 
output at a resolution of 250m (6.25 ha, 15.44 acre) grid 
cells. The technique uses a weighted nearest-neighbor 
approach, using the 2nd through 7th nearest neighbors, 
moderated by the proportion of forest pixels from the 2001 
National Land Cover Dataset (NLCD2001) within each 
grid cell. All grid cells have modeled estimates regardless 
of the proportion of forestland present within them. The 
approach modeled entire plots, and thus the full suite of 
variables (volume, individual species basal area, stand size 
structure, etc.) are essentially modeled together. The plot 
data used did not record tree data on nonforest plots even 
if trees occurred (Wilson et al. in review). Knowing basic 
details about the method used to produce the geospatial 
dataset being examined provides valuable information 
about model assumptions, data used, known smoothing 
applied, characteristics optimized for, etc., that can help 
interpretation of assessment results and the sources of 
different types of error found.

RESULTS/DISCUSSION

Assessment of modeled total basal area 
per acre dataset
Figure 2 presents results from the comparative assessments 
of data distribution and area estimates across four different 
spatial scales. From the information provided by the 
scatterplots and ecdf plots in figure 2, it is apparent that 
the modeled dataset is closely approximating plot-based 
estimates for total basal area by the 78,100 hectare scale 
when the entire dataset is assessed together. Agreement 
coefficient values are greater than 0.90 by that scale, and KS 
distance values are very small from the 78,100 to 3.5 million 
ha scales. 

In the choropleth map of local differences between model- 
and plot-based means at the 216,500 scale (Figure 4), 74 
percent of the hexagon means are within the bounds of the 
90th CI. Differences larger than that appear to be relatively 
scattered across the dataset, although there is more tendency 
for the modeled dataset to overestimate total ba/acre present 
(23 percent of the hexagons) than underestimate (3 percent 
of the hexagons), when compared to the plot-based estimate. 

The modeled dataset tends to overestimate with respect 
to plot-based means in areas with low or no total tree ba/
acre inventoried by the plots, such as the plains areas in the 
western side of the study area or southeastern Michigan. 
This is not surprising, given that basal area is modeled 
for pixels with tree cover, even if those trees do not fall 
within FIA’s definition of ‘forest land.’ In the graph of local 
differences sorted by increasing plot mean (figure 5), there 
does not seem to be much difference in this pattern across 
the range of ba/acre values. 

With respect to local variability (figure 6), the modeled 
dataset appears to retain the general pattern of local 
variability across the study area, but frequently 
underestimates that variability. This difference will reflect 
the difference in sample unit size between the two datasets 
– here between FIA plots measuring the landscape at a 0.06 
ha scale, and the modeled dataset describing the landscape 
at a 6.25 ha scale. However, local variability is considered a 
sufficiently important characteristic of modeled geospatial 
datasets to warrant its assessment as a description of the 
level of local spatial variability present in the modeled 
dataset, with the plot-based results providing an indication 
of the smaller-scale variability likely to be present in the real 
population. 

The accuracy presented in figure 2 for the entire area is 
relatively high, with agreement values at the 78,100 ha scale 
of 0.95 for AC, 1.0 for ACsys, 0.95 for ACuns, 4.35 (sq. feet 
per acre) for RMSE, and 0.13 for KS. Figure 7 presents 
these four assessment metrics for the same 78,100 ha scale 
by ecoregion and by 3.5 million ha hexagon. It is clear 
from these results that regional agreement metrics vary 
widely. For example, while national AC = 0.95, regional AC 
ranges from less than 0.4 to 1.0. Lowest values predominate 
in the northern plains region where the lowest total ba/
acre is found, however moderately to very low AC values 
are also found in the northeast and east sections as well. 
Systematic agreement metric values (ACsys), indicating 
the level and location of any bias present are much higher 
overall. However ACsys values still range from 0.76 to 1.0 
when calculated by local region, as compared to a national 
ACsys value of 1.0. Ecoregions with high ACuns values are 
those with the highest scatter about the GMFR regression 
line – suggesting those that are currently the most difficult 
to model given the current set of predictor variables used. 
Unsystematic agreement (ACuns) values are more similar in 
range and distribution to AC values, indicating the general 
dominance of unsystematic error in the overall AC values, 
with of course a few exceptions. When examined regionally, 
the magnitude of RMSE values appear to largely track the 
magnitude of total tree ba/acre present in each local region, 
with larger errors in areas with higher total ba/acre values. 
This is entirely understandable given that RMSE values 
are expressed in data units. The maps of KS distances are 



164

strongly driven by those areas where the plots measured no 
tree ba/acre and the model estimated some ba/acre greater 
than zero. Given the fact that FIA plots do not record any 
tree ba/acre if the plot is defined as ‘nonforest’ even if trees 
are present, while the data used in the modeling includes 
tree cover on all lands, it is understandable that this may 
occur. Thus, it would be helpful if one could calculate 
the KS distance between the two ecdf’s excluding that 
difference in the y-intercept, because we may be more 
interested in differences between the ecdf’s at other places 
in the plot, rather than the understandable and probably 
often reasonable differences in the y-intercept due to 
modeling ba/acre where the plots did not measure any. With 
the datasets examined here, original data distributions were 
very closely captured by the modeled dataset, so the only 
difference was really in the y-intercept. However this is not 
always the case (see Riemann et al. 2010). 

Some differences in results did occur when a different 
region was used. The most noticeable example was in the 
systematic agreement (ACsys) maps. Here the northwestern 
corner of the study area changes from having moderate to 
relatively high systematic agreement if examined by level 
3 ecoregion, to having much lower systematic agreement 
if examined by 3.5 million ha hexagon. There are several 
ecoregions that appear very different across many of the 
maps, such as those along the New York/Pennsylvania 
border, and a long thin ecoregion down the Appalachian 
mountains in east central U.S. This is likely due to the 
small size or long, thin shape of the ecoregions in question, 
and may be an example of the ecoregions picking up 
specific areas with different characteristics, while the 
hexagon includes enough adjacent area to smooth over 
these differences. Overall, the ecoregion maps indicate that 
users in the northeast corner may want to improve both the 
systematic and unsystematic error in many places, whereas 
the hexagon maps do not draw your attention to that area. 
Given their equal area and shape, the hexagons may provide 
a better idea of the spatial patterning of errors, with the cost 
that errors specifically associated with other region types 
may not appear as clearly. 

Assessment for species basal area per 
acre
Forestland occurs on many FIA plots in United States. 
Individual tree species, however, represent variables that 
are much less common. Even sugar maple, a relatively 
common species, occurs only 7.5 percent of FIA plots in the 
ECONUS area. Factors affecting how well an individual 
species is modeled include the number of plots available 
to model with, whether those plots reflect the full range of 
variation present over the study area, how dominant that 
species is where it occurs, and how correlated that species is 
with respect to the predictor variables used. In this situation, 
rare species, those with less specific site characteristics, 

those in the understory (when working with remotely sensed 
predictor variables), and those that occur at low densities 
when they do occur tend to be the most difficult to model 
accurately when they are modeled independently. One of 
the characteristics of the nearest neighbor techniques used 
to generate the modeled datasets being assessed here is that 
each species is not modeled independently, but rather all 
species are modeled concurrently. Thus, a relatively rare 
species which might not have a sufficient number of plots to 
model well on its own, may achieve a higher accuracy due 
to its correlation with other species which are more visible 
or site-specific. 

We assessed the modeled ba/acre datasets for six individual 
tree species, and present four of these species, sugar maple, 
flowering dogwood, eastern red cedar, and river birch, in 
more detail in figures 8-11. Results for selected summary 
metrics for all six species are presented in table 1. 

Sugar maple occurs on 7.5 percent of FIA plots in the 
ECONUS area, has a maximum ba/acre value of 188.7 
square feet per acre, and a mean of 14.4 percent ba/acre 
where it occurs. Figure 8 presents assessment results 
in terms of the scatterplot across four scales, and the 
comparison of modeled means to plot-based confidence 
intervals. The ecdf plot is not shown because it is so 
dominated by the large number of zero areas over this large 
an area that is has little story to tell. Assessment results 
for sugar maple are in general similar to the total ba/acre 
dataset, with AC values greater than .90 by the 216,500 
ha scale, and ACsys values greater than 0.95 by the 8660 
ha scale. The percentage of estimates at the 216,500 ha 
scale falling within, above, and below the 90th plot-based 
confidence interval are also similar to results for the total 
ba/acre dataset, although the spatial distribution of those 
values is of course somewhat different. Modeled estimates 
for sugar maple at this scale are much more likely to 
overestimate plot-based estimates in areas where it occurs at 
lower ba/acre levels, and underestimate plot-based estimates 
in areas where it occurs at higher ba/acre levels. 
 
Flowering dogwood is an intermediate and understory 
species that never reaches a very large size. It occurs on 
only 3.8 percent of ECONUS plots, and of the six species 
examined it has the lowest maximum ba/acre (42.8 sq. feet 
per acre) and mean percent basal area/acre (2.6 percent) 
where it does occur. Yet, despite this, dogwood was 
relatively well modeled (figure 9, table 1), reaching our 
target AC and ACsys values set for this study by the 866,025 
ha and 78,100 ha scales, respectively. Seventy-five percent 
of the modeled dataset is within the 90th CI at the 216,500 
ha scale, and the model more often overestimates dogwood 
in the remaining hexagons with respect to the plot-based 
means. The fact that dogwood does report relatively high 
accuracies despite its rarity may be due to its correlations 

Data Integrity
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with associated species, although we did not investigate this 
specifically in time for this study. 

Eastern red cedar occurs on 3.2 percent of ECONUS plots, 
similar to dogwood, although it has higher ba/acre values 
and represents a larger proportion of the stands where it 
occurs (figure 10, table 1). Results are similar to dogwood, 
with the exception that the model much more frequently 
predicts eastern red cedar in hexagons where the plots 
record none. Given the habit of cedar to occupy old field 
locations that may not yet qualify as forestland and thus not 
be recorded by FIA plots, this may be an example of the 
model picking up more of the species actually present than 
the FIA plots are detecting when they record trees on FIA-
defined “forestland” only. 

River Birch is an example of an extremely rare species, 
occurring on only 0.4 percent of ECONUS plots (figure 11, 
table 1). Because of the large number of hexagons without 
any inventoried or predicted river birch, a high percentage 
of modeled estimates at the 216,500 ha scale still fall within 
the 90th CI. However the scatterplots and agreement metrics 
reveal much higher systematic and random error, reflected 
in the low ACsys and ACuns (and AC) values, respectively. 
River birch is an example of a species that has poor overall 
accuracy in the modeled dataset, probably because of its 
rarity within the study area, and perhaps in combination 
with a wide spatial distribution and/or lack of association 
with other more common species. Regional examination 
of species assessment results would undoubtedly provide 
valuable additional information for users and should be 
added to the standard assessment protocol. 

CONCLUSION

Results indicated important regional differences in 
assessment metrics. For extensive geospatial datasets such 
as these ECONUS datasets, calculating additional agreement 
metrics by region better characterizes geographic differences 
in the magnitude and types of errors present in the modeled 
geospatial dataset. This may be sufficient basic information 
for the metadata, particularly when used in combination 
with dataset-wide scatterplot and ecdf results across several 
different scales. For application in a specific area, a user 
may want to additionally examine the scatterplots and ecdf 
plots at multiple scales for the specific area of interest to 
gain more insight into accuracy at that location as you move 
across spatial scales. 

There are many factors affecting the accuracy of an 
individual tree species, one of which is its rarity within 
the study area. Application of the protocol to individual 

species from the modeled pGNN dataset indicates a 
general tendency toward decreasing accuracy as a species 
becomes less common, although the threshold seems very 
low. In this ECONUS-wide assessment, modeled species 
datasets appeared to be reasonably accurate even when 
species occurred on only 3-4 percent of the plots, but were 
substantially less accurate when a species occurred on less 
than 1 percent of the plots. From our quick examination 
here of only six species, there did not appear to be a similar 
relationship between level of accuracy and low basal/area 
per acre values or low relative dominance. Results of the 
species assessment provide some indication of the scale(s) 
at which modeled datasets of rarer variables (e.g. river 
birch, occurrence of downed wood, etc.) are most consistent 
with the data from FIA plots. Regional assessment of 
accuracy will be important with individual species datasets, 
as assessment results may vary widely from the national 
values, particularly where a species is locally rare. 

This study further develops the minimum information 
that should be included in the standard metadata available 
with every FIA geospatial dataset. In addition to indicating 
the true accuracy of the dataset with respect to the real 
population on the ground, this assessment protocol provides 
an explicit description of how summaries generated from a 
modeled dataset relate to summaries generated directly from 
the FIA plot data. 
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Table 1—Selected assessment results for six individual species, sorted by decreasing agreement (AC and ACsys)
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Figure 1—Example assessment protocol used: a) assessment of data distributions with KS 
distance metrics, b) assessment of agreement between model- and plot-based means—in this 
example, AC = 0.80, ACsys = 0.84, and ACuns = 0.96, and RMSE = 3.9, c) comparing local 
variability, d) spatial pattern of local differences with respect to plot-based confidence intervals, 
e) pattern of those differences across the range of biomass values. Example is from assessing 
modeled datasets of biomass in Minnesota. 
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Introduction

The definition of forest land used by the USDA Forest 
Service’s Forest Inventory and Analysis program includes 
area, width, and density requirements. These requirements 
frequently exclude from the inventory any trees occupying 
narrow riparian corridors or linear tree plantings (e.g., 
windbreaks and shelterbelts). With recent attention being 
paid to such topics as bio-fuel production and carbon 
sequestration, motivation exists to account for trees outside 
the forest (TOF). Because much of the tree cover in the 
Plains States occurs as TOF as opposed to definitional 
forest land, alternative methods are needed for collecting 
and reporting information about landscapes dominated by 
agricultural practices. 

Methodology

Using aerial imagery from the USDA’s National Agriculture 
Imagery Program (NAIP), an object-based image analysis 
technique was used to identify and quantify tree cover. 
The technique was applied to 316 3.75’ x 3.75’ quarter 
quadrangles covering seven counties in the state of 
Nebraska. An area of approximately 3,525 square miles 
was mapped into the following categories: water, tree, 
agriculture/other vegetation, man-made, and other non-
vegetated (e.g., bare soil). In addition to area estimates, a 
series of descriptive measures was included to describe the 
spatial arrangement and extent of tree cover. The following 
metrics were calculated for each of the 7 counties: percent 
of county area, number of tree-covered patches, average 
patch size, minimum patch size, maximum patch size, 
largest patch index (percentage of tree cover area occupied 
by the largest patch), and patch density. 

A Framework for Reporting Tree 
Cover Attributes in Agricultural 
Landscapes
Dacia M. Meneguzzo and Greg C. Liknes

Results

Sample metrics are presented for Kearney and Nemaha 
counties in Figure 1 and Table 1. The majority of tree-
covered area (76 percent) in Nemaha County exists as 
large patches, i.e., those exceeding 10 acres in size. In 
contrast, most of Kearney County’s tree cover (82 percent) 
is comprised of patches that fall into the two smaller size 
classes. County differences in tree cover are characterized 
by additional metrics in Table 1. Nemaha County has a 
higher percentage of tree cover, a higher patch density with 
larger patches, and a much larger patch index, as 10 percent 
of the county’s tree cover occurs in one continuous patch of 
forest. 
 
Discussion

A method for mapping the extent and spatial arrangement 
of tree cover in agricultural landscapes has been developed 
using high-resolution imagery and object-based image 
analysis techniques. This method provides a useful 
alternative for describing TOFs and may complement 
traditional inventories of definitional forest land. The 
suite of metrics used here appears to capture important 
differences between counties with drastically differing 
composition of tree cover.
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Table 1—Metrics describing the extent and spatial pattern of tree cover in Kearney and Nemaha 
Counties, NE.

 

Figure 1—Distribution of tree-covered area by patch size class for 
Kearney and Nemaha Counties, NE.
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Abstract

In prior national mapping efforts, the country has been divided into 
numerous ecologically similar mapping zones, and individual models have 
been constructed for each zone. Additionally, a hierarchical approach has 
been taken within zones to first mask out areas of nonforest, then target 
models of tree attributes within forested areas only. This results in many 
models nationwide, which reduces the number of training points per model, 
increases the cost of the process, results in numerous seam lines, and 
complicates validation efforts. Consequently, we use response data based 
on photo-interpreted aerial photography and spatially continuous predictor 
data (Landsat imagery, topographic and other ancillary data) in five pilot 
areas across the country to explore the effect of the choice of modeling 
subpopulation on models of tree canopy cover. Using Random Forests as 
our predictive tool, we explore the consequences of modeling pilot areas 
alone, modeling groups of pilot areas, and modeling hierarchically within 
each pilot area. Recommendations are made for appropriate modeling 
subpopulations to be used in a nationwide tree canopy cover map.

INTRODUCTION

The Multi-Resolution Land Characteristics (MRLC, http://
www.mrlc.gov/) consortium has developed plans for the 
2011 National Land Cover Dataset (NLCD) which will 
include an approximate Anderson Level II classification, 
percent impervious surface, and percent tree canopy cover. 
Because it is central to its business needs, the US Forest 
Service, Forest Inventory and Analysis (FIA) program has 
assumed responsibility for the latter, and will be developing 
this Tree Canopy Cover (TCC) layer. Recently a national 
pilot project was launched to test the use of high resolution 
photography acquired though the National Agriculture 
Imagery Program (NAIP) coupled with extensive ancillary 
data layers through alternative sampling and modeling 
methodologies in support of this commitment. A number of 
studies have resulted from initial pilot analyses answering 
questions about alternative means to observe tree canopy 
cover (Frescino and others 2011), relationship between 
photo-based tree canopy cover and canopy modeled 
from FIA plots (Toney and others 2011), repeatability in 

CHOOSING APPROPRIATE 
SUBPOPULATIONS FOR MODELING 
TREE CANOPY COVER NATIONWIDE
Gretchen G. Moisen, John W. Coulston, Barry T. Wilson, Warren B. Cohen, 
and Mark V. Finco
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photo-interpretation (Jackson and others 2011), efficient 
sampling strategies (Jackson and others 2011), and, in this 
paper, choice of appropriate subpopulations over which to 
construct predictive models. 

Tree canopy cover in the conterminous U.S. is remarkably 
diverse. Previous nationwide mapping efforts, like that 
of the US Forest Biomass map (Blackard and others 
2008) , nationwide forest type and forest type group maps 
(Ruefenacht and others 2008), as well as Landfire (Rollins 
and Frame 2006) have tried to accommodate this diversity 
by using 66 different mapping zones (Homer and Gallant 
2001, Figure 1). In these efforts, mapping zones were 
modeled independently and in some cases forest masks 
were first developed, then models developed solely for 
the areas predicted to be forest. With most FIA mapping 
efforts, the sampling intensity of the training data is fixed 
at the nominal sampling intensity of the base FIA program 
(approximately 1 plot per 6000 ac). Therefore developing 
models for relatively small mapping zones decreases the 
number of training points available. Additionally, when 
small mapping zones are used the number of models 
increases which results in increased cost, seamline issues, 
and complicated validation approaches. Consequently, we 
used photo-interpreted data collected in five pilot areas 
in the conterminous United States to explore the effect of 
modeling over larger, more geographically diverse areas, as 
well as the value of empirically masking non-tree areas prior 
to modeling tree canopy cover.

METHODS

Data
Photo-interpreted percent tree canopy cover data from 
NAIP imagery was collected in 5 diverse pilot areas in the 
United States, including areas in Oregon, Utah, Kansas, 
Michigan and Georgia. Photo plots were collected on the 
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FIA grid, intensified 4-fold, and each photo plot consisted of 
105 dots distributed in a 90 m square area (Figure 2). Each 
dot was characterized as being a tree or not-a-tree, then 
the proportion of tree dots were summarized for each plot. 
This percent tree cover was used as the response variable 
in models described below. Predictor variables included 
Landsat-5 reflectance bands, 30 m elevation, transformed 
aspect, slope, topographic positional index, land cover from 
the 2001 NLCD, and Bailey’s ecoregions. Because many 
of the predictor variables originated from 30 m products, 
assignment to each 90 m plot was accomplished by taking 
a focal mean over a 3x3 window for continuous variables, 
and focal majority for the categorical variables. In addition, 
the standard deviations for all continuous predictor variables 
within the 3x3 window were included as predictor variables. 
Following findings presented in Tipton and others (2011), a 
subset of the total data available equivalent to the intensity 
of the FIA grid was used for modeling, and an equal size 
independent test set used for testing in these analyses. 

Model
Classification and regression trees (Breiman and others 
1984) are flexible and robust tools that are well suited to the 
task of modeling the relationship between a response and 
a set of explanatory variables for the purposes of making 
spatial predictions in the form of a map. These are intuitive 
methods, often described in graphical or biological terms. 
Typically shown growing upside down, a classification or 
regression tree begins at its root. An observation passes 
down the tree through a series of splits, or nodes, at which a 
decision is made as to which direction to proceed based on 
values of the explanatory variables. Ultimately, a terminal 
node or leaf is reached and predicted response is given, the 
mean of observations in the node for a continuous response, 
or a vote for a categorical response. (See De’ath and 
Fabricius 2000 for a thorough explanation, and Moisen 
2008 for a simple overview.)

Although classification and regression trees are powerful 
tools by themselves, much work has been done in the 
data mining and machine learning fields to improve the 
predictive ability of these models by combining separate 
tree models into what is often called a committee of experts, 
or ensemble. One such tool, Random Forests (Breiman 
2001) is receiving increasing attention in the ecological 
and remote sensing literature. In this technique, a bootstrap 
sample of the training data is chosen. At the root node, a 
small random sample of explanatory variables is selected 
and the best split made using that limited set of variables. At 
each subsequent node, another small random sample of the 
explanatory variables is chosen, and the best split made. The 
tree continues to be grown in this fashion until it reaches 
the largest possible size, and is left un-pruned. The whole 

process, starting with a new bootstrap sample, is repeated 
500 or more times. The final prediction is a vote (for 
categorical responses) or average (for continuous variables) 
from prediction of all the trees in the collection. All of the 
following analyses were fit using the “randomForest” library 
in R (Liaw and Wiener 2002).

Small vs. Large Mapping Zones
Using the training data sets described above, eight models 
of tree canopy cover were constructed. The first five 
were individual “pilot area” models for each of Georgia, 
Michigan, Kansas, Utah, and Oregon which only contained 
training data from each of their respective areas. The sixth 
model, called the “East” model used training data from 
GA, MI and KS, while the seventh “West” model used all 
the training data from OR, UT, and KS. The eighth model 
was called a “USA” model and used all the training data in 
all five pilot areas. These eight models were applied to the 
test data sets within each of the pilot area and the resulting 
metrics of the relationship between observed and predicted 
values in these test sets were compared. The metrics 
included: correlation, root mean squared error (RMSE), and 
slope of a regression line. Density plots of observed and 
predicted, which are like a continuous version of histograms 
reflecting the relative number of plots by tree canopy cover 
class, were also compared.

No-tree Mask
This analysis involves building two models for each pilot 
area. First, a binary response of “trees present” versus “no 
trees present” was modeled as a function of all the predictor 
variables, again using Random Forests. The probability 
of tree presence was predicted over the test data and these 
probabilities were then converted to binary “trees present” 
or “no trees present” using the prevalence of treed land 
in each area as the threshold. (See Freeman and Moisen 
2008a for a discussion of thresholding options). Using these 
predictions over the test data, assessments were made of 
the tree mask using the PresenceAbsence library (Freeman 
and Moisen 2008b) in R. This first tree presence model was 
then applied to the training data so that only those training 
plots predicted to have trees present were included in a 
continuous model of tree canopy cover, the second model. 
To validate the effectiveness of combining the first and 
second models, test data plots predicted to have “no trees 
present” from the first model were simply given a predicted 
tree canopy cover of zero, while test data plots predicted 
to have “trees present” were then assigned tree canopy 
cover predictions from the second model. This, in effect, 
empirically masks out areas thought to have no trees present 
at all. Comparisons of the final predicted versus observed 
tree canopy values in each pilot area (including treed and 
non-treed land) were done using metrics as above.

Cover Estimation
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RESULTS AND DISCUSSION

Small vs. Large Mapping Zones
Figure 3 illustrates the effect of increasing mapping unit size 
on map accuracy metrics, including correlation, root RMSE, 
and slope of a line fitted between predicted vs. observed 
values in the independent test set (with intercept term.) 
Interestingly, little difference between accuracy metrics is 
noted between the individual pilot area models, and models 
built for larger areas (East, West and USA models). Note 
that models built for large areas naturally included many 
more training plots. The only exception is in cases where 
model predictions were made over areas whose data were 
not included in that particular model. For example, the West 
model predicted over Michigan, or the East model predicted 
over Utah. In addition, density plots of the true tree canopy 
cover values in each pilot area were plotted along with 
densities obtained by applying the four classes of models 
(pilot, East, West and USA) to that same training data, as 
illustrated in Figure 4. As with the accuracy metrics, there 
was little difference in the densities obtained under the four 
modeling scenarios except in cases where no data from that 
particular pilot area was used in the model.

No-tree Mask
Figure 5 illustrates the results from the tree presence model 
in UT which were typical of the other pilot areas. The first 
graph (Figure 5a) is a Receiver Operator Curve (ROC Plot) 
indicating a strong model fit and high Area Under the Curve 
(AUC) value of 0.94. Here, sensitivity, or proportion of 
correctly predicted positive observations, reflects a model’s 
ability to detect a presence, given at least one tree actually 
occurs at a location. Specificity, or proportion of correctly 
predicted negative observations, reflects a model’s ability 
to predict an absence where trees do not exist. The second 
graph in this figure (Figure 5b) illustrates how measures of 
map accuracy change with different threshold values. In UT, 
approximately 70 percent of the land area had trees present. 
This graph illustrates how using prevalence as a threshold to 
convert probability predictions in to a presence-absence map 
resulted in maximizing map accuracy. 

Plots exploring the effect of first creating a tree presence 
model prior to modeling tree canopy cover are illustrated in 
Figures 6 and 7. Figure 6 illustrates the effect of using a no-
tree mask on map accuracy metrics, including correlation, 
root RMSE, and slope of a line fitted between predicted vs. 
observed values in the independent test set (with intercept 
term.) Little difference between accuracy metrics is noted 
between the unmasked, and masked approaches. In Figure 
7a, predicted tree canopy cover from a single unmasked 
model is plotted against the tree canopy cover response 
from the photo interpretation illustrating the tendency to 
predict canopy where no trees exist at all (the zero line on 
the x-axis). Next in Figure 7b, predicted tree canopy cover 

from the tree presence model followed by the masked tree 
canopy model is plotted against the tree canopy cover 
response from the photo interpretation illustrating a slight 
reduction in the number observations where canopy was 
predicted over no-tree areas, but also an increase in errors of 
false negative (the zero line on the y-axis). Finally in Figure 
7c, the predicted probability of having trees present from the 
tree presence model is plotted against predicted tree canopy 
cover with no masking, illustrating the strong relationship 
between masked and unmasked scenarios suggesting most 
of the necessary information may be contained in a single 
model. That is, an empirical mask constructed prior to 
modeling tree canopy cover may not be that effective in 
improving the final tree canopy cover map. Also shown in 
7c is the prevalence-based threshold in blue (~70 percent 
of the Utah pilot area is treed) above which plots are 
predicted to have trees. In addition, the pink vertical line 
illustrates a threshold a user might impose by applying a 10 
percent cover threshold to the predicted tree canopy cover. 
Interestingly, these two thresholding criteria applied to two 
different models identify very closely to the same sets of 
plots, again indicating not a lot of additional information is 
gained by hierarchically modeling tree/no-tree followed by 
tree canopy cover in an empirical fashion.

CONCLUSION

Random Forests is a flexible and robust tool for mapping 
tree canopy cover over large geographic areas. Although 
past nationwide mapping efforts have delineated many small 
mapping zones across the country, the analyses conducted 
here suggest that modeling over much larger zones does 
not compromise model fit. This provides an opportunity 
to decrease the cost of the mapping process, reduce the 
numerous seam lines, and simplify validation efforts. 
Still to be investigated, however, is the effect of modeling 
over larger units with decreased sampling intensity. This 
could further reduce sampling costs. In addition, modeling 
hierarchically by creating an empirical tree presence model 
prior to modeling tree canopy cover does not completely 
alleviate the problem of predicting tree canopy cover where 
no trees exist, and does tend to mask treed areas as no-tree 
erroneously. However, this does not diminish the importance 
of applying a variety of regionally-specific masks, such as 
water and impervious surface masks, to the final product.

Naturally, results from these pilot tests as well as those 
described in Tipton and others 2011, and Jackson and others 
2011 need to be confirmed over larger geographic areas. 
The NLCD Tree Canopy Cover project is entering the 
prototype phase. In this prototype, photo interpreted as well 
as ancillary data are being collected in two diverse areas, 
one approximately 49 million acres in size in the Interior 
Western U.S., the other approximately 59 million acres in 
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size in the Southeastern U.S. Prototype tests will be run to 
provide yet stronger basis for production mapping which is 
scheduled to begin in the fall of 2011.
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Figure 1—Mapping/modeling zones (Homer & Gallant, 2001) used in 
previous NLCD mapping efforts.

 

 

 

Figure 2—Five pilot areas including one each in Georgia, Michigan, 
Kansas, Utah, and Oregon. Photo-based sample plots were inter-
preted at 4 times the FIA grid intensity within each plot area. Each 
photo plot consisted of 105 photo points used to estimate percent 
tree canopy cover on the plots. 
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Figure 3—Correlation, RMSE, and slopes obtained in each of the 
five pilot areas when applying five different tree canopy models to 
independent test data. “Pilot” models (blue) included only training 
data from each individual pilot area. The “East” model (pink) 
included data from Georgia, Michigan, and Kansas. The “West” 
model (purple) included data from Oregon, Utah, and Kansas. And 
the “USA” model (red) included data from all the pilot areas. 

 

 

 

 

 

 

 

 

Figure 4—Density plots of tree canopy cover in independent test sets in three pilot areas, a. Oregon, b. Utah, and c. Georgia. Solid 
black lines reflect the “truth” from photo-interpreted data. Dotted blue lines reflect prediction from the individual pilot area models, 
then dotted pink, purple, and red from East, West, and USA models respectively.
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Figure 5—Results from the tree/not-tree model in UT. Plot a) is a Receiver 
Operator Curve (ROC Plot). Plot b) illustrates how using prevalence (indicated 
by the yellow star) as a threshold to convert probability predictions into a 
presence-absence map resulted in maximizing map accuracy.  

 

 

 

 

 

 

 

Figure 6—Correlation, RMSE, and slopes obtained in each of the 
five pilot areas when applying a tree canopy model without a mask 
(blue) versus a tree canopy model with an empirical mask (green) to 
an independent test set.

 
Figure 7—Scatter plots exploring effect of first creating a tree/no-tree mask prior to modeling tree canopy cover. In 7a, predicted 
tree canopy cover from a single unmasked model is plotted against the tree canopy cover response from the photo interpretation. In 
7b, predicted tree canopy cover from the tree/no-tree model followed by the masked tree canopy model is plotted against the tree 
canopy cover response from the photo interpretation. In 7c, the predicted probability of having trees present from the tree/no-tree 
model is plotted against predicted tree canopy cover with no masking, with the prevalence-based threshold shown horizontally in 
blue and threshold a user might impose by applying a 10 percent cover threshold to the predicted tree canopy cover shown vertically 
in purple. 
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Abstract
There are many factors that will determine the final cost of modeling 
and mapping tree canopy cover nationwide. For example, applying a 
normalization process to Landsat data used in the models is important in 
standardizing reflectance values among scenes and eliminating visual seams 
in the final map product. However, normalization at the national scale is 
expensive and logistically challenging, and its importance to model fit is 
unknown. Cost also increases with each location sampled, yet appropriate 
photo sampling intensity relative to the FIA grid has yet to be explored. In 
addition, cost is also affected by how intensively the photo plots themselves 
are sampled with a dot count, and the effect of reducing the number of 
dots on predictive models is also unknown. Using intensively sampled 
photo plot data in 5 pilot areas across the United States, we address these 
three cost factors by exploring the effect of a normalization process of 
Landsat TM data on model fits of tree canopy cover using Random Forests 
regression, the relationship between the sampling intensity of photo 
interpreted plots and model fit, and the relationship between the number of 
dots for each photo interpreted location and model fit.

INTRODUCTION

The National Land Cover Database (NLCD, http://www.
mrlc.gov/) for 2011 will contain a map of tree canopy cover 
that will be a spatially explicit map-based data on percent 
tree canopy cover is used for forest management, estimates 
of timber production, determining the potential for and 
extent of fire danger and other management issues across 
the United States. The 2001 NLCD provides map-based 
estimates of percent tree canopy cover along with land cover 
and percent impervious cover (Homer and others 2004). 
The NLCD is a periodic product with an update cycle of 
approximately five years. However, because of funding 
constraints the percent tree canopy estimates were not 
updated for the 2006 NLCD. For the 2011 NLCD the U.S. 
Forest Service Forest Inventory and Analysis program (FIA) 
will take the lead on developing the percent tree canopy 
cover layer.

SAMPLING INTENSITY AND 
NORMALIZATIONS: EXPLORING 
COST-DRIVING FACTORS IN NATIONWIDE 
MAPPING OF TREE CANOPY COVER
John Tipton, Gretchen Moisen, Paul Patterson, Thomas A. Jackson, 
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FIA is uniquely positioned to lead the development of the 
2011 NLCD percent tree canopy cover layer. First, FIA uses 
a probabilistic sample design that covers all lands (forest 
and non-forest) and can be easily intensified for geospatial 
modeling purposes. Second, the FIA program is beginning 
to make percent tree canopy cover estimates for all sample 
locations. This provides an opportunity to leverage data 
collected as part of the FIA program to develop predictive 
models used to produce percent tree canopy map products. 
To this end, a pilot study was carried out in 2010. The pilot 
study was designed to answer specific research questions 
and estimate costs for developing the 2011 NLCD percent 
tree canopy cover map. 

Creating a tree canopy cover product that encompasses 
the entire country presents many questions that must be 
answered before prototype or production mapping can 
begin. Consequently, a pilot project was launched that 
included five study areas, one each in Georgia, Michigan, 
Kansas, Oregon, and Utah. Within each study area, over 
two thousand photo plots were photo-interpreted by an 
interpreter looking at a grid overlaid on an aerial photo 
of each plot. At each of the 105 points on the grid, the 
interpreter determined if the point was a tree or not, and this 
response was used to calculate percent tree cover. 

Using data from the pilot project, several issues are 
addressed in this paper to support production of mapping of 
tree canopy cover nationwide. First, the number of samples 
plays an important role in the quality of the model. It is 
important to find a balance between the quality of model fit 
and concerns of cost. Second, normalization of Landsat TM 
images is important because adjacent Landsat scenes on a 
map are not taken on the same day. Because of this, when 
a mosaic of multiple images is constructed, there will be 
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seams in the image where the raw reflectance values for one 
image are not equal to the reflectance values of the adjoining 
image. Normalization of one image to another using the 
overlap between two images will remove the visual seam in 
a map, but the effect of normalization on how well a model 
predicts percent tree canopy cover has not been explored. 
Third, at each sample locations an estimate of percent tree 
canopy cover was made using a simple dot grid approach. 
The pilot study design used 105 dots however, if the same 
information can be obtained with fewer points, we can trim 
costs and maintain the quality of the model. Consequently 
in this paper, we explore the effects of sample size, 
normalization and number of dots on predictive models of 
tree canopy cover.

METHODS

Percent tree canopy cover data was collected for five 
study areas in the coterminous United States (Figure 2). 
The standard FIA sampling grid (1 plot per 2400 ha) was 
intensified fourfold to 1 plot per 600 ha using the techniques 
described by White et al. (1992). At each sample location 
a 105 point dot grid covering a 90m by 90m area was 
developed. At each of the 105 points, a photo interpreter 
determined if the point was a tree or not, by examining 
high resolution digital aerial photography collected in 
2009 (USDA 2009). The percent tree canopy cover for 
each sample location was defined as the number of points 
intersecting tree crowns divided by 105 and was used as the 
dependent variable for random forest model development. 

The independent variables came from a variety of sources 
but they were primarily Landsat 5 data and vegetation 
indices derived from Landsat data (e.g. normalized 
difference vegetation index, tasseled cap). Additionally, 
digital elevation models and derivatives (e.g. slope, 
aspect) were also used as potential independent variables 
for random forest model development. The Landsat data 
were available as normalized mosaics and non-normalized 
mosaics. Because each study area covered multiple Landsat 
scenes differences in spectral values among scenes arise 
because of differing collection data and atmospheric effects. 
The non-normalized data had no correction for these 
effects. The normalized data accounted for these effects by 
standardizing reflectance values from a target scene to a 
reference scene based on the overlap among scenes. 

The specific modeling tool used was Random Forests, 
implemented in R using the library RandomForests (Liaw 
and Wiener 2002). Random Forests is a machine learning 
process that uses decision trees for classification and 
regression. The algorithm computes many trees, with 
each tree getting a “vote,” with the final model being 

a majority decision (categorical variables) or average 
(continuous variables). For each node in those trees, a 
subset of explanatory variables is randomly selected and a 
dichotomous split in the data is made based on the largest 
decrease in the MSE of the data. To get the final model, the 
process is run for 500 trees, and the results are averaged. 
Each tree is constructed using a randomly selected set of 
the data where approximately one-third is held “out of 
bag” and can, therefore, be used as a validation data set 
and as a measure of model fit. Our measure of model fit is 
called pseudo R2 and it represents the relative amount of 
variation in the data that is explained by the model. Pseudo 
R2 is calculated as 1-MSE/Var(y) where the pseudo R2 is 
calculated individually for every tree in the forest, then 
averaged over all trees to compute the final value. 

To investigate the question related to sample size, we 
performed an iterative sampling process where, for each 
iteration, plots were randomly sampled from our study site, 
a model is fit using the RandomForest command, and the 
measure of model fit (pseudo R2) is recorded. Then, for 
the next iteration, the number in the sample was increased 
by 20 plot locations and so on until the number in the 
iterative sample equaled the total sample size for the study 
site. When plotting the pseudo R-squared values against 
the number of study site samples, we applied a lowess 
smoothing curve for each of the study site locations to get 
a visual indication of the asymptotic behavior. From this 
method, we were able to get estimates of the variance of 
the fit of the model as well as to determine the asymptotic 
behavior of model fit relative to sample size. 

The simulations described above were performed for both 
the data set that was normalized (corrected for differences in 
Landsat scenes) and for the data set that was not normalized. 
This allowed us to also explore the asymptotic behavior of 
the model fit relative to normalization.

The final question had to do with the number of dots used 
for the photo interpretation grid. For each study site we 
sampled 500, 1000, and 1500 study locations and calculated 
the percent tree cover based on randomly sampling a 
number of photo dots. We started with sampling one dot, 
and then fit a Random Forest model and recorded the pseudo 
R2. The process was then iterated, increasing the number 
of dots by one each time. In the plot of model fit versus the 
number of dots, we applied a lowess smoothing curve to see 
patterns in the simulations and to get a visual indication of 
the asymptotic behavior relative to number of dots. Also, 
estimates of the number of man-hours needed to complete a 
prototype of the same size with different number of sample 
plots and numbers of dots were produced. This assumed 3 
minutes for loading each sample plot picture and another 3 
minutes to count all 105 dots.

Cover Estimation
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RESULTS

From these simulations we were able to get an 
understanding of what intensity sampling intensity provides 
the most information for the least cost. In Figure 2 we 
call attention to the smoothed curve of pseudo R2 versus 
the number of sample plots for the non-normalized data 
in Oregon. Looking at the spread of the simulated model 
fits we see that between 1000 and 2000 sample plots the 
variation in simulated pseudo R2 drops off quickly. This is 
of interest because the default FIA sampling intensity grid 
for this study site is approximately 1500. A similar pattern is 
seen in Figure 3, in which the variation in simulated pseudo 
R2 drops off quickly between 1000 and 2000 sample plots 
for the other four study sites.

Figures 1 and 2 also show the effect of normalization on 
model fit. When looking at the plot of sample size versus 
pseudo R2 for Oregon in Figure 2 we see that there is little 
difference in the fit of our model with regards to whether the 
data was normalized or not normalized. When looking at the 
four plots in Figure 3 we see the same pattern in Georgia, 
Utah, and Michigan, but we have different results in Kansas. 
In the Kansas plot we see that the normalized data model 
outperforms the normalized data model, but the difference 
is small (at 4000 sample points the difference in pseudo 
R2 between the normalized and non-normalized models is 
about .03). These results indicated that normalization plays a 
very minor role in the quality of model fit, and we made the 
decision to consider only the non-normalized data set for the 
rest of the analyses.	

In Figures 3 and 4 we are looking at the plots of pseudo 
R2 versus number of dots on the photo grid. By looking at 
the plots of number of dots versus pseudo R2 in Figure 4 
we see that in Oregon we are not getting more information 
by including more than 40 dots. This is evidenced by the 
inflection in the lowess smoothing curve on the plot. The 
same pattern is repeated in Figure 5 for the other study 
sites. By combining the recommendations of using non-
normalized data and roughly 1000 sample plots per study 
site we are able to make estimates of the amount of man-
hours needed to complete a study site of similar size. Figure 
6 shows the amount of person-hours needed versus the 
number of photo interpretation grid dots for 500, 1000, and 
1500 sample plots. Using our assumptions that each image 
takes three minutes to load and three minutes to calculate 
tree cover using all 105 dots, we plotted the number of 
photo grid dots versus time for 500, 1000, and 1500 sample 
plots. From this we can see that if we used 1000 sample 
plots with 40 dots we would expect one person to finish all 
five study areas in about 12 weeks.

DISCUSSION

By looking at the smoothed curves for the non-normalized 
data in Figures 1 and 2 we see the relationship between the 
number of sample plots and the precision of the model fit as 
measured by pseudo R2. We see that between 1000 and 2000 
sample plots the variation in pseudo R2 decreases rapidly 
versus the number of sample plots when compared to larger 
sample sizes. This suggests diminishing returns in model 
fit when increasing the number of sample plots beyond 
values in the 1000 to 2000 range. This suggests that we can 
get good model relative to cost in the 1000 to 2000 sample 
plot range, which also happens to be approximately the FIA 
standard sampling intensity grid for each study site.

Choosing to use only non-normalized data to fit a Random 
Forests model has major implications for the budget of the 
project. Normalization is an expensive and time consuming 
process, especially on a scale the size of the entire United 
States. Our results indicate that the Random Forests model 
performs equally well using either normalized or non-
normalized data. From this result, we are able to make 
recommendations to get a higher quality product for less 
cost. However, the visual effects of not normalizing are still 
under investigation.

Because a human observer will be used to measure percent 
tree cover in the final product, using fewer dots will 
decrease the time the observer will spend on each photo, 
which will decrease the overall cost of the project. Since 
it appears that we gain little in terms of model fit when 
considering more than 40 dots, this suggests that we can 
reduce the person-hours needed for the prototype.

CONCLUSION

Because there are limited resources available it is important 
to get an understanding of the behavior of the sampling 
protocols and model fits relative to the costs of the process. 
The recommendations in this paper give guidelines for the 
next prototype phase of the NLCD Canopy Cover project.
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 Figure 1—Location and extent of the five pilot study areas.

 
Figure 2—Shows the pseudo-R2 values plotted against the number of plots sampled for Oregon for both the 
nomalized and non-normalized data sets with the solid lines representing a lowess smoothing curve.
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Figure 3—Shows the pseudo-R2 values plotted against the number of plots sampled for Georgia, Kansas, Michigan, and Utah for 
both the normalized and non-normalized data sets with the solid lines representing a lowess smoothing curve.
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  Figure 4—Shows the pseudo-R2 values plotted against the number of dots sampled for Oregon, for both the 500, 1000, and 
1500 sample plots with the solid lines representing a lowess smoothing curve.
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Figure 5—Shows the pseudo-R2 values plotted against the number of dots sampled for Georgia, Kansas, Michigan, and Utah, for 
both the 500, 1000, and 1500 sample plots with the solid lines representing a lowess smoothing curve.
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 Figure 6—Shows the amount of time to complete a prototype of 
similar size toon the five study sites versus the number of dots used 
in photo interpretation for 500, 1000, and 1500 sample plots. 
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Abstract
In preparation for the development of the National Land Cover Database 
(NLCD) 2011 tree canopy cover layer, a pilot project for research and 
method development was completed in 2010 by the USDA Forest Service 
Forest Inventory and Analysis (FIA) program and Remote Sensing 
Applications Center (RSAC).This paper explores one of several topics 
investigated during the NLCD pilot. We compared estimates of tree 
canopy cover derived by photo-interpretation (PI) of 1-m resolution NAIP 
imagery to modeled estimates based on field-measured tree data collected 
on FIA plots in five study areas in Georgia, Michigan, Kansas, Utah, and 
Oregon, and to direct measurements of canopy cover by line intercept on 
FIA plots in Utah only. Photo-interpreted NAIP overestimated tree canopy 
cover (+10 to +20 percent canopy cover) at forested FIA plot locations 
compared with ground-based estimates derived from stem-mapped tree 
data or line intercept field measurements. Oblique viewing angles at sample 
locations away from the image nadir, and excessive shadowing in some 
NAIP images, could be the primary reasons for overestimation of canopy 
cover by PI. We also examined canopy cover estimates derived from NAIP 
imagery using an automated algorithm implemented in image processing 
software, as an alternative to manual PI by humans. This initial test showed 
that automated PI of NAIP images by image analysis could be a feasible 
approach for generating canopy cover data at reduced time and cost, but the 
current rule set exacerbated the problem of overestimation.

INTRODUCTION

The National Land Cover Database (NLCD) comprises a 
suite of 30-m resolution map layers depicting land cover 
characteristics for the United States, developed by the Multi-
Resolution Land Characteristics Consortium (www.mrlc.
gov). The NLCD 2001 product suite included a percent tree 
canopy cover layer based on circa 2001 LANDSAT imagery. 
A decadal update to the NLCD 2001 products is scheduled 
to begin production in fall 2011. In preparation for the 
development of an NLCD 2011 tree canopy cover layer, a 
pilot project focused on research and method development 
was completed in 2010 by the USDA Forest Service Forest 
Inventory and Analysis (FIA) program and the USDA Forest 
Service Remote Sensing Applications Center (RSAC).

ASSESSING ALTERNATIVE 
MEASURES OF TREE CANOPY COVER: 
PHOTO-INTERPRETED NAIP AND 
GROUND-BASED ESTIMATES
Chris Toney, Greg Liknes, Andy Lister, and Dacia Meneguzzo

Chris Toney, US Forest Service, Rocky Mountain Research Station, Forest Inventory and Analysis, Missoula, MT 59808
Greg Liknes, US Forest Service, Northern Research Station, Forest Inventory and Analysis, St. Paul, MN 55108
Andy Lister, US Forest Service, Northern Research Station, Forest Inventory and Analysis, Newtown Square, PA 19073
Dacia Meneguzzo, US Forest Service, Northern Research Station, Forest Inventory and Analysis, St. Paul, MN 55108

Mapping tree canopy cover at continental scales involves 
developing empirical models to relate percent canopy cover 
from a set of reference locations to predictor variables 
derived primarily from satellite imagery. Reference data 
on tree canopy cover can be obtained by different methods 
including direct field measurements on FIA plots where 
available (e.g., Interior West FIA line intercept, USDA 
Forest Service 2007), estimates derived from models 
based on tree-level data (e.g., stem-mapping, Toney and 
others 2009), and estimates derived by sampling high-
resolution imagery using either human- or computer-based 
interpretation methods. In addition to differences in cost and 
processing time, each method of canopy cover observation 
entails different sources of error and bias relative to other 
methods. As a result, frequency distributions of tree 
canopy cover observations across the landscape may differ 
appreciably among different methods. The distribution 
of tree canopy cover in the reference data should largely 
determine the distribution of predicted canopy cover 
depicted in final map products, assuming reasonably good 
models.

This paper explores one of several topics investigated 
during the NLCD pilot. Our objective was to describe 
characteristics of and relationships between alternative 
measurements of tree canopy cover for reference locations, 
specifically, to compare estimates of canopy cover derived 
by photo-interpretation (PI) of 1-m resolution aerial imagery 
with estimates derived from field-measured tree data 
collected on FIA plots. We also examined canopy cover 
estimates derived from aerial imagery using an automated 
algorithm implemented in image processing software, as an 
alternative to manual PI by humans. 
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METHODS

Comparison of Photo-interpretation with 
Ground-based Canopy Cover Estimates
For the PI canopy cover estimates, a grid of PI locations 
was established across five study areas located in Georgia, 
Michigan, Kansas, Utah, and Oregon as part of the pilot 
effort (figure 1). The PI grid was designed as an intensified 
FIA grid so that a subset of the PI locations was coincident 
with the FIA sample locations within each pilot area. The 
aerial imagery used was natural color, 1-m resolution and 
obtained from the National Agricultural Imagery Program 
(NAIP) (USDA Farm Service Agency 2009). The PI method 
used 90 m x 90 m dot grids on 2009 NAIP imagery at 
each sample location, with 105 regularly spaced points in 
each grid classified by human interpreters as either tree 
canopy or not tree canopy. Shadowed areas were left to 
the interpreter’s judgment, and all 105 points in each grid 
were used for the canopy cover estimate. Percent canopy 
cover for the dot grid was calculated as the number of 
points classified as tree canopy divided by 105. In each 
pilot area, we included only the subset of PI locations 
that were coincident with entirely forested FIA plots (all 
conditions on the plot classified as forest), since FIA plots 
(or portions of plots) classified as nonforest lack any ground 
measurements from which a canopy cover estimate could 
be derived. We also included only the FIA plots that had 
been sampled within two years of the NAIP images (plots 
measured in 2007, 2008, and 2009 if available) so that the 
plot measurements would be reasonably concurrent with the 
NAIP imagery.

Ground-based estimates of tree canopy cover for the 
forested FIA plots were obtained by stem-mapping 
individual trees within each plot, and predicting the 
dimensions of each tree crown from stem diameter using 
published equations. Details of the stem-map model were 
described by Toney and others (2009). Canopy cover 
from the stem-map model is defined as an estimate of the 
vertically projected canopy cover of live FIA tally trees 
on the plot that are 1-inch diameter and larger. The stem-
mapping approach uses the spatial data on individual trees 
that are available for FIA plots, unlike the canopy cover 
estimate in the Forest Vegetation Simulator (Crookston 
and Stage 1999) which assumes that trees are distributed 
randomly within the stand for the purpose of overlap 
adjustment. The stem-map model was developed and 
validated with line-intercept field measurements of canopy 
cover (USDA Forest Service 2007) on approximately 
12,000 plots from the Interior West FIA unit (Idaho, 
Montana, Wyoming, Nevada, Utah, Colorado, Arizona, and 
New Mexico). Model predictions were compared to field 
measurements of canopy cover on 1,454 plots that were not 
used in model development. The mean absolute difference 
between field-measured and model-predicted values was 

± 7.9 percent canopy cover, with mean bias of -0.7 percent 
canopy cover. The relationship between field-measured and 
predicted values was linear with approximately constant 
variance and a correlation coefficient r = 0.875.

Since field-measured canopy cover was available from 
Interior West FIA but not from the other regional FIA units, 
we also compared PI canopy cover with line intercept 
canopy cover in the Utah pilot area. Line intercept canopy 
cover in Utah was measured with four 25-foot transects 
in each of four subplots per FIA plot, arranged in cardinal 
directions beginning 1 foot from the subplot centers. The 
length of crown interception of live tally trees was recorded 
along each transect. Canopy cover was calculated by FIA 
condition class within the plots, by dividing the total live 
crown interception length by the total length of transect 
within each condition (400 feet total transect length in plots 
where all conditions are forested). For plots in which more 
than one forest condition was delineated by field crews, 
plot-level canopy cover was calculated as a weighted 
average of condition-level canopy cover, weighted by 
the proportion of the total plot area that each condition 
occupied. Measurement precision of the line-intercept 
canopy cover was assessed by FIA using blind check plots 
during 2000-2003 (Pollard and others 2006). A target 
tolerance of ± 10 percent canopy cover was specified for the 
measurement. Blind check data showed that measurements 
were within tolerance 88 percent of the time, and were 
within 2x tolerance 99.1 percent of the time (n = 101 plots).

PI canopy cover was compared with ground-based canopy 
cover (i.e., stem-map modeled canopy cover, along with line 
intercept field measurements in Utah only) by qualitative 
analysis of scatterplots. The mean absolute difference was 
calculated as

 
where n is the number of plots, PIi is the PI canopy cover 
for plot i, and Gi is the ground-based canopy cover for plot i. 
Bias was assessed with the mean difference:
 

Automation by Object-based Image 
Analysis
An object-base image analysis (OBIA) approach was used 
to estimate tree canopy cover at 488 PI locations in the 
Georgia pilot area, as an initial test of the feasibility of 
automating the PI work flow. The OBIA method involves 
two steps: image segmentation and classification. Image 
segmentation divides an image into “spatially continuous, 
disjoint, and homogeneous regions” (de Jong and van 
deMeer, 2004), which are referred to as image objects. In 
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OBIA approaches, classification occurs on the image objects 
as opposed to individual pixels.The classification process 
involved separating image objects into “tree canopy” and 
“not tree canopy” categories. As a final step, percent canopy 
cover was derived by calculating the area occupied by image 
objects belonging to the “tree canopy” category and dividing 
by the total area of each image chip (i.e., the area sampled 
by the 90-m x 90-m dot grids).

Images were processed with eCognition Developer 
(v. 8.0.1), and both image segmentation and classification 
steps were included in a single rule set. A multi-resolution 
segmentation algorithm was used to segment each image 
(scale parameter: 30; shape criterion: 0.1), and utilized 
red, green, blue, near-infrared, and NDVI input bands. In 
the classification phase, NDVI was used to discriminate 
between vegetated and non-vegetated parts of each image 
chip. In order to separate tree cover from other vegetation, 
a series of expressions that used spectral and texture 
information were combined to identify tree-cover image 
objects.

RESULTS AND DISCUSSION

Comparison of Photo-interpretation with 
Ground-based Canopy Cover Estimates
Differences in size and shape of the sampled areas were 
responsible for some of the variability in the relationship 
between PI canopy cover derived from the 90-m dot grids, 
and canopy cover estimates derived from tree measurements 
on the four 24-feet radius subplots comprising each FIA 
plot location (figure 2). However, there was a consistent 
pattern of higher canopy cover estimates by PI compared 
with ground-based estimates. At forested FIA plot locations 
in the Georgia pilot area, PI canopy cover was higher than 
stem-map canopy cover by an average of 19, with a mean 
absolute difference of ±21 percent canopy cover (figure 3a). 
Eighty-five percent of the PI estimates at forested plots in 
Georgia were in the highest cover class of 90 to 100 percent, 
with a median value of 98 percent. Stem-mapped canopy 
cover in Georgia was more evenly distributed between 
50 and 100 percent with a median value of 80 percent. The 
pattern was similar in the Michigan pilot area where 
83 percent of the PI estimates at forested plot locations were 
in the highest cover class with a median value of 
100 percent, while the stem-mapped cover was more evenly 
distributed between 50 and 100 percent with a median value 
of 75. The mean difference was 24 percent canopy cover 
(figure 3b). At forested plot locations in the Kansas pilot 
area, PI canopy cover was higher than stem-map canopy 
cover by an average of 20, with a mean absolute difference 
of ±25 percent canopy cover (figure 3c). Variability and 
mean differences were lower in the western pilot areas. At 
forested plot locations in the Utah pilot area, PI canopy 

cover was higher than stem-map canopy cover by an 
average of 13, with a mean absolute difference of ±18 
percent canopy cover (figure 3d). As expected, a similar 
relationship was seen between PI canopy cover and field-
measured line intercept canopy cover on the Utah plots. PI 
canopy cover was higher than line intercept canopy cover 
by an average of 12, with a mean absolute difference of ±17 
percent canopy cover (figure 3e). At forested plot locations 
in the Oregon pilot area, PI canopy cover was higher than 
stem-map canopy cover by an average of 13, with a mean 
absolute difference of ±16 percent canopy cover (figure 3f).

A tendency for overestimation of tree canopy cover derived 
from NAIP imagery was expected due to off-nadir view 
angles and excessive shadowing in some images (Guess 
2010), but the magnitude of differences relative to ground-
based estimates has not been previously quantified. The 
viewing angle between camera and ground is variable within 
a NAIP image depending on distance from the flight line. 
Portions of an image near the flight line provide vertical 
viewing (near nadir), but with increasing distance from the 
flight line view angles become oblique (off-nadir). Trees 
viewed at oblique angles appear to occupy a greater area 
than their canopies actually cover with a vertical projection, 
and openings can be obscured (Guess 2010). Tree canopy 
measurements are expected to be most accurate near the 
image nadir (Korpela 2004). Shadowing can also be heavy 
in NAIP images due to sun angle and terrain. Excessive 
shadowing may lead to overestimation of canopy cover 
since shadows can make the canopy appear denser that it 
actually is, and shadows may cause additional difficulty 
in discerning non-tree background vegetation from tree 
canopy. View angles vary from location to location within 
images, and shadowing varies from image to image, so these 
sources of bias could be highly variable in magnitude. The 
current NAIP products do not include flight line data, so 
analysis of, and possible adjustment for these sources of bias 
do not appear feasible at present.

It is possible that the stem-map model underestimates 
canopy cover in some eastern forest types. The stem-
map model has two components. A geometric component 
involves overlaying the crowns of stem-mapped trees 
≥ 5 inches diameter on the subplot boundaries to calculate 
vertically projected canopy cover accounting for overlap. 
Crown dimensions are predicted from stem diameters using 
equations from Bechtold (2003, 2004), Bragg (2001), Gill 
and others (2000), and others. Trees ≥ 1 inch diameter but 
< 5 inches diameter are denoted as saplings in FIA protocols 
and are only measured in one 6.8-feet radius microplot 
within each FIA subplot. Since saplings cannot be stem-
mapped across the entire plot, the contribution of saplings 
to total canopy cover is estimated with a regression equation 
that includes predictor variables characterizing stand 
structure and the spatial pattern of overstory trees. This 
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empirical component of the stem-map model was developed 
using field data from the Interior West FIA unit, and has 
not been validated in eastern forest types. To the extent that 
eastern forest types tend to differ structurally from interior 
west types, especially if they tend to be more multi-layered, 
the stem-map model could underestimate the total canopy 
cover of trees ≥ 1 inch diameter on the plot. If this is true, 
then the magnitude of overestimation from photo-interpreted 
NAIP is probably overstated for the Georgia, Michigan, 
and Kansas pilot areas (+19 to +24 percent canopy cover 
on average). It is possible that the actual overestimation 
for these pilot areas is more similar to that reported for the 
western pilot areas (+12 to +13 percent canopy cover on 
average) where the stem-map model has known reliability.

Object-based Image Analysis
The OBIA method consistently overestimated tree canopy 
cover relative to human photo interpretation using a dot grid 
(figure 4). OBIA canopy cover was higher than PI canopy 
cover by an average of 11 (mean difference ranging from 
0 to 94). During the segmentation process, continuous 
image objects that included shadowed areas between or 
adjacent to individual tree crowns were created. As a result, 
it was expected the OBIA would tend to estimate a higher 
percentage of canopy cover than a human interpreter in 
areas with less dense canopies, which could be exacerbated 
in images with excessive shadowing due to low sun angles. 
Other issues such as variations in color and brightness 
among images and the limited contextual information 
due to the small image extents led to some difficulty in 
discriminating trees from other vegetation in some images 
(figure 5). Some of these problems could be overcome with 
additional development work on the OBIA approach. Once 
a rule set is developed, the approach requires little manual 
intervention and processing time is fast. In contrast to the 
stem mapping approach, the OBIA method does not rely on 
the availability of in situ tree data, and unlike human photo 
interpretation it is fully repeatable.
 

CONCLUSIONS

The use of photo-interpreted NAIP as reference data for 
continental mapping of tree canopy cover has important 
operational advantages. The generation of PI data does 
not require in situ tree measurements. In contrast, most 
FIA sample locations classified as nonforest by definition 
are not field-visited, even though many of these nonforest 
locations can have significant tree cover (e.g., urban and 
residential areas). Likewise, PI data can be collected 
relatively efficiently from an intensified grid, so that (at 
least low levels of) intensification are probably feasible 
within time and cost constraints, resulting in larger sample 
sizes and increased map accuracy. PI data from NAIP 

generally can be produced so that it is concurrent with the 
satellite imagery being classified. In contrast, the FIA grid 
is sampled on a 5-year (eastern U.S.) or 10-year (western 
U.S.) inventory cycle. Plot measurements that are disjoint 
in time from image acquisition dates may no longer reflect 
ground conditions accurately for the time period of interest. 
The spatial registration of reference locations with pixels 
in the satellite imagery also should be as accurate as 
possible to support the development of predictive models. 
The horizontal accuracy of NAIP is currently specified as 
“inspected locations match photo-identifiable ground control 
points with an accuracy of within 6 meters at a 95 percent 
confidence level” (USDA Farm Service Agency 2009). The 
90-m x 90-m dot grids used for PI in the NLCD pilot were 
positioned coincident with 3x3 pixel blocks on the 30-m 
LANDSAT imagery to be classified. Error rates for FIA 
plot coordinates have not been described systematically and 
could exceed NAIP specifications, and FIA plot footprints 
cannot be “snapped” to specific pixel configurations.

Photo-interpreted NAIP appears to overestimate tree 
canopy cover at forested FIA plot locations compared with 
ground-based estimates derived from stem-mapped tree 
data or line intercept field measurements. The magnitude 
of overestimation is likely in the range of 10 to 20 percent 
canopy cover on average, but with moderate to high 
variability that may be related to characteristics of the 
NAIP imagery. Oblique viewing angles at sample locations 
away from the image nadir, and excessive shadowing 
in some NAIP images, could be the primary reasons for 
overestimation of canopy cover. Map products developed 
from PI reference data derived from NAIP may depict 
canopy cover in forested areas that is too high on average, 
and the variability of mapped canopy cover in some forested 
areas could be artificially low if nearly all PI samples are in 
the highest cover class (90 to 100 percent canopy cover). 
Future research should consider the possibility of obtaining 
flight line information for NAIP images to test the feasibility 
of adjustments to PI canopy cover for view angle and sun 
elevation.

An initial test showed that automated PI of NAIP images by 
object-based image analysis could be a feasible approach 
for generating canopy cover data at reduced time and cost. 
An algorithm-based method also has the advantage of being 
fully repeatable. However, the rule set used in the present 
study exacerbated the problem of overestimation, resulting 
in percent canopy cover values higher by 11 on average 
compared with human PI of NAIP. Additional development 
work on the OBIA approach, ideally in conjunction 
with research on the effects of view angle and sun angle 
mentioned above, is warranted considering the potential for 
large gains in efficiency.
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Figure 1—Locations of five pilot study areas (black shaded) in 
Georgia, Michigan, Kansas, Utah, and Oregon.

 

 Figure 2—Example of a 90 m x 90 m grid containing 105 photo-
interpretation points on NAIP imagery used to estimate tree canopy 
cover, along with the 24-feet radius subplots of a coincident FIA 
sample location.
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Figure 3—Comparison of tree canopy cover estimated by photo-interpretation (PI) of NAIP 
images with canopy cover estimated from stem-mapped tree data at forested FIA plot 
locations in five pilot study areas in the US, and with canopy cover measured in the field 
by line intercept on forested FIA plots in the Utah pilot area only. The histograms for each 
variable are in the margins and the dashed line is the 1:1 line. a) 144 plot locations in Georgia, 
b) 89 plot locations in Michigan, c) 42 plot locations in Kansas, d) 159 plot locations in Utah 
(stem-mapped canopy cover estimates), e) 158 plot locations in Utah (line intercept canopy 
cover measurements), and f) 98 plot locations in Oregon.
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Figure 5—NAIP image chip on the left from Georgia, USA. The 
image on the right shows the classified image created using an 
object-based image analysis approach (dark gray = not tree canopy, 
light gray = tree canopy). The arrow indicates an area where grassy 
lawn was mistakenly classified as ‘tree.’
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Figure 4—Comparison of tree canopy cover as estimated by 
human photo-interpreters (PI) interpreters using a dot grid with 
canopy cover estimated by an object-based image analysis (OBIA) 
automated mapping approach for 488 locations in Georgia, USA.
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Abstract
The USDA Forest Service Forest Inventory and Analysis (FIA) program 
collects crown foliage transparency estimates for individual trees on 
Phase 3 (P3) inventory plots. The FIA crown foliage estimate is obtained 
from a pair of perpendicular side views of the tree. Researchers with 
the USDA Forest Service Southern Research Station have developed a 
computer program that uses a different approach to estimate transparency 
utilizing digital photographs. The program can compute individual crown 
transparency as well as canopy transparency (multiple crowns) from 
vertical photographs taken below the canopy. The pictures and results can 
be stored for multiple year evaluations of each plot.

INTRODUCTION

The Forest Inventory and Analysis (FIA) program of the 
USDA Forest Service is charged with the task of conducting 
large-scale vegetation surveys on forestland throughout the 
U.S. For every 6,000 acres of land, a permanent sample plot 
has been established where FIA field crews periodically 
collect data on forest type, site attributes, tree species, tree 
size, and overall tree condition. These sample plots are 
referred to as Phase 2 (P2) plots. On a subset of the P2 plots, 
forest health attributes are also collected. These plots are 
referred to as Phase 3 (P3) plots and there is approximately 
one P3 plot for every 16 P2 plots. Forest health attributes 
measured on P3 plots include tree crown conditions, 
lichen communities, understory vegetation, down woody 
debris, and soil attributes. As part of the crown condition 
assessment, the following crown measurements are 
collected: uncompacted live crown ratio, crown diameter, 
light exposure, foliage absent, density, foliage transparency 
and dieback. This paper will introduce a software 
tool developed by the USDA Forest Service Southern 
Research Station that can assist FIA with the transparency 
estimation portion of P3 inventories. The software, called 
ForestCrowns, measures individual crown transparency 
and canopy transparency from digital photographs taken 
vertically from the ground. 

A TOOL TO DETERMINE CROWN AND PLOT 
CANOPY TRANSPARENCY FOR FOREST 
INVENTORY AND ANALYSIS PHASE 3 
PLOTS USING DIGITAL PHOTOGRAPHS
Matthew F. Winn and Philip A. Araman

Matthew F. Winn, Forestry Technician, U.S. Forest Service, Southern Research Station, Blacksburg, VA 24060
Philip A. Araman, Research Team Leader, U.S. Forest Service, Southern Research Station

FIA FOLIAGE TRANSPARENCY 
ESTIMATION

FIA defines foliage transparency as the amount of skylight 
visible through a side view of the live, normally foliated 
portion of the crown (USDA Forest Service 2007). The 
“normally foliated” portion of the crown is where there 
is visible foliage, normal or damaged, or remnants of its 
recent presence. FIA crew members determine foliage 
transparency by first projecting a two-dimensional outline 
around the tree crown that extends from the live crown base 
to the top and outward to the branch tips. This imaginary 
outline will be the transparency rating region and can be 
thought of as shrink wrapping a side view of the live crown. 
Excluded from the rating region are dead branches in the 
lower live crown, snag branches, crown dieback (recent 
branch mortality), and areas where foliage is expected to 
be missing. Once the rating region has been established, a 
transparency reference card (figure 1) is used to estimate 
the amount of skylight that is or would be penetrating 
the foliated crown (expressed as a percentage of the total 
foliated crown area). Typically, an estimate is obtained by 
two crew members standing at perpendicular viewpoints 
from the tree and averaged.

FORESTCROWNS SOFTWARE

The ForestCrowns software tool provides an alternative 
method of measuring transparency using standard or fisheye 
digital photographs. Instead of estimating transparency 
from a side view, ForestCrowns uses an upward view of 
the crown and can estimate individual crown transparency 
as well as canopy transparency. Transparency, as defined 
by ForestCrowns, is the amount of skylight visible through 
all physically-present crown structures, including leaves, 
branches and fruit. The program can assess an entire image 
or select areas of an image and can also analyze multiple 
images together. Batch processing is also available, which 
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provides quick full-image analysis of multiple images. 
Assessment input and results can be written to a database for 
storage and imported back into the program later.

ForestCrowns consists of two windows: the Image window 
and the Data window (figure 2). The Image window contains 
the crown/canopy image to be analyzed, as well as, options 
for adding/removing images from an assessment, deleting 
previous assessments, and selecting the analysis region. 
The Data window consists of two tabs: Properties and 
Assessment. The Properties tab is where the user enters the 
input data associated with the analysis, including: tree ID 
and species (for individual crown analysis), location, photo 
date, analysis date, and comments. The Assessment tab is 
where the transparency estimates are displayed following 
analysis. Other features found in the Data window include 
the database menu and the batch processing option.

Photographing the Crown/Canopy
The foundation for the ForestCrowns analysis is the 
digital image of the crown/canopy. Prior to obtaining the 
photograph, the best photo location should be determined 
based on understory vegetation and lighting conditions. 
Dense understory vegetation can block the view of the 
canopy and produce inaccurate transparency results when 
the image is processed with ForestCrowns. Poor lighting 
conditions and shooting directly at the sun can also produce 
erroneous transparency estimates. The optimum photo 
location is away from dense understory vegetation and when 
the sun is not directly overhead.

One advantage of using photographic records is that 
differences in canopy and crown transparency can be 
detected in subsequent inventories. In order for the results 
to be comparable, however, the location and orientation of 
the photograph should be consistent from one inventory to 
another. Once the photo location has been established, it is 
documented using a combination of GPS coordinates and 
distances to adjacent trees. In addition, a permanent metal 
pin can be placed in the ground at the photo location. The 
camera is then mounted to a tripod, centered over the pin, 
and leveled to insure that the camera angle is truly vertical. 
The radial orientation of the camera is documented and 
subsequent photographs are taken at the same orientation. 
If a fisheye lens is used, care should be taken to insure that 
the photographer is below the camera and not included in 
the picture. During subsequent inventories, if new lower 
vegetation exists that impedes the photographic view of 
the canopy, either have another crew member hold the 
vegetation out of the frame of view or, as a last resort, 
relocate the photo location close to the original. 

Individual Crown Analysis
The first step in analyzing an individual tree crown using the 
ForestCrowns software is to upload the photo and enter the 

input data (figure 2). Next, areas within the crown that have 
sky in the background are delineated on the image using the 
rectangular selection tool, the elliptical selection tool, or a 
combination of both (figure 3). The greater the proportion 
of tree crown that is delineated, the more accurate the 
overall transparency estimate will be. After each area is 
drawn, the transparency for that region will be displayed 
in the Assessment tab of the Data window. In addition to 
the individual transparency values, the weighted average 
transparency value for all regions is displayed in the lower 
right corner of the window. For this example, the individual 
transparency values range from 6.87 percent to 32.07 
percent and the overall transparency value is 16.06 percent.

Canopy Analysis
ForestCrowns can determine canopy transparency from a 
single image or multiple images. To estimate transparency 
from a single image, the photo is first uploaded and input 
data entered as was done with the individual crown analysis. 
Next, the option to analyze the entire image is chosen under 
the selection menu. The transparency value of the entire 
image is then displayed under the Assessment tab (figure 4). 
For this example, the overall transparency value is 17.62 
percent. Additional images can be added to the assessment 
by clicking on the “Add Images” button. Once the additional 
images have been uploaded, each image is assessed as 
in the above example. The Assessment tab will show the 
transparency values for each individual assessment as well 
as the combined average transparency value for all photos. 
To quickly analyze a large quantity of photos for full canopy 
transparency, the user can run the batch processing function. 
Finally, to assess photographs taken with a fisheye lens, the 
elliptical selection tool is used to select the entire circular 
photo region prior to processing (figure 5). The transparency 
for the fisheye image example is 13.41 percent.

DISCUSSION

Foliage transparency, one of the key crown variables 
collected by FIA on P3 inventory plots, serves as an 
indicator of overall tree health. High transparency values, 
relative to what is normal for a species, indicate that a tree 
has less leaf area to capture sunlight for photosynthesis. 
Some of the factors that can cause an increase in 
transparency are disease, insect damage, or drought. Foliage 
transparency is important for classifying tree health, but it is 
one of the most difficult variables to measure.

Current FIA estimates of transparency can be very 
subjective (Ghosh and others 1995; Innes 1988). Some 
of the factors that can influence a field crew’s assessment 
are: background vegetation, foreground vegetation, tree 
height (distance to crown), weather and lighting conditions, 
observer training/experience, and observer perception. 
Background vegetation, which occurs in just about every 
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forest setting, blocks light and makes it difficult to see light 
coming through the crown of the tree being assessed. In 
addition, dense forest environments create a situation where 
it is difficult to determine which foliage belongs to which 
crown. Foliage that does not belong in the assessment may 
be included and foliage that should be in the assessment 
may be omitted. Another problem associated with dense 
forests is foreground vegetation, which can prevent the 
observer from viewing the full crown. Tall trees can 
also pose a problem for transparency estimation due to 
increased distance and viewing angle. Weather conditions 
can affect ratings by altering the amount of light available 
while making an assessment. Crown ratings done on sunny 
days can differ from crown ratings done for the same 
tree on overcast or rainy days. Finally, observer bias can 
significantly add to discrepancies in transparency ratings. 
Training and experience are just two of the variables that 
can add to observer bias, but the bottom line is that not 
everyone sees the same things in the same way.

Because of the subjectivity involved in current FIA crown 
rating procedures, we propose a more objective method 
of estimating transparency for individual tree crowns 
using digital photographs and the ForestCrowns software. 
Though the protocols for viewing and rating the crown are 
significantly different, ForestCrowns provides an unbiased 
estimate of transparency. The main procedural difference is 
that FIA uses a side view of the tree and rates the foliated 
area only, whereas ForestCrowns uses an upward view of 
the crown and includes all crown structures in the rating. 
Though some of the same variables that adversely affect 
FIA ratings can still come into play, the one important 
variable that is removed from the equation is observer bias. 
Another advantage of using a photograph is that it serves 
a permanent visual record of the tree crown at that time. 
Results of crown assessments from multiple inventory years 
can also be compared to detect changes in individual crown 
transparency.

One subplot-level variable not currently collected by 
FIA is canopy cover, or inversely, transparency. Canopy 
transparency can be a good predictor for understory plant 
survival, growth, and succession, as well as many other 
sub-story ecosystem functions. Adding a measure of canopy 
transparency to FIA inventories would not significantly 

increase data collection time and would provide additional 
useful data to land managers. What we propose is that 
four digital photographs are taken at each FIA plot [one at 
the center of each subplot (figure 6)], and then the images 
analyzed using the ForestCrowns software to determine 
transparency. Photographs can be taken with a standard or 
fisheye camera lens. In addition to providing an accurate 
estimate of transparency, the images can also be used to 
detect gaps in the canopy, which can indicate blow-downs, 
removals, or other tree mortality.

CONCLUSION

As part of FIA P3 inventories, crews measure a variety of 
health related tree variables, including foliage transparency. 
However, due to observer bias and other limiting factors, 
transparency estimates using current FIA guidelines can be 
very subjective. This paper proposes an alternative method 
of estimating crown transparency using digital photographs 
and crown analysis software developed by the USDA 
Forest Service Southern Research Station. The software, 
ForestCrowns, analyzes standard or fisheye photographs 
taken vertically from the ground and provides an accurate 
estimate of crown transparency. In addition to individual 
crown analysis, the software can also perform canopy 
transparency analysis. Our recommendation is to collect 
and analyze photos at each FIA subplot center. The photos 
would serve as permanent records of the canopy condition 
at the time, and the canopy transparency estimates derived 
from ForestCrowns would be a valuable addition to FIA 
inventory data. A future study is planned that will examine 
comparisons between crown cover estimates obtained from 
aerial photographs and ground-based estimates using the 
ForestCrowns software.
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Figure 1—Reference card used by FIA field crews to determine 
foliage transparency of tree crowns.

 

 

 

Figure 2—Screen shot of the ForestCrowns computer program showing the Data window with input parameters 
on the left and the Image window on the right.
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Figure 4—Delineation area and transparency results for canopy analysis using ForestCrowns.
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Figure 3—Sample crown delineation and transparency results for individual crown analysis in ForestCrowns.
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Figure 5—Delineation area and transparency results for canopy analysis of fisheye photograph using 
ForestCrowns.

 

 

 

 

 

 

 

Figure 6—FIA subplot arrangement and proposed canopy photo 
locations.
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Abstract
The USDA Forest Service Forest Inventory and Analysis (FIA) program 
has concluded that statewide urban forest inventories are feasible based 
on a series of pilot studies initiated in 2001. However, much of the tree 
crown data collected during inventories are based on visual inspection and 
therefore highly subjective. In order to objectively determine the crown 
characteristics of urban trees and assure reliability of the data, researchers 
with the U.S. Forest Service Southern Research Station have developed 
a computer software tool called UrbanCrowns that can potentially be 
used to assist with crown data collection on urban FIA plots. In addition 
to its operational use, the software can also be used as a training tool. 
UrbanCrowns analyzes a single, side-view digital photograph of an urban 
tree and computes crown measurements similar to those collected during 
FIA inventories. UrbanCrowns output includes estimates of crown height, 
live crown ratio, crown diameter, crown density, transparency, and crown 
volume. 

INTRODUCTION

Urban forests provide a wide range of aesthetic, health, 
economic, and environmental benefits to urban communities 
(Nowak and others 2007). For this reason, many 
municipalities conduct periodic inventories to quantify and 
characterize urban tree resources. These inventories are 
very useful when developing management plans at the local 
level but not suited for broader management planning at the 
state, regional, or national scale. Even though there is much 
urban inventory data available, the methods used to obtain 
the data and the type of data collected are not standardized 
among communities. In order to meet the needs of state 
and federal resource managers and to expand the range of 
data collection, the Forest Inventory and Analysis (FIA) 
program of the USDA Forest Service initiated a series of 
urban forest inventory and health monitoring pilot studies in 
2001. The purpose of the pilot studies was to determine the 
feasibility and logistics of conducting statewide urban forest 
inventories. 

AN ALTERNATIVE METHOD FOR 
ESTIMATING CROWN CHARACTERISTICS 
OF URBAN TREES USING DIGITAL 
PHOTOGRAPHS
Matthew F. Winn and Philip A. Araman
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FIA has long been responsible for conducting national forest 
inventories, but urban areas have always been excluded. 
This is because data collected are exclusively on lands that 
meet the specific definition of “forest” and urban forests do 
not meet this definition. The purpose of the urban inventory 
is to account for the trees in urban areas not measured 
during traditional FIA inventories. Since results from the 
pilot studies have shown that urban forest inventory and 
health monitoring data collection and analysis is feasible 
(Cumming and others 2008), annual FIA urban inventories 
are likely to continue sometime in the future if funded. 

The data collected on urban sampling plots include the 
standard FIA data as well as additional urban health 
monitoring variables, which are grouped into four general 
data types: plot, trees, tree damages, and tree crowns. The 
tree crown variables include: uncompacted live crown 
ratio, crown light exposure, crown position, crown density, 
crown dieback, foliage transparency, foliage absent, and 
crown diameter. Of all the data types, the tree crown 
measurements are the most difficult to obtain as well as 
the most subjective. For this reason, an alternative method 
of measuring urban tree crown characteristics has been 
developed and is presented here.

The USDA Forest Service Southern Research Station has 
developed a computer software tool to address many of the 
problems associated with urban tree crown measurements, 
both for FIA and municipal tree inventories. The software, 
called UrbanCrowns, analyzes digital photographs of urban 
trees and produces various crown metrics important for 
urban tree inventories (Winn and others 2010). Output 
produced by UrbanCrowns includes: crown height, crown 
diameter, live crown ratio, crown volume, crown density, 
and transparency. The program supports both broadleaf 
and coniferous tree analysis. The next sections describe the 
methodology currently used for FIA urban data collection, 
followed by a description of the UrbanCrowns software.
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CURRENT FIA URBAN DATA COLLECTION

FIA field crews periodically visit urban sampling plots 
and collect standard FIA data as well as additional urban 
forest health monitoring variables on trees and tree crowns. 
Crown variables collected during the inventory include: 
uncompacted live crown ratio, crown light exposure, 
crown position, crown density, crown dieback, foliage 
transparency, foliage absent, and crown diameter. FIA 
definitions and field measurement procedures for select 
crown variable are shown below (Schomaker and others 
2007).

Uncompacted Live Crown Ratio
Uncompacted live crown ratio is the length of a tree that 
supports live foliage relative to the actual tree length. First, 
the live crown base and the live crown top are established. 
The live crown base is the point of the lowest live foliage 
and the live crown top is the highest point of the crown 
containing live foliage. Uncompacted live crown ratio is 
then determined by dividing the distance between the live 
crown base and the live crown top by the total length of 
the tree. A reference card is typically used by FIA crews to 
estimate ratios (figure 1). The card is held parallel to the tree 
and moved closer and farther from the crew member’s eye 
until the zero mark is at the live top of the tree and the 
99 is at the base of the tree. The point at which the live 
crown base intersects with the reference card scale shows 
the uncompacted live crown ratio.

Crown Density
Crown density, expressed as a percentage, is the amount 
of crown stem, branches, twigs, shoots, buds, foliage, and 
reproductive structures that block light penetration through 
the crown. This includes dead branches and dead tops. 
First, a vertically symmetrical outline is visualized around 
the tree crown that extends from the live crown base to the 
top and outward to the branch tips. If the top is broken or 
missing, it is visually reconstructed before determining the 
density rating outline. The area within the imaginary outline 
is then compared to the crown density-foliage transparency 
card to determine the density (figure 1). Density is typically 
estimated by two crew members at perpendicular views 
of the tree. If ratings differ by more than 10 percent, they 
discuss the reasons for their ratings and the final rating is 
derived by averaging the two crew members’ final ratings.

Crown Dieback
Crown dieback is recent mortality of branches with fine 
twigs that begins at the terminal portion of a branch and 
proceeds toward the trunk. Only branch mortality occurring 
in the upper and outer portions of the crown is considered 
dieback. To estimate dieback, crew members first visualize 
an outline around the crown, extending from the live crown 
base to the top and outward to the branch tips. Next, the area 

classified as dieback is determined and compared to the total 
live crown area. Dieback is expressed as the percentage of 
the total live crown area that is affected. Crew members then 
compare their estimates and reach an agreement as to what’s 
recorded. 

Foliage Transparency
Foliage transparency is the amount of skylight visible 
through microholes in the normally foliaged portion of the 
live crown. Large holes, dieback, and dead branches are 
excluded from the estimate. Foliage transparency differs 
from density in that it ignores stems, branches, and fruits in 
the crown. Each crew member first draws an imaginary two-
dimensional outline around the live tree crown, similar to 
the region used to estimate dieback but in this case, dieback 
regions are excluded. Crew members then use the crown 
density-foliage transparency card (figure 1) to estimate the 
amount of skylight penetrating the foliated crown (expressed 
as a percentage of the total foliated crown area). Crew 
member estimates are compared, adjusted if necessary, and 
averaged to determine the final rating. 

Crown Diameter
Crown diameter is the average width of the crown, 
extending from the drip line on one side of the tree to the 
drip line on the opposite side of the tree. The drip line is 
determined by projecting a vertical line upward from the 
ground to the outermost branch tip. Crew members measure 
the diameter at the widest part of the crown using a tape and 
then again at 90 degrees from the widest point. 

SRS URBANCROWNS SOFTWARE

UrbanCrowns is a software tool developed by the Southern 
Research Station that could potentially be used by FIA to 
obtain crown metrics on urban sampling plots. As opposed 
to FIA data collection methodologies commonly used, 
UrbanCrowns offers an objective approach to evaluating 
urban tree crowns. The software quickly calculates crown 
height, crown diameter, live crown ratio, crown volume, 
crown density, and transparency from a single digital 
photograph and several field measurements. The steps 
involved in the analysis process, including photographing 
the tree, gathering field data, and analyzing the tree image, 
are described below. 

Acquiring the Tree Photo
The first step in the analysis procedure is to acquire a single 
ground-based digital photograph of the subject tree. The 
UrbanCrowns computer program is designed to be used 
with basic digital imagery, so the use of specialized camera 
equipment is not necessary. The only requirements for the 
program is that the entire tree is visible and centered in the 
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photograph, there are no obstructions between the camera 
and the tree, and that a portion of the tree crown is free 
from background vegetation or buildings (meaning only 
sky in the background). This area will be used to estimate 
crown transparency which uses color contrasts to identify 
the crown. This means that the program cannot easily 
distinguish between foreground and background vegetation 
as well as filter out buildings and other man-made 
obstructions, depending on the contrast in color. Weather 
conditions can also affect the photograph, as they influence 
the amount of available light. Optimum lighting occurs on 
clear sunny days when the sun is high in the sky, and the 
camera should never be pointed directly at the sun. Since 
the photo is the basis for all analyses within the program, 
careful consideration should be taken when choosing a 
photo location. Realistically, it may not be possible to 
find a vantage point that satisfies all of the photographic 
requirements. If this is the case, the photographer should 
find the best photo location for the conditions but understand 
that it may affect the UrbanCrowns output. 

UrbanCrowns allows the use of only one photo by making 
the assumption that the tree crown is relatively symmetrical 
and that transparency and density are constant regardless 
of the vantage point. However, a single photograph 
of a significantly asymmetrical crown (such as a tree 
pruned around a power line) may not provide an accurate 
representation of true crown volume. If this is the case, a 
second photograph of the tree should be taken perpendicular 
to the first. Results can then be averaged to obtain the best 
possible estimates for that tree. 

Field Measurements 
In addition to photographing the tree, several tree 
measurements must also be collected. These measurements 
are necessary in order to scale the photograph within the 
UrbanCrowns program. First, the angles (in degrees) to 
the top and base of the tree must be measured using a 
clinometer or other vertical angle measuring device. The 
measurements should be taken from the same location and 
height at which the photograph was taken. The program 
also requires the horizontal distance (in feet) from the photo 
location to the trunk of the tree. This can be determined 
using a laser or sonic rangefinder or a tape measure. 
Several instruments are currently available that measure 
both horizontal distance and vertical angles from a single 
location, and though they cost a bit more than traditional 
measuring tools, they can significantly reduce the data 
collection time at each tree. Though not required by the 
program, the azimuth from the photo location to the tree 
should also be recorded. By combining the azimuth with 
the horizontal distance measurement, it will be possible 
to return to the original photo location during subsequent 
inventories. The program has the capability to store the 
azimuth and any other tree or site information (species, 

location, weather conditions, etc…) within that tree’s data 
file. 

Program Overview
The UrbanCrowns software is comprised of two main 
windows: the Tree Image window and the Data Control 
window (figure 2). The Tree Image window contains the 
uploaded photograph of the tree to be analyzed. All image 
controls are located in this window, including: opening, 
rotating, scaling, printing, and saving the image. The 
Data Control window is used for inputting data, initiating 
assessment, viewing output, and managing the database. 
Within the Data Control window, there are two tabs: 
Information and Assessment. The Information tab is where 
the user enters the input parameters for the tree image. 
The Assessment tab is where the results of the analysis are 
displayed once the image is processed.
 
Input Data
The first step in analyzing a tree crown is to upload the 
desired photo into the UrbanCrowns program. Once the 
photo has been uploaded, the field data and other input 
parameters are entered under the Information tab of the 
Data Control window (figure 2). The input consists of: tree 
ID, tree species, photo location, photo date, azimuth to tree, 
horizontal distance, angle to the top of the tree, angle to the 
base of the tree, and user comments.

Reference Lines
The next step is to draw a series of reference lines on the 
photo (figure 3). The first reference line (shown in yellow) 
extends from the base of the tree stem to the top of the tree 
crown, following the lean of the tree. This line, combined 
with the angle and horizontal distance measurements entered 
earlier, is used to scale the photograph (determine the actual 
area represented by each pixel). The second reference line 
(shown in pink) is a polygon drawn around the portion of 
the tree crown that is free from background vegetation or 
other obstructions. This is the area that will be used by the 
program to determine transparency and density. The final 
reference line (shown in blue) is another polygon drawn 
around the entire tree crown and is used to estimate crown 
volume. Note that neither of the polygons needs to be drawn 
close to the crown in areas that have a clear background. 
When the image is processed, the program shrink-wraps the 
selection regions so that they conform to the unobstructed 
outline of the tree crown.

Crown Assessment
Once the field measurements have been entered and the 
reference lines have been drawn, the image is processed by 
clicking on the Assess button in the Data Control window. 
The results of the analysis are then displayed under the 
Assessment tab (figure 4). For this example, the results 
are as follows: tree height and length are 42.6 feet, crown 
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height is 40.1 feet, crown diameter is 47.4 feet, crown ratio 
is 94 percent, crown density is 94.8 percent, transparency is 
5.2 percent, and crown volume is 43,041 feet3. Though the 
true crown volume can’t be determined without destructive 
sampling, all other output for this example are within 
5 percent of actual measurements obtained on site.

After an image is processed, a pop-up window will appear 
that contains a contour image of the tree (figure 5). The 
contour image shows the shrink-wrapped crown assessment 
areas that were used in the analysis. A summary page can 
then be printed that shows the input parameters, the output 
data, and the tree image including reference lines. The 
same information can also be stored in a database and later 
imported back into the program. Other available program 
options include saving the image and reference lines as a 
JPG file, saving the contour image as a JPG file, and saving 
the input and output data to a text file.

DISCUSSION

Many of the crown variables collected by FIA field crews 
during urban tree inventories are provided as output in the 
UrbanCrowns computer program. Overlapping variables 
include: crown diameter, uncompacted live crown ratio, 
transparency, and crown density. UrbanCrowns does not 
provide an estimate of light exposure, foliage absent, or 
dieback but it does provide an additional measurement 
of crown volume. Each of the overlapping variables, as 
well as the volume estimate produced by UrbanCrowns, is 
discussed in more detail below. 

Crown Diameter
Of the four variables, crown diameter is the only one 
measured directly by field crews. Since both methods 
of determining crown diameter rely on objective 
measurements, no improvement in accuracy is expected 
by using UrbanCrowns. In fact, if only one photograph 
is taken, the FIA method of averaging two perpendicular 
diameter measurements is probably a better representation 
of the overall crown diameter. One advantage of using the 
software, however, is that the diameter can be measured at 
a later date in the office, freeing up valuable data collection 
time in the field. 

Uncompacted Live Crown Ratio
Whereas crown diameter is measured directly at the tree 
by field crews, uncompacted live crown ratio is measured 
indirectly from a distance using the crown density-foliage 
transparency reference card. However, the fact that it’s a 
ratio and not a measured distance means that diminished 
accuracy is not likely. Both FIA field estimates and 
UrbanCrowns output should be comparable. Similar to 
crown diameter, the advantage of using UrbanCrowns 

to determine crown ratio is that the measurement can 
be performed at a later time, requiring less time for 
measurements in the field. 

Transparency
The methods used by FIA crews and by UrbanCrowns to 
determine transparency are somewhat similar but also have 
some differences. FIA estimation starts with creating an 
outline of the live crown that extends from the base to the 
top of the live crown and out to the branch tips. Dieback, 
dead branches, and large holes are excluded from the 
rating area. Crew members then estimate the amount of 
light penetrating the normally foliated portion of the rating 
region, ignoring stems, branches, and fruits.

Instead of rating the entire live crown, UrbanCrowns 
determines transparency from partial crown analysis (using 
only the portion of the crown that has no obstructions in the 
background) and assumes that the transparency of the partial 
crown is representative of the full crown transparency. 
Since UrbanCrowns cannot distinguish between foreground 
vegetation and background vegetation, the program is only 
able to analyze full crowns if the entire crown is free from 
background interference. However, realistically, it is difficult 
to find a photo vantage point that would allow for full 
crown analysis. Once the rating region has been established, 
UrbanCrowns measures the amount of light penetrating the 
crown, but unlike the FIA methods, does not exclude any 
crown structures such as branches or large holes. For this 
reason, UrbanCrowns does not use the FIA terminology 
“foliage transparency” but instead, “crown transparency.”

In summary, FIA measures the amount of skylight visible 
through the full foliated crown whereas UrbanCrowns 
measures the amount of skylight visible through all crown 
structures for a portion of the crown. Though these methods 
seem very different, there is one major advantage of using 
UrbanCrowns to compute transparency; it is objective. 
FIA transparency estimation, on the other hand, is highly 
subjective. Some of the factors that can contribute to 
discrepancies in visual estimation include: observer 
bias, observer training, weather and lighting conditions, 
background vegetation, and obstructions. With the increased 
likelihood of obtaining inaccurate transparency estimates 
using FIA methods, UrbanCrowns could be a viable 
alternative.

Crown Density
FIA defines crown density as the amount of crown structures 
blocking light penetration through the crown. The area used 
to rate crown density differs from the transparency rating 
region in that it assumes a symmetrical crown. Areas that 
would normally have crown structures if it were a perfectly 
health tree are included in the outline. UrbanCrowns, 
however, uses the same partial crown rating region that 
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the program uses to determine crown transparency. In fact, 
UrbanCrowns defines crown density as the complement 
of crown transparency (calculated by subtracting crown 
transparency percent from 100 percent). In other terms, 
crown density is a measure of the amount of crown 
structures blocking light within the partial crown rating 
region. Again, the methods used by FIA and UrbanCrowns 
to determine crown density are quite different. However, 
like foliage transparency, FIA density estimates are highly 
subjective while UrbanCrowns provides an objective 
estimate of crown density. 

Crown Volume
Accurate estimates of crown volume can be beneficial 
for predicting ecosystem functions such as carbon 
sequestration, rainfall interception, pollution removal, and 
surface temperature reductions. Crown volume of urban 
trees is typically calculated using allometric equations with 
crown length and crown diameter as the dependent variables 
(Schomaker and others 2007). One problem with using this 
method to determine crown volume is that it does not take 
the shape of the crown into account. Even by incorporating 
a shape variable into the equation, the assumption is still 
made that the tree is vertically symmetrical when viewed 
from the side. For an accurate estimate of crown volume, the 
true shape of the crown needs to be considered. 

The UrbanCrowns software is unique in that it can provide 
an accurate estimate of crown volume using only one 
photograph of the tree, and it does so without assuming 
vertical crown symmetry. Instead, it assumes that if you take 
a cross section anywhere in the crown, that cross section 
is circular. In a recent study comparing UrbanCrowns 
volume output to crown volume estimates obtained through 
traditional methods, a high correlation was found between 
the two (Patterson and others, in press). Though destructive 
sampling is necessary to determine the true accuracy of 
the program, the results suggest that the volume estimates 
produced by UrbanCrowns are reasonably accurate. To 
determine crown volume, the program first calculates the 
actual width and height represented by each row of pixels 
within the crown selection region. An imaginary cylinder 
is generated for each row of pixels that has a height equal 
to the calculated height of one pixel and a diameter equal 
to the calculated width of the row (figure 6). The volume 
estimates for each row of pixels are summed to obtain 
the volume estimate for the entire crown selection region. 
This estimate includes tree structure and void areas, so 
the volume is then multiplied by the crown density to get 
a volume estimate that includes tree structures only. This 
method of determining volume works well for crowns that 
are relatively symmetrical around the stem. For crowns 
that are significantly asymmetrical, such as trees pruned 
around power lines, it may be necessary to analyze a second 
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photograph taken perpendicular to the first and calculate the 
average volume.

Training
In addition to UrbanCrowns’ potential use in FIA urban 
inventories, the software could also serve as a valuable 
training tool for FIA field crews and trainers. Regional 
trainers currently train, test, and certify field crews for their 
ability to measure trees within the tolerances specified 
by the FIA program. For objective crown measurements, 
such as crown diameter and live crown ratio, the training 
is straightforward and success is probably not trainer 
dependent. However, for more subjective measurements 
such as foliage transparency and crown density, using 
multiple regional trainers to teach field crews can introduce 
individual trainer bias into the rating procedures. This can 
result in crown ratings that are not consistent at a broader 
level. Though there is no substitute for field training, the 
software could supplement current training programs 
and provide a standardized platform for learning crown 
measurement procedures, particularly with the more 
subjective crown measurements. In addition, the program 
can also be used to pre-analyze test trees used to certify 
trainers and field crews. This would provide objective 
estimates of crown features that student ratings can then be 
compared to.

CONCLUSION

As urban areas expand, statewide urban forest inventories 
(such as those conducted by the Forest Inventory and 
Analysis program) will become more and more important. 
However, current methodologies used by FIA to conduct 
crown assessments of urban trees are highly subjective. 
The UrbanCrowns software developed by the USDA Forest 
Service Southern Research Station could be a useful tool 
for FIA urban inventories, as it provides an objective and 
efficient means of determining various crown metrics. In 
addition to the program’s potential for operational use, 
the software can also be a valuable training tool for field 
crews. Crown measurements generated by UrbanCrowns 
include: crown diameter, uncompacted live crown ratio, 
transparency, crown density, and crown volume.
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 Figure 1—Front and back of reference card used by FIA field crews 

to estimate crown density, foliage transparency, and uncompacted 
live crown ratio.
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Figure 2—Screen capture of the UrbanCrowns program showing the Data Control window with input parameters on 
the left and the Tree Image window with uploaded image on the right. 

 
 

 
 Figure 3—Screen capture of the UrbanCrowns program 
showing reference lines drawn on the photo to calculate 
tree height (yellow), transparency (pink), and crown 
volume (blue).
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 Figure 5—Contour image generated by UrbanCrowns that shows 
the transparency and full crown regions used in the analysis.

 
 

 
 Figure 6—Illustration showing the method used by UrbanCrowns to determine crown volume.

 

 
 
 

 
 Figure 4—Screen capture of the UrbanCrowns Assessment tab 
showing the post-processing results of the crown analysis.
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Abstract
An evaluation of the agreement between photointerpretation- and LiDAR-
based estimates of canopy cover was performed using 397 90 x 90 m 
reference areas in Oregon. It was determined that at low canopy cover 
levels LiDAR estimates tend to exceed those from photointerpretation and 
that this tendency reverses at high canopy cover levels. Characteristics 
of the airborne imagery used, and, to a lesser extent, the density of the 
sampling point pattern employed and the occasional photointerpretation 
error inflated estimate discrepancies. Where available, LiDAR data 
can potentially be used to quantify the magnitude of error embedded in 
estimates of canopy cover obtained via photointerpretation. 

Introduction

Forest canopy cover is an important ecological indicator 
that is known to affect, among many other phenomena, 
near-ground solar radiation (Zou and others, 2007), tree 
regeneration (Stancioiu and O’Hara, 2006), and wildlife 
habitat (Ganey and others, 2008). It also plays a key role 
in estimating forest stand attributes from remotely sensed 
data (Jennings, 1999). The importance of canopy cover 
for national forest inventory operations has increased 
since the Food and Agriculture Organization (FAO, 2000) 
established the 10 percent canopy cover threshold as the 
universal criterion defining forest land. Prompted by this 
development, the Forest Inventory and Analysis (FIA) 
Program of the U.S. Forest Service has recently decided 
to adopt canopy cover as forest land determinant and it is 
now participating in an effort designed to model canopy 
cover across the conterminous U.S. Model predictions are 
based on Thematic Mapper imagery and ancillary data 
and will be organized in raster layers. A 5-year updating 
schedule is envisioned. Canopy cover estimates serving as 
training data for model development are obtained by manual 
photointerpretation (PI) of high-resolution airborne imagery. 

The term ‘canopy cover’ adopted by FIA follows the 
definition suggested by Avery and Burkart (1994) according 
to whom it is the percent forest area occupied by the vertical 
projection of tree crowns. In this definition, tree crowns 
are considered opaque or solid objects and it is implied 
that canopy cover estimates obtained in the field should 

Comparison of LiDAR- and 
photointerpretation-based 
estimates of canopy cover
Demetrios Gatziolis

Demetrios Gatziolis, PNW Research Station, dgatziolis@fs.fed.us.

only involve observations performed in the exact vertical 
direction. Dot count (Rautiainen and others, 2005), line 
intercept (Gregoire and Valentine, 2007) and moosehorn 
(Fiala and others, 2006) sampling techniques meet this 
requirement; hemispherical photography (Korhonen 
and Heikkinen, 2009), a popular alternative, does not, 
but, reportedly, the effects of the oblique angle view 
can be minimized by photograph post-processing. All 
these approaches for field estimation of canopy cover are 
logistically infeasible for a project with national scope. 
Estimates based on remotely sensed data are perhaps the 
only plausible alternative.

Spectral imagery acquired by airborne or satellite platforms 
conducive to unbiased estimation of canopy cover should 
have sufficiently fine spatial resolution that allows the 
identification of individual tree crowns or crown clusters 
and the delineation of between-crown openings (gaps), 
and narrow field of view centered at nadir (Korpela, 2004). 
Where the latter requirement is not met, trees depicted in 
high-resolution imagery exhibit substantial ‘layover’ or 
radial displacement of their crown tops relative to their 
bases that is intensified as the distance from the image’s 
nadir point increases. This displacement leads to partial 
obstruction of portions of a tree’s crown or of nearby canopy 
gaps, either by the tree in question or by its neighbors. 
Consequently, the minimum size of canopy gaps that can 
be reliably identified in such imagery increases with the 
distance from the nadir point, ultimately leading to bias 
in the estimation of canopy cover. Solar illumination and 
terrain conditions can inflate the bias.

High-density Light Detection and Ranging (LiDAR) data 
are far less susceptible to bias in part because they are 
independent of solar illumination and terrain conditions 
but primarily due to the fact that laser pulses are capable 
of penetrating tree crowns. LiDAR instruments emit short 
pulses of light propagated as a narrow beam towards 
illuminated objects and record the amount of energy that 
is backscattered to the sensor and the length of time that 
has elapsed. By processing this information the laser 
instrument identifies points, also known as returns or 
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echoes, precisely georeferenced in space, that correspond 
to the locus of the backscattering. Pulses illuminating 
hard objects (bare ground, building roofs, etc.) generate 
a single return. Objects that are not solid, for example 
tall vegetation, typically generate more returns along the 
pulse’s propagation trajectory. LiDAR data over forested 
landscapes comprise large sets of returns known as the 
return ‘clouds’ that represent sampling of terrain and 
vegetation materials. Therefore, unlike spectral imagery, 
LiDAR pulses can sample the portion of a tree crown, even 
its lower components, positioned away from the flight line 
of the airborne platform.

This study compares canopy cover estimates obtained via 
photointerpretation to those assessed from corresponding 
high-density LiDAR data across a variety of topographic, 
physiographic, and forest management conditions in 
Oregon. 

Methods

The 31500 km2, 75 km wide study area extends from the 
coastal mountains of Oregon, across the Willamette Valley 
and the Cascades, eastward to the nearly the Idaho border 
(Figure 1a), and it is sometimes known as the Oregon 
transect. It is one of the five pilot study areas selected 
for the national canopy cover project undertaken by FIA. 
Forests on the coastal mountains and the western half of the 
Cascades typically present with high canopy cover which 
is progressively reduced in the eastern part of the Cascades 
until the open forests of eastern Oregon are reached. Within 
the study area, 397 reference areas, each covering 90 x 90 
m and centered on FIA plot locations were identified as 
contained in high-density LiDAR acquisitions in the 2008 
– 2010 period. These reference areas will be henceforth 
mentioned as ‘plots.’ In each plot, a regularly-spaced 105 
point grid was superimposed on 1-m airborne National 
Agriculture Imagery Program (NAIP) data acquired in 
2009 (Figure 1b). Using the NAIP imagery as reference, 
experienced photointerpreters labeled each of the 105 points 
in each plot either as belonging either on a tree crown or 
background objects. Estimates of plot canopy cover were 
obtained as the ratio of tree points to the total.

To obtain the LiDAR-based estimates of plot canopy cover, 
the elevation value of each return was first converted to 
above-ground height by using a digital elevation model 
(DEM) also generated from the LiDAR data. All returns 
with height equal to or larger than a threshold were labeled 
as trees and the remaining ones as background returns. 
Three height thresholds (1, 2, and 3 m) were considered. 
Subsequently, raster representations of tree and background 
return frequencies were computed. Raster cells containing at 
least one return labeled tree were assigned a value of 1 while 

cells with only background returns were assigned a value of 
0. Cells with no returns were assigned a ‘nodata’ value and 
were excluded from further consideration. To ensure that 
the frequency of nodata cells, and therefore their effect on 
the canopy cover estimates, is minimized, the resolution of 
the raster frequency representation was set to the mean laser 
(footprint) spacing between spatially adjacent pulses. The 
plot estimates of canopy cover were calculated as the ratio 
of the value 1 cells to the sum of value 1 and 0 cells. This 
method for computing canopy cover estimates from laser 
data was evaluated using precise delineations of tree crowns 
detailed in Gatziolis and others (2010) and was found to 
not deviate by more than 3 percent from the field estimates, 
at least where the density of the LiDAR data exceeded 8 
returns per square meter.

To account for registration discrepancies between the 
LiDAR and NAIP data, all returns on and in the vicinity of 
a plot were jittered 200 times in two dimensions by using 
random azimuths and distances drawn from a -5 to 5 m 
uniform distribution. The magnitude of the jittering was 
determined by measuring the mean adjustment required 
to achieve spatial registration by ocular means. The mean 
LiDAR-based plot canopy cover was finally calculated from 
the 200 plot-jittering instances.

Results and discussion

The scatterplot of PI- vs. LiDAR-based canopy cover 
indicates that at low cover levels, PI tends to produce lower 
estimates (Figure 2) than LiDAR. At high canopy cover 
levels this tendency reverses. A second-order polynomial 
regression of PI on LiDAR estimates exhibits coefficient 
of determination R2 = 0.787 with the regression fitted line 
crossing the 1:1 one at canopy cover of approximately 
35 percent. This is in part because at very low canopy 
cover levels, trees in the landscape can be considered rare 
events that are not sampled adequately by the point pattern 
used. At high canopy cover, it is the openings or gaps 
within the crowns that are rare and undersampled. Given 
the 1 m resolution of the NAIP imagery, the horizontal 
footprint of either a small tree or canopy opening would 
have to exceed 4 m2, twice the square of the resolution, 
before it can be identified clearly. To both comply with the 
minimum identifiable object size requirement and avoid 
bias due to undersampling of rare events, the density of the 
point pattern would have to increase by at least an order 
of magnitude above the present level, an option which is 
logistically infeasible. 

Figure 2 features 3 plots with LiDAR estimates higher than 
60 percent and corresponding PI estimates lower than 30 
percent and another 3 plots with LiDAR estimates lower 
than 35 percent and PI estimates higher than 75 percent. 
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These plots and many others have been examined carefully 
using various ancillary data in an effort to identify the 
source of such large discrepancies between the estimates. 
It was determined that for all six plots photointerpretation 
error was responsible for the discrepancies. Among the 
most challenging plots ranked those with uniform hardwood 
tree crowns mistaken for grass or brush and those covered 
with snow at the time of the NAIP acquisition. Two other 
plots with large estimate discrepancy had sustained insect 
infestation, a condition not anticipated by the LiDAR-
based canopy cover estimation procedure which lead to 
overestimation. Smaller discrepancies were attributed to 
poor imagery quality, such as hazy conditions and lack of 
sufficient contrast.

In addition to the undersampling of openings, the PI 
overestimation of canopy cover compared to LiDAR was 
attributed to oblique NAIP imagery. In plots or stands with 
canopy cover higher than 50 percent, or even lower but with 
trees growing in clusters, the effects of imagery obliqueness 
are more pronounced. While only a small percentage of 
pulses had viewing angle greater than 10 degrees, for about 
1/3rd of the study area the effective view angle of the NAIP 
imagery exceeded that angular threshold. In the presence 
of tall vegetation, steep terrain and fairly low sun elevation 
angle, conditions that are actually the norm rather than the 
exception in much of the Pacific Northwest, crown openings 
are partially or completely obstructed from view. Unless the 
airborne imagery is acquired with long focal length lens, its 
information content may not be compatible with unbiased 
estimation of canopy cover regardless of the diligence and 
skill of the photointerpreter or the sampling intensity.

Overlays of the sampling point pattern with the NAIP 
imagery questioned the choice of regularity in the former 
for several plots examined. The arrangement of points in 
the pattern yields a 9-m distance between a point and its 
immediate neighbors. This point spacing is a multiple of the 
planting distance for many commercial forests in the Pacific 
Northwest. Although certainly not an issue in ‘natural’ 
forest stands, systematic sampling can have unintended 
implications where sample points happen to consistently 
lay on crowns or canopy openings. Alternatively, random 
sampling point pattern could perhaps be employed in 
regions with substantial component of commercial forests.

Modifying the object height threshold that separates trees 
from background objects was found to have a small overall 
effect on the agreement between PI and LiDAR estimates 
of canopy cover. For height threshold equal to 1 m, 2 m, 
and 3 m the root mean square discrepancy between the 
two types of estimates was 14.98, 15.20, and 15.92 percent 
respectively. For 21 plots, 5.3 percent of the total, increasing 
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the threshold from 1 to 3 m resulted in a more that 4 percent 
change in estimate discrepancy. It should be noted that 
within the study area there was hardly any portions with 
non-tree vegetation of mean height larger than each of the 
thresholds specified and for the majority of the open forests 
in eastern Oregon there is little or no understory. Such 
conditions facilitate precise estimation of canopy cover, at 
least for the LiDAR-based approach. In different biomes 
and dominant cover types, the distinction between tree and 
non-tree vegetation might be less clear. While LiDAR data 
do describe the vertical structure of vegetation, we are yet 
to see in literature methodologies and applications capable 
of accurately and consistently discerning bushes and brush 
from tree overstory. In such conditions, how well the height 
threshold selected represents the vegetation profile will 
likely determine the accuracy of the estimates obtained. 

Assuming that the LiDAR-based estimates of canopy cover 
are either unbiased or, if not, only marginally biased, the 
results of this study suggest that the PI-based estimates 
contain substantial bias at least for plots with low or high 
true canopy cover. Considering that the primary objective 
for the PI effort is to support the national canopy cover 
project, it should be concerning that the bias in the PI 
estimates will propagate through the modeling function 
and likely bias the outputs. Given the model structure types 
considered for the national project, it is unlikely that one can 
assess a priori the effect of the bias in the input to any bias 
in the output. Perhaps the only viable option is to repeat the 
modeling effort once with PI estimates as input and once 
with their LiDAR equivalent and compare the outputs, at 
least in regions where high-density LiDAR data is available. 
Such a comparison could lead to useful insights towards 
methodological improvement in the PI process and in the 
structure of models employed for future implementations of 
the national canopy cover project.

Conclusion

An evaluation of the agreement between PI- and LiDAR-
based estimates of canopy cover was performed using a 
large number of plots across a variety of vegetation and 
topographic conditions. The evaluation indicates that the 
agreement between estimates relates to the value of canopy 
cover. There is sufficient evidence to suggest that the PI 
approach tends to underestimate low and to overestimate 
high canopy cover. In addition to bias, PI estimates appear 
to be imprecise as well, in part because of the characteristics 
of the airborne imagery used. The magnitude of the bias can 
be quantified where high-density LiDAR data is available. 
Additional investigations are needed to determine if bias 
removal or reduction can be achieved.
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Figure 1—a. Study area (shaded rectangle) and State of Oregon boundary, b. 90 x 90 m sampling point 
pattern on NAIP panchromatic imagery for a randomly selected location.

Figure 2—Scatterplot of LiDAR-vs. photointerpretation-
based canopy cover estimates with 1:1 (thick) line and 
second-order regression fit (thin line).
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Abstract
A spatially-explicit representation of live tree canopy cover, such as the 
National Land Cover Dataset (NLCD) percent tree canopy cover layer, 
is a valuable tool for many applications, such as defining forest land, 
delineating wildlife habitat, estimating carbon, and modeling fire risk 
and behavior. These layers are generated by predictive models wherein 
their accuracy is dependent on the quality of the data used to train the 
models. This analysis compares several different methods for estimating 
live tree canopy cover, including ocular, image segmentation, and dot 
count assessments from digital aerial photography, as well as field-based 
measurements. 

INTRODUCTION

Tree canopy cover is defined as the proportion of the ground 
covered by a vertical projection of all the live tree canopies. 
A spatially-explicit representation of live tree canopy cover, 
such as the 2001 National Land Cover Dataset (NLCD) 
percent tree canopy cover layer, is valuable for many 
natural resource applications including: wildlife habitat 
models (Allen 1982; Kroll and Haufler 2006; Zarnetske and 
others 2007; Koy and others 2005), atmospheric carbon 
estimates (Nowak and Crane 2002), and fire applications 
such as FARSITE (Finney 1998). For strategic level forest 
inventories, such as the Forest Inventory and Analysis (FIA) 
program, percent canopy cover is also a very important 
measurement used for defining forest land. 

The NLCD originated in 1992 from the Multi-Resolution 
Land Characteristics (MRLC) consortium. This multi-
agency program was formed specifically to acquire Landsat 
data across the conterminous U.S. and to generate a 30-m 
pixel land cover map. In 2001, a second-generation land 
cover map was produced from more current Landsat 
imagery purchased by the MRLC. In addition, 30-m pixel 
maps of imperviousness and percent tree canopy cover were 
developed. A third generation map of land cover and second 
generation maps of imperviousness and percent tree canopy 
are currently in progress and slated for release in 2011.

COMPARING ALTERNATIVE TREE 
CANOPY COVER ESTIMATES DERIVED 
FROM DIGITAL AERIAL PHOTOGRAPHY 
AND FIELD-BASED ASSESSMENTS
Tracey S. Frescino and Gretchen G. Moisen

Tracey S. Frescino, Forester, USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, 84401
Gretchen G. Moisen, Research Forester, USDA Forest Service, Rocky Mountain Research Station, Ogden, UT, 84401

The NLCD 2001 map of tree canopy cover was produced 
by modeling a response of tree canopy cover as a function 
of an extensive database of predictor layers, including 
30-m resolution Landsat satellite imagery, digital elevation 
models, and other ancillary data that were meaningful to 
the model. Here, the tree canopy cover response (training) 
data were acquired using an automated classification of 
1-m digital orthophoto quadrangles (DOQs), along with 
extensive post-processing hand editing. Models were 
developed by mapping zones, dividing the landscape into 
relatively homogenous regions with respect to landform, 
soil, vegetation, spectral reflectance, and characteristics of 
the imagery (Homer and others 2004).

A number of accuracy assessments of the NLCD 2001 
tree canopy layer have been conducted, but their findings 
are inconsistent. For example, Homer and others (2004) 
reported mean absolute error averaging 10.8 percent based 
on cross-validation of per-pixel estimates from three 
different mapping zones. An evaluation of zonal estimates 
from the tree canopy cover layer compared to photo-
interpreted estimates from Google Earth imagery indicated 
an underestimation of tree canopy cover by an average of 
9.7 percent consistently across the conterminous United 
States (Nowak and Greenfield 2010). The Landscape Fire 
and Resource Management Planning Tools (LANDFIRE) 
project found the canopy cover values to be too high for 
use in existing fire models (Scott 2008). Questions of the 
accuracy of the NLCD tree canopy layer have led to a 
reassessment of the model’s response data and potential 
alternative methods for the third generation. As the leading 
agency for national-level tree data, the United States 
Department of Agriculture, Forest Service, Forest Inventory 
and Analysis (FIA) program was identified as a logical 
candidate for leadership in the third generation product.

This paper compares several techniques for measuring 
live tree canopy cover for use as training data in predictive 
mapping efforts, such as the NLCD. Using data collected 
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throughout the state of Nevada, the underlying objectives 
are to: (1) assess variability in ocular estimates of tree 
canopy cover from multiple observers; (2) compare photo-
based methods and field-based methods for measuring 
canopy cover, an extension from Goeking and Liknes’ 2009 
analysis; and (3) compare photo-based measurements from 
1-m resolution NAIP imagery to higher-resolution imagery 
acquired in Nevada.

METHODS

Analyses were conducted throughout the state of Nevada 
using a subset of field-sampled FIA plots from the 2004 and 
2005 inventory years. A total of 150 plots, or approximately 
45 percent, were randomly selected from the population 
of 328 FIA plots collected during these years that sampled 
at least one forested condition. Field sampling determined 
that 128 of the 150 plots had a woodland forest type, 8 plots 
had a timber forest type, and 12 plots were nonstocked (see 
http://socrates.lv-hrc.nevada.edu/fia/ab/issues/pending/
glossary/Glossary_5_30_06.pdf for definitions). Two plots 
were removed from the analysis because of geographical 
inconsistencies. On each of the remaining 148 plots, three 
photo-based methods and two field-based methods were 
applied to construct alternative measures of live percent 
tree canopy cover. This process followed that of Goeking 
and Liknes (2009), where similar methods of remotely 
estimating crown cover were compared to field transect data 
across five states in the interior west: Arizona, Colorado, 
Idaho, Montana, and Utah, in an attempt to expand the 
utility of the pre-field operations for the national FIA 
program. 

The photo-based methods involved interpreting one-
acre circular plots, coinciding with the 148 FIA plot 
locations, using three methods applied to large scale aerial 
photographs: an ocular estimate; a dot count method; and an 
image segmentation method using Feature Analyst software. 
Ocular estimates were collected by three photo interpreters 
for each type of photography. Three interpreters were used 
to examine variability in the subjective measurements 
among interpreters based on findings from Goeking and 
Liknes (2009), where ocular estimates varied widely 
among three photo interpreters. A crown cover callibration 
key was used to assist in determining the crown coverage 
within the acre circle. Although the individual observer 
values were analyzed for variability, the average value of 
the three interpreters was used as the single ocular estimate 
for each plot to compare to other methods. The dot count 
method involved photo-interpreting 50 randomly distributed 
points within the acre circle, with a restriction of having 
a minimum distance of 2 meters between points. Percent 
cover was calculated by counting the number of points that 
fell on live tree crowns and dividing by the total number 

of points. The image segmentation procedure entailed 
digitizing a few live tree crowns, or polygons, within the 
acre circle and using these polygons as training data in the 
Feature Analyst extension to ArcMap. Feature Analyst® is 
an automated feature extraction software that uses inductive 
learning algorithms and techniques to model object 
recognition (Opitz and Blundell 2008). Training information 
is assigned by the user and the software automatically 
generates a model, correlating the known data to target 
objects, and applies the model to the entire area of interest. 

These three photo-based methods were applied to two 
different types of large scale aerial photography to help 
understand the effect of resolution on estimating canopy 
cover. The types of photography included: 1.0-meter 
(39-inch) resolution, National Agriculture Imagery Program 
(NAIP) natural color, orthorectified photography for year 
2006 that is freely available from the USDA Forest Service 
Image Server extension of ArcMap (http://fsweb.rsac.fs.fed.
us/imageserver/image_server_home.html); and 0.15-meter 
(6-inch) resolution, natural color, georeferenced, direct-to-
digital or scanned-digital photography that was acquired by 
contract for a photo-based inventory pilot study throughout 
the state of Nevada in years 2004 and 2005 (NPIP; Frescino 
and others 2009).

The field-based methods included a line-transect method and 
a modeled method based on field measurements obtained 
from FIA’s extensive database of field measurements. 
For the field-transect estimates, live tree crown cover 
was measured using sixteen 25-ft transects, totaling 400 
feet, with intercepts of all live trees 1.0 inch and greater 
recorded at one-foot intervals (O’Brien 1989). These data 
were aggregated to the plot level. For the field-model 
estimates, predictive models of tree canopy cover were 
previously generated from field measurements of tree 
species and diameter using over 12,000 FIA plots across the 
Interior West (Toney and others 2009). These models were 
applied to the plots in this study using the FIA field plot 
measurements as parameters in the models.

The three photo-based methods (ocular (“oc”), dot count 
(“dot”), and Feature Analyst (“fa”)) applied to two scales 
of aerial photography (“NAIP” and “NPIP”) plus the two 
field based methods (field transects (“Field”) and models 
developed by Chris Toney and others 2009 (“CTmodel”)) 
gave a total of 8 different estimates of tree canopy cover 
over the 148 plots, summarized in Table 1. Analyses 
comparing these different estimates included exploratory 
displays of data distributions using boxplots, histograms, 
and scatterplots. Simple linear regression analyses were 
conducted using combinations of the eight canopy estimates 
to describe the relationship between the different methods. 
The regression line slopes that were visually closer to the 
1:1 line indicated the canopy measures were more closely 
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related. The differences in the slope and intercept values 
were examined for understanding potential bias across the 
range of percent canopy values. The Pearson correlation 
coefficient was also shown to measure the association 
between variables.

RESULTS

Variability in Ocular Estimates
Figures 1 and 2 show the results of the ocular estimates 
from each observer using both the NAIP photography and 
the NPIP photography. Similar to findings from Goeking 
and Liknes (2009), the ocular estimates are highly variable 
among interpreters with an overall mean difference of 
22 percent for estimates using NAIP photography and 16 
percent for estimates using NPIP photography (Figure 1). 
Figure 2 illustrates a number of results. First, scatterplots 
and regression lines for each pair of ocular estimates are 
shown in the lower diagonal half of the figure, where the 
method associated with each axis is the label in the diagonal 
box corresponding to the row and column of interest. For 
example, the scatterplot seen in row 4, column 2 of Figure 
2 is a graph of observations obtained from observer #2 
using NAIP photography in the x-axis, versus observer 
#1 using NPIP photography in the y-axis. Similarly, the 
upper diagonal half of the graphic displays the correlations 
between the estimation pair labeled in the diagonal 
box corresponding to the row and column of interest. 
Scatterplots of observers using NAIP photography (seen 
in the (row, column) pairs of (2,1), (3,1), and (3,2)) reveal 
regression slopes are closer to 1 than those from observers 
using NPIP photography ((5,4), (6,4), and (6,5)). In general, 
estimates using the NAIP photography are higher and more 
variable than the estimates using NPIP photography (Figures 
1 and 2) and estimates from observer #2 are higher than 
the other observers using both photography sources. We 
used the mean estimate by plot from the three observers 
for comparison with the other methods for the rest of the 
analyses.
 
Estimation Method Comparison
Figures 3 and 4 show results comparing all methods using 
both the NAIP and NPIP photography, including the mean 
estimates from the ocular method. The modeled estimates 
(CTmodel) are highly correlated (0.84) with the field 
transect estimates (Field) but, in general, the modeled 
estimates are slightly lower than the field transect estimates, 
with an overall mean difference of 4 percent (Figure 3). 
These differences are more emphasized in the higher canopy 
ranges (Figure 4). 

All other estimation methods using both NAIP and NPIP 
photography tend to be lower than the field transect method, 
except the dot count method using NPIP, having an overall 

mean difference of 3 percent; and the mean ocular estimates 
using NAIP photography, having an overall mean difference 
of 9 percent. Similar results are seen when comparing 
the modeled versus field estimates (Figures 3 and 4). The 
estimation method most highly correlated to the field 
transect method is the mean ocular estimate using NPIP 
photography followed by the dot count method using NPIP 
photography. Again, similar results are found by comparing 
the modeled and field estimates (Figure 4).

Photography Comparison
When looking at the differences in estimation methods using 
only NAIP photography, the mean ocular estimates tend to 
be higher overall than all the other methods, with an overall 
mean of 39 percent (Figure 3). Regardless, the regression 
slope is the closest to 1 compared to the other methods when 
related to the field transect method. The Feature Analyst 
estimates are generally higher than the dot count method, 
although the dot count method has no estimates greater 
than 50. The correlation is highest between the mean ocular 
method and the dot count method (Figure 4).

The estimates using NPIP photography show much different 
results than the estimates using NAIP photography. In 
general, the correlations are higher, the regression slopes 
are closer to 1, and the regression intercepts are smaller. 
The highest correlation (0.84) is between the ocular method 
and the dot count method, with the ocular method having 
slightly lower estimates. The correlation is also high 
between the ocular method and the Feature Analyst method 
(0.81) with a regression slope closer to 1.0, followed by the 
dot count and the Feature Analyst method having correlation 
of 0.80, although the Feature Analyst estimates are slightly 
lower overall (Figure 4).

When comparing the different types of photography 
by estimation method, the mean ocular estimate shows 
the highest correlation of 0.86, followed by the Feature 
Analyst method at 0.72, and the dot count method at 0.68. 
Conversely, the dot count method has the regression slope 
closest to the 1:1 line. For both the ocular method and 
the Feature Analyst method, the NAIP estimates are quite 
a bit higher than the estimates using NPIP photography, 
especially at the higher end, where as the dot count method 
shows the NAIP estimates slightly lower than the NPIP 
estimates (Figure 4). The average overall mean for the NAIP 
estimates is 29 percent compared to the average overall 
mean of the NPIP at 28 percent (Figure 3).

DISCUSSION

Ocular Comparison
The first objective of this paper was to assess consistency 
between photo-interpreters’ estimates of tree canopy cover 
using the ocular method. Ocular estimates, although the 
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fastest of the methods analyzed, may be quite biased and/
or inconsistent depending on the experience level of the 
observers. In this study, the ocular estimates were shown 
to be highly variable between observers, with the estimates 
using NAIP photography almost always higher when 
compared to estimates from NPIP photography, especially 
at higher canopy cover values. Possible reasons for this are 
discussed under the third objective below. The correlations 
were slightly higher and the regression slopes closer to 1.0 
for the NAIP estimates compared to the NPIP estimates, 
suggesting a tighter relationship between NAIP observers, 
but the higher intercepts suggest more bias between these 
same observers (Figure 2). 

Similar results of bias can be seen when comparing the 
mean ocular estimates with estimates from the other 
methods. The ocular estimates using NAIP photography 
tended to be consistently higher than the other methods. 
The NPIP estimates, on the other hand, had lower estimates 
and higher correlations between estimates from the other 
methods, with regression slopes, in general, closer to 1.0 
(Figure 4).

Method Comparison
The second objective of the paper was to compare photo-
based methods and field-based methods for measuring 
canopy cover. For other comparison studies of canopy cover, 
the field-based method is often used as a control or a source 
of truth (Goeking and Liknes 2009; Paletto and Tosi 2009; 
O’Brien 1989). We found all estimation methods using both 
NAIP and NPIP photography to be lower than the field-
transect method as well as the field-modeled method, except 
the dot count method using NPIP and the ocular method 
using NAIP, which tended to have slightly higher estimates 
(Figure 4). Perhaps this reflects the fact that small trees 
(down to 1.0 inches in diameter) are included in the field-
based methods, but small trees are difficult to detect in the 
photos, especially in NAIP. Alternatively, there is a potential 
bias in the field-based methods. 

For the NAIP estimates, the ocular method tended to be 
higher than the other methods and the dot count estimates 
were on the low side with no estimates greater than 50. The 
NPIP estimates showed higher correlations compared to all 
methods, indicating greater consistency between methods 
(Figure 4). The resolution and quality of the photography 
play a big factor in these results and are discussed in the 
following section.

Photography Comparison
The third objective of the paper was to compare photo-
based measurements from 1-m resolution NAIP imagery 
to a higher resolution imagery acquired for NPIP. Using 
different resolution photography added interesting value to 
the analysis with the higher resolution photography from 

NPIP representing a potential greater source of truth than 
the lower resolution NAIP photography. Here, we found the 
NAIP to estimate higher cover relative to the estimates from 
the NPIP photography. 

In general, the lower resolution, NAIP photography has 
more shadows, especially when the total canopy cover is 
high or the terrain is steep. It is harder to distinguish tree 
versus shrub lifeform characteristics of a vegetative object, 
as well as to discriminate seedlings and saplings from 
shrub lifeforms. It is also harder to see regeneration of tree 
species in areas supporting larger trees or areas that have 
no recognizable trees present. These characteristics lead to 
overestimations and errors when estimating canopy cover. 

Figure 5 shows an example of a plot where the lower 
resolution photography led to a large discrepancy in the 
cover estimate. For this example plot, one interpreter said 
there was zero percent cover using the dot count method and 
three percent cover using the Feature Analyst method, where 
another observer estimated 96 percent using the dot count 
method and 10 percent using the Feature Analyst method. 
The plot consists of dense aspen (Populus tremuloides) 
cover, and this species may be confused with shrubs at 
lower resolutions. In general, the resolution and quality of 
the photo are more influential to the photo interpreter than 
the method itself. Here, the Feature Analyst method lends 
itself better to an automated process that is less subjective 
than the interpreter’s eye. Figure 6 presents another example 
of differences in photo resolution which affect percent 
canopy calls. For this plot, one observer said there was 
0 percent cover using the dot count method and another 
observer said 12 percent for the same plot. The plot has a 
large percentage of dead trees that were not noticeable on 
the lower resolution image.

CONCLUSION

These analyses illustrate that consistent and accurate 
measurement of tree canopy cover is challenging. Photo-
interpreter experience level, method of canopy estimation, 
and scale of photography all play interrelated roles in 
determining the quality and consistency of tree canopy 
estimates over training or sample plots. Certainly, there 
are many advantages to using NAIP photography for a 
national project like the NLCD 2011 tree canopy cover 
map: it is free, it is relatively high resolution, it has 
extensive continuous coverage, it is updated frequently, 
and photo quality continues to improve through time. It is 
especially effective when used through the ArcGIS Image 
Server extension (http://www.esri.com/software/arcgis/
serverimage/index.html), where it is easy to move from plot 
to plot. However, more research is needed to understand 
the limitations in the use of this photography, to develop 
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methods to improve training methods to ensure consistency 
between interpreters, and to explore the potential of 
automated classification algorithms to improve objectivity in 
interpretations. 
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Method Type Short Name Description 

Field IW-FIA field transects Field-based 

CTmodel Toney and others (2009) field-based stem-map models 
   

NAIP-oc Mean ocular estimate using NAIP photography Ocular 

NPIP-oc Mean ocular estimate using NPIP photography 
   

NAIP-dot Dot count estimate using NAIP photography Dot count 

NPIP-dot Dot count estimate using NPIP photography 
   

NAIP-fa Feature Analyst estimate using NAIP photography Feature Analyst 

NPIP-fa Feature Analyst estimate using NPIP photography 

Table 1—Variable short names by estimation method type
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Figure 1—Boxplots of ocular estimates of percent live tree canopy 
cover using both NAIP and NPIP photography. The points represent 
the overall mean value. See Table 1 for short name descriptions. 
Numbers in the name correspond to the three different observers.

 

 

 

 

 

 Figure 2—Pairwise comparisons of ocular estimates of percent live tree canopy cover using both NAIP and 
NPIP photography. See Table 1 for short name descriptions. The diagonal boxes display histogram distributions 
of each of the eight estimates. The left side shows scatterplot distributions for pairs of estimates with percent 
canopy cover on each axis. For each scatterplot, the dotted black line represents the 1:1 line and the red line is 
a linear regression line. The right side displays the Pearson correlation coefficient for each pair.
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Figure 3—Boxplots of all estimation methods of percent live tree 
canopy cover using both NAIP and NPIP photography. The points 
represent the overall mean value. See Table 1 for short name 
descriptions.

 

 

 

 
Figure 4—Pairwise comparisons of stimates from all methods including the mean ocular estimates of percent live 
tree canopy cover using both NAIP and NPIP photography. See Table 1 for shortname descriptions. The diagonal 
boxes display histogram distributions of each estimate. The left side shows scatterplot distributions between all of 
the eight estimates with percent canopy cover on each axis. For each scatterplot, the dotted black line represents 
the 1:1 line and the red line is a linear regression line. The right side displays the Pearson correlation coefficient for 
each pair.



244

Cover Estimation

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

a.  b. 

Figure 5—Plot 07-1352. a. NPIP photography with 1-ac plot boundary overlay. b. NAIP photography with 1-ac plot 
boundary overlay. The plot is covered with aspen (Populus tremuloides) seedlings.

 

 

 

    

 

 

a.  b. 

Figure 6—Plot 17-153. a. NPIP photography with 1-ac plot boundary overlay. b. NAIP photography with 1-ac plot 
boundary overlay. The plot is covered with dead juniper (Juniperus spp.).
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Abstract 

Fueled by the insistencies of wildfire mitigation, bioenergy development, 
and carbon sequestration, there is growing demand for reliable 
characterizations of crown and stem biomass stocks in conifer forests 
of the Interior Northwest, United States (western Montana, northern 
Idaho, and eastern Washington). Predictive equations for crown biomass 
have been developed for this region but they have limited empirical 
support and supply markedly different predictions. This paper provides a 
methodological overview and preliminary results from an on-going study 
aimed in part at describing the accuracy of existing tree biomass equations 
for the Interior Northwest. Crown biomass estimates obtained from 
destructive sampling of 81 trees exhibited considerable variation around 
predictions from commonly used crown biomass equations based on DBH 
(diameter at breast height, 1.37 m). Some of this variation is attributable 
to within-tree sampling error, but initial results suggest that an appreciable 
proportion is due to variation in crown dimensions within DBH classes. 
Continuing data collection efforts will permit statistical descriptions of 
the accuracy of existing equations, as well as a basis for developing more 
integrative and precise tree biomass equations. 

INTRODUCTION

The management of western North American conifer forests 
is increasingly attentive to the quantity and distribution 
of non-merchantable biomass in tree crowns and small-
diameter trees. The aggregate mass and distribution of 
foliage have long been recognized as important determinants 
of tree and stand growth (see Long and Smith 1990). 
Likewise, in intensively managed systems, considerable 
research has focused on stand tending practices to control 
conifer crown architecture and thus wood quality (e.g., 
Waring and O’Hara 2005). However, it is the potential 
of conifer foliage and non-merchantable branch wood in 
processes other than stem development that have become 
central to the management of public and private forests 
across the inter-mountain western USA. Specifically, 
these forests are increasingly being managed to mitigate 
wildfire risk, to provide bio-energy stocks, or to sequester 
atmospheric carbon. Foliage and branch wood distributions 

ASSESSING THE ACCURACY OF CROWN 
BIOMASS EQUATIONS FOR THE MAJOR 
COMMERCIAL SPECIES OF THE INTERIOR 
NORTHWEST: STUDY PLAN AND 
PRELIMINARY RESULTS
David L.R. Affleck and Brian R. Turnquist

David L.R. Affleck and Brian R. Turnquist, Department of Forest Management, University of Montana, Missoula, MT 59812

strongly affect wildfire behavior and, by the same token, 
form the primary constituents of bioenergy feedstocks. 
Thus, multiple emerging management goals have generated 
converging demands for accurate characterizations of 
conifer crown biomass, its distribution by component and 
branch size, and even its vertical distribution on the bole 
(see e.g., Dymond and others 2010, Keyser and Smith 2010, 
Reinhardt and others 2006).

Background
Numerous studies undertaken across western North America 
have reported conifer biomass relationships and developed 
allometric equations (see reviews by Jenkins and others 
2004, Ter-Mikaelian and Korzukhin 1997). Yet many of 
these studies have been confined to individual stands or 
have drawn data only from a particular subset of forest 
conditions, rendering the results unsuitable for widespread 
application. In practice, the biomass equations used in 
decision support for forest and fuels management in the 
Interior Northwest (i.e., from eastern Washington to western 
Montana) come primarily from a pair of studies carried out 
by Brown (1978; see also Brown and Johnston 1976) and by 
Jenkins and others (2003).

In 1978, Brown published a set of species-specific crown 
biomass equations for Rocky Mountain conifers. The 
equations were developed largely from dominant and 
codominant tree data collected in Idaho and Montana, 
but additional data from separate studies undertaken in 
Nevada and California were also incorporated. Brown 
developed predictive equations for multiple crown biomass 
components (foliage, dead branches, live branches of 
various size classes) but not for stem wood or stem bark. 
Separate equations were developed for 11 conifer species, 
including interior Douglas-fir (Pseudotsuga menziesii), 
western larch (Larix occidentalis), ponderosa pine (Pinus 
ponderosa), and lodgepole pine (P. contorta). Brown 
developed log-linear predictive equations based solely on 
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tree DBH (i.e., diameter at breast height, 1.37 m) as well as 
equations based on DBH, height, and dominance. His crown 
biomass equations have been integrated into the Forest 
Vegetation Simulator’s Fire and Fuels Extension (Crookston 
and Dixon 2005, Reinhardt and Crookston 2003) and thus 
are now widely used in stand development simulations and 
fire behavior modeling.

The biomass equations of Jenkins and others (2003) were 
developed to provide a consistent basis for estimating tree 
biomass at large scales (e.g., at the regional or national 
level). Their DBH-based biomass equations were derived 
through meta-analysis of published biomass allometries 
(including the equations of Brown 1978) rather than from 
direct measurement of tree biomass. Based on similarities 
in equation form, Jenkins and others developed broad-
based total aboveground biomass equations for species 
groups (e.g., all Pinus species; Cupressaceae plus Larix 
species) or, in the case of Douglas-fir, for both coastal and 
interior variants. Furthermore, since the study’s primary 
emphasis was on total aboveground tree biomass, Jenkins 
and others (2003) developed a single set of component ratio 
equations to fractionate the total for any species into foliage, 
branch wood, and other tree biomass components. These 
component ratio equations are now used for tree biomass 
reporting in the Forest Inventory and Analysis (FIA) 
program (U.S.D.A. Forest Service 2010) and therefore find 
widespread application across the West.

The behavior of predictions from Brown’s (1978) DBH-
based equations and of those from Jenkins and others’ 
(2003) crown biomass ratio equations are illustrated in Fig. 
1. Both sets of equations were fit in log-linear form and 
while Brown’s published equations incorporate a correction 
factor for logarithmic transformation, the equations from 
Jenkins and others do not. Within each of the 4 species 
shown, the predictions from these equations follow a 
similar exponential form but differ in magnitude. This 
is not surprising given the differences in the equations’ 
derivations, intended spatial scales of application, and 
biological supports. As noted, the equations of Jenkins 
and others (2003) were intended for application across the 
continent and provide identical predictions for ponderosa 
and lodgepole pine; Brown (1978) focused exclusively on 
interior tree populations and estimated distinct allometric 
relationships for the two pine species in Fig. 1. 

Figure 2 illustrates the magnitude of the differences between 
the predictive equations across a range of tree DBHs. The 
differences are appreciable, particularly for larger trees and 
for ponderosa pine, where crown biomass predictions from 
Brown’s equations are consistently about 40 percent larger 
than those from the equations of Jenkins and others.

Objectives
The research presented here is part of a more extensive, on-
going study of conifer biomass distributions in the Interior 
Northwest. The discrepancies evident in Fig. 2 between 
biomass equations applied in this region are large and 
consequential for applications involving fuels management, 
bioenergy feedstock estimation, and carbon sequestration. 
There is a clear need for assessments of the validity and 
scope of these equations. To date, there has been little work 
to validate Brown’s (1978) equations (but see Gray and 
Reinhardt 2003, Keyser and Smith 2010) and no evaluation 
of the bias or accuracy of the equations developed by 
Jenkins and others (2003) when applied to the major 
commercial conifer species of the Interior Northwest. The 
objectives of this study are therefore to:

1. formulate and implement efficient tree biomass data 
collection strategies for the major commercial conifer 
species in the Interior Northwest;

2. describe the bias and accuracy of existing tree biomass 
equations by species, across stem and crown components, 
and as a function of whole-tree dimensions; and,

3. develop and evaluate new equations for tree biomass 
as well as its distribution across components and over the 
vertical profile of the stem.

This paper provides an overview of the data collection 
strategies that were developed and presents preliminary 
results regarding the accuracy of the crown biomass 
equations described above.

SAMPLING METHODS

Biomass equation validation and development efforts 
require sizable samples for individual species, preferably 
distributed across the region of interest and its forest 
habitat types. This is complicated by the high cost and 
destructive nature of tree biomass assessment. Stem 
biomass determination necessitates bole weight or wood 
density measurements. Biomass assessment of crown 
components demands defoliation of individual branches 
and the separation of branch wood into various size classes. 
Green tree materials also need to be oven-dried to obtain 
dry weights. To mitigate the high cost of tree-level biomass 
assessment and collect a large sample of trees, this study 
implemented a three-phase biomass sampling strategy to 
select stands, trees, and finally individual branches or stem 
discs along the boles of selected trees.
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Stand and Tree Selection
Second-growth stands across the Interior Northwest were 
selected to ensure broad geographic support (Fig. 3). Spatial 
coverage and dispersion across forest habitat types (Pfister 
and Arno 1980) were the primary factors in stand selection, 
but no formal systematic or random mechanism was applied. 
Only stands with no treatment history over the previous 
decade were candidates for sampling. Stand selection 
was also conditioned by the availability of permits for 
destructive sampling. Stands selected in 2009 and 2010 were 
located on federal, State, tribal, and private forest lands.

Within selected stands, sample points were located 
systematically at 100 m intervals on the Universal 
Transverse Mercator (UTM) grid. At each sample point a 
narrow angle gauge (2.3-4.6 m2/ha basal area factor) was 
used to identify candidate sample trees. Candidate trees 
were then barred if they were not among the species of 
interest or had damaged or missing crowns. Up to two of 
the remaining candidate trees at a sample point were then 
selected uniformly at random for destructive sampling.

Tree Biomass Assessment
Individual trees were sub-sampled to estimate stem, 
branch wood, and foliage biomass. Trees were felled and 
then randomized branch sampling (RBS; Gregoire and 
Valentine 2008) was employed to select 5 live branches 
with probability proportional to branch cross-sectional area. 
For selection purposes, the branches making up the live 
crown were artificially clustered into 1-m intervals. That 
is, beginning at the lowest live branch, all branches found 
within successive 1-m segments on the bole were treated as 
distinct whorls so that in addition to branch basal diameters 
only a single stem diameter (at the top of a 1-m segment) 
was needed. RBS focuses sampling efforts on the larger 
diameter branches that account for the majority of the crown 
biomass. The corresponding estimators capitalize on the 
strong allometric relationships between branch mass and 
branch basal area (Fig. 4) to provide precise and unbiased 
estimates of whole-crown biomass.

The selected branches were separated into size-class 
components so that separate biomass estimates could 
be obtained for foliage and for branch wood within the 
0-0.64 cm, 0.64-2.5 cm, and 2.5+ cm diameter classes 
(corresponding to 1-hour, 10-hour, and 100-hour time lag 
fuel classes). Dead and epicormic branches encountered 
along the live-branch selection paths were also cut and 
weighed. All live branch material as well as selected bolts of 
dead branch wood were oven-dried at 105°C. Drying times 
varied by component and were determined by evaluating the 
time needed to achieve a constant weight.

Though not discussed below, data were also collected to 
estimate the stem biomass of selected trees. Discs were 

cut from the downed tree at a systematically selected set 
of heights or, in some stands, at heights determined by 
merchantability criteria (e.g., at the tops and bottoms of 
the first two logs). Cross-sectional area and wood density 
were measured on the discs and calibration estimators (see 
Gregoire and Valentine 2008) based on regional tree taper 
equations were then used to obtain whole-stem biomass 
estimates. A more thorough description of the stem and 
crown sampling procedures can be obtained from the 
authors.

RESULTS AND DISCUSSION

In 2009, biomass data were collected from 81 trees in 11 
stands in western Montana and eastern Washington (Fig. 
3). Data from Engelmann spruce (Picea engelmannii) and 
grand fir (Abies grandis) were collected but the bulk of 
the data were from ponderosa pine, Douglas-fir, western 
larch, and lodgepole pine. The size-class distribution of the 
2009 sample trees of these four species is shown in Fig. 5. 
Within each of the species, the sample trees spanned a wide 
range of DBH. The ponderosa pine sample was also well 
distributed across crown ratio classes but in other species 
high crown ratios were rarely observed at larger DBHs. 
This is broadly consistent with the growing conditions of 
these species. However, data spanning the DBH, height, and 
crown ratio domains are needed to characterize variation in 
crown biomass across these dimensions and to assess the 
utility of the DBH-based equations from Brown (1978) and 
Jenkins and others (2003).

Figure 6 shows the relationship between tree DBH and 
estimated total crown mass for the 4 most commonly 
selected species in the 2009 sample. Total crown mass 
includes the mass of foliage, live and dead branch wood, 
and the stem above a 5 cm top. The crown mass estimates 
are based on subsamples (drawn by RBS) from the crowns 
of individual sample trees and are thus subject to sampling 
error. In Fig. 6, this tree-level sampling error is conflated 
with among-tree differences in crown biomass potentially 
attributable to variations in tree height, tree crown length 
(or crown ratio), stand stocking, stand species composition, 
and site productivity, in addition to intrinsic heterogeneity. 
Only the conditioning effect of tree DBH is shown in Fig. 
6 with the result that considerable variation in crown mass 
is evident. This is particularly true for larger trees and for 
ponderosa pine, where crown biomass estimates for trees 
above 40 cm DBH range from 123-482 kg.

Predictions from the DBH-based equations of Brown (1978) 
and Jenkins and others (2003) are superimposed on the data 
in Fig. 6, as are smoothed loess regression curves. Though 
little data are presently available for lodgepole pine, the 
pine and Douglas-fir predictions from Jenkins and others’ 
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equations appear to track the empirical trends more closely 
than those from Brown’s equations. The opposite is true 
for the limited western larch dataset. In all cases, however, 
there exists substantial variation around the crown mass 
predictions for large-DBH (i.e., above 30 cm) trees.

As more data are made available for these and other 
species, more exacting assessments of the overall bias and 
conditional bias (see e.g., Reynolds and Chung 1986) of 
Brown’s (1978) and Jenkins and others’ (2003) prediction 
equations will be undertaken. At this preliminary stage, 
our interest is primarily in describing the sources and 
magnitudes of variation in crown biomass estimates around 
predictions. Figure 7 focuses on the performance of the 
predictive equations of Jenkins and others (2003) for 
Douglas-fir and ponderosa pine. The trend lines in Fig. 7 are 
smoothed loess regressions. In the case of Douglas-fir, the 
trend line identifies a DBH-class (approximately 15-35 cm 
DBH) for which the predictions exceed the observed crown 
mass estimates. On ponderosa pine, the empirical trend is 
more consistent but runs strictly above 0 percent, reflecting 
the tendency for this equation to consistently understate 
crown biomass relative to the levels observed. For both 
species the sample trees’ crown biomass estimates diverge 
on the order of -100 to +50 percent from predictions. 

Individual trees are drawn as solid or open circles in 
Fig. 7 according to whether their destructive sampling 
estimates respectively exceed or fall short of the DBH-
based predictions from Jenkins and others’ equations. This 
symbology is carried through to Fig. 8 where the sample 
trees’ crown ratios are plotted against DBH. By this means, 
Fig. 8 shows that crown biomass estimates falling short 
of predictions are predominantly observed on trees with 
lower crown ratios within their respective DBH classes, 
and vice versa. This result accords with both dimensional 
and ecological considerations. After tree DBH, dimensions 
related to crown length should have the greatest impact 
on total crown mass. Likewise, in untreated stands, crown 
length and ratio reflect the past growing conditions of the 
tree and thus integrate the influences of stand density and 
species composition.

Future analyses will focus on the importance of crown ratio, 
tree height, and stand density in modifying foliage, branch 
wood, and total crown mass. In doing so, these analyses will 
provide information on the bias and accuracy of biomass 
predictions based only on tree DBH as well as on the 
potential need for predictive biomass equations integrating 
other tree and stand characteristics.

SUMMARY AND FUTURE RESEARCH

Management of conifer forests in the Interior Northwest 
for wildfire fuels reduction, bioenergy extraction, or carbon 
sequestration requires reliable estimates of tree and crown 
biomass. The bias and accuracy of the predictive equations 
currently applied in the region have not been evaluated and 
in many cases these equations supply markedly different 
predictions (Fig. 2). Based on a preliminary dataset of 
81 trees selected from across the region in 2009, existing 
DBH-based biomass equations broadly follow the empirical 
trends in crown biomass but fail to account for considerable 
variation in individual-tree estimates. Some of this variation 
is attributable to within-tree sampling error. However, it is 
anticipated that a substantial portion of this variation is due 
to among-tree differences in crown length, tree height, and 
stand conditions. In particular, exploratory analyses of the 
2009 data point to crown ratio as an important modifier of 
crown biomass in Douglas-fir and ponderosa pine (Fig. 8). 

The present study is on-going and as more data become 
available for these and other species it will be feasible to 
statistically assess the presence of trends in the bias and 
accuracy of existing crown biomass equations as a function 
of tree DBH, tree height, crown ratio, and stand density. To 
do so, sampling procedures should ensure that trees selected 
for destructive biomass sampling span a broad range of 
tree sizes, crown lengths, and stand conditions. Future 
analyses will also examine variations in stem biomass for 
the commercial species of the region and the accuracy of 
existing stem biomass prediction algorithms, including those 
used in FIA reporting. 
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 Figure 1—Diameter-based crown biomass equations from Jenkins and others (2003; solid lines) and Brown (1978; dashed line); 
predictions are of oven-dry mass.
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 Figure 2—Percent difference in the diameter-based crown biomass equations from Jenkins and others (2003) and Brown (1978) as 
a function of tree diameter.

 

 

 

 

Figure 3—Geographic distribution of 2009 (squares) and 2010 
(triangles) sample stands; satellite imagery from Google Maps.
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 Figure 4—Allometric relationships for 352 live branches selected by randomized branch sampling (one ponderosa 
pine branch with basal area 170 cm2 not shown); Pearson correlations were at or above 0.90 for all four species.

 

 

 Figure 5—Overall and species-specific size distributions of sample trees selected in 2009.
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Figure 6—Estimated oven-dry crown biomass of sample trees with loess smoothed trend (dotted line) and with 
diameter-based crown biomass equations from Jenkins and others (2003; solid lines) and Brown (1978; dashed line).

 

 

 

 
Figure 7—Crown biomass prediction errors as a percentage 
of estimated mass; solid circles denote trees with crown mass 
estimates higher than predicted from the equations of Jenkins and 
others (2003) while open circles denote trees with estimates below 
predictions.

 

 

 Figure 8—Tree size distribution and crown mass prediction errors 
associated with the equations of Jenkins and others (2003); 
solid circles denote trees with higher than predicted crown mass 
estimates while open circles denote trees with estimates below 
predictions.
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Abstract
This study evaluates the potential impacts of expanded forest biomass 
use in the Southeast from present year through 2036, focusing on the 
forest supply, industrial, and GHG emissions implications of maximizing 
biomass co-firing with coal. We model demand scenarios at the state, 
subregional, and regional levels, and assess the influence of study scale 
on the observed results. We find that pricing effects are greatest under 
a state-level assessment scenario, followed by subregional and regional 
assessments. This has important impacts on observed shifts in forest land 
use and forest stand carbon, with the state-level assessment resulting in 
the greatest amounts of forested acreage and carbon relative to the other 
assessment scales. State-level assessments also experience the lowest 
relative displacement of pulpwood capacity of the three scales considered, 
with spatial and temporal dynamics of resource allocation playing a 
strong role in our findings. If forested acres, forest carbon, and aggregate 
displacement are the only issues of concern, then these results would 
suggest that a program encouraging the use of forest biomass for renewable 
energy production may be best implemented at the state level, rather 
than at some larger scale. Given the wide variety of other environmental, 
economic, and social objectives that must be satisfied, however, continued 
careful evaluation of the multiple impacts of increased forest biomass use 
is necessary. 

INTRODUCTION

Interest in renewable sources of energy is increasing for 
a variety of reasons, including the mitigation of climate 
change and furtherance of energy independence. This 
interest is reflected in an increasing number of proposed 
and enacted regulations, programs, and initiatives at both 
state and federal levels. In the Southeastern United States, 
attention is often focused on the role that forest biomass can 
play in meeting these and other policy objectives (English 
and others, 2004). Although abundant, the supply of forest 
resources in the region is subject to a number of ecological, 
institutional, and economic constraints. 
 
Despite these multiple factors and potential limitations, 
the impact of renewable energy policy has not always 
been carefully evaluated prior to program inception 
(Sedjo and Sohngen, 2009). Even though multiple studies 
have estimated potential biomass supply (e.g., Pennock 
and Doron, 2009; Perlack and others, 2005; see also 
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Gronowska and others, 2009), estimates of aggregate 
supply are complicated by the potential interplay between 
increasing resource demand for biofuel and bioenergy and 
the competition with current users of the resource (e.g., 
Lundmark, 2006; Galik and others, 2009; Abt and others, 
2010a; Abt and others, 2010b).Also complicating matters 
are the various scales at which policy to encourage the use 
of biomass are being discussed (e.g., State, federal) and the 
differing market responses that could occur as a result. For 
example, an increase in demand for forest biomass could 
induce greater harvest activity, as well as displacement of 
existing pulpwood capacity. A land use response would 
likewise be expected (Abt and others, 2010b). Should the 
scale at which biomass demand is evaluated itself influence 
the magnitude of the resulting price response, we would 
likewise expect harvest, forest land use, and displacement 
responses to vary by assessment scale. 

In the analysis that follows, we consider the role that 
assessment scale factors into the potential near-term 
impacts of expanded forest biomass use in the Southeast. 
In particular, we focus on the forest supply, industrial, 
and greenhouse gas (GHG) emissions implications 
of maximizing biomass co-firing with coal. To better 
understand the spatial issues at play, we model demand 
scenarios at the state, subregional, and regional levels 
from present year through 2036, and evaluate the influence 
of assessment scale on the observed results. For each 
assessment level, we examine the effect of increased 
biomass demand on weighted pine pulpwood prices, 
potential displacement of existing pine pulpwood capacity, 
forested acreage, and forest carbon. We identify the 
important trends and tradeoffs that emerge, and conclude 
with areas of future research needed to improve and expand 
this and related work.

METHODS

This analysis builds off of the methodology and findings of 
Abt and others (2010b), which assumes that the increased 
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demand for bioenergy is driven by a maximization of 
co-firing potential (on a direct injection basis) at existing 
coal-fired boilers in a ten-State Southeastern region. Below 
we discuss the establishment of three separate policy 
assessment scales, estimation of baseline forest product 
demand, and the calculation of biomass co-fire demand. We 
then discuss the modeling of forest biomass supply response 
and the estimation of forest stand carbon.

Assessment Scale
The analysis is conducted at three assessment scales: 
individual State, subregional, and regional levels. The region 
evaluated includes Alabama, Arkansas, Florida, Georgia, 
Louisiana, Mississippi, North Carolina, South Carolina, 
Tennessee, and Virginia. In the State-level analyses, we 
assume that co-firing demand is met purely with in-state 
biomass resources. For regional assessments, we assume 
that demand for any plant may be met with biomass sourced 
from anywhere within the entire ten-State region. At the 
subregional level, we identify seven semi-distinct clusters 
within which woody biomass may be sourced to meet co-
firing demand (Figure 1). 

The implementation of the regional definitions has important 
market implications. Both demand (which is determined by 
co-firing boiler capacity) and supply (which is determined 
by harvest level and associated logging residuals in the short 
run and by forest type and age class structure in the long 
run) are defined by a particular regional specification. For 
example, State level analysis reflects the probability that 
State-level renewable energy policies will differ. Co-firing 
demand in the seven subregions is met by the overlapping 
supply basins within each cluster that are by definition 
distinct from other clusters. The State and subregional 
analyses treat the markets as independent; supply and 
demand pressures in one State or subregion do not affect 
neighboring ones. These are useful for gauging regional 
comparative advantage where demand will be affected by 
State policy and clustering of boiler capacity and resource 
prices and industry displacement will be affected by the 
distribution of resources and associated industry capacity. 
Alternatively, results from the regional analysis are useful 
for gauging the region-wide market effects assuming that 
price differences between markets will be minimized by 
market pressures. This may represent a longer term view 
of market behavior that may be dominated by regional 
differences in the short-run.In this analysis, we have chosen 
to look at the aggregate impact of market and resource 
metrics. This approach allows us to simply identify the 
impact of regional scale, but it does so at the expense of 
exploring regional variation. 

Biomass Demand
We assume here that the forest products industry 
experienced a 30 percent decline in demand for four 

separate product classes (pine pulpwood, pine sawtimber, 
hardwood pulpwood, hardwood sawtimber) from 2006 
to 2010. We also assume a recovery to near pre-recession 
demand levels by 2013, beyond which demand remains 
constant at pre-recession levels through the end of our 
projection. We then add to this base level of biomass 
demand the estimated amount of biomass used under a 
maximization of coal co-fire capacity in the region. Year-
2007 coal co-firing capacity for individual facilities is 
determined at the boiler level using boiler configurations 
contained in the eGRID database (U.S. Environmental 
Protection Agency, 2008) and maximum coal co-firing 
capacity on a direct injection basis for each boiler type as 
indicated in various technical sources (e.g., Grabowski, 
2004; Federal Energy Management Program, 2004). Gross 
energy demand is converted to woody biomass demand 
using a wood-to-energy conversion rate of 9,000 BTU per 
pound of dry biomass is the estimated energy content of 
wood. The value used here falls in the upper-middle portion 
of estimates of biomass energy content (For example, see 
http://bioenergy.ornl.gov/papers/misc/energy_conv.html 
[Retrieved March 26, 2010]); we acknowledge that different 
types of biomass have different energy content and that 
additional energy will be necessary to dry green biomass to 
achieve this energy content on a per-pound basis. 

It is also important to note that we make no assumptions 
about the type of policy that drives this emerging market, 
only that the incentive to use biomass exists and that 
co-firing represents among the quickest and easiest paths 
to do so. Indeed, co-firing is often thought to represent a 
cost-effective path to biomass utilization in the near term 
(Robinson and others, 2003; De and Assadi, 2009; Lintunen 
and Kangas, 2010). While we do not specifically consider 
the added effects of biomass use in dedicated, low-GHG 
generation facilities or for the production of pellets or other 
wood fuels, the near-term demand for co-firing provides 
a point estimate from which we may begin to assess the 
various sectoral and temporal tradeoffs likely to accompany 
an expanding forest biomass energy market. 

Biomass Supply
Supply effects of maximization of co-firing in the Southeast 
are assessed using the Sub-Regional Timber Supply (SRTS) 
model. SRTS models product demand as a function of 
product stumpage price and demand shifts through time; 
greater description of the SRTS model and its application 
may be found in Abt and others (2009) and Prestemon 
and Abt (2002). To simulate the impact of added biomass 
demand, we conduct a baseline run of traditional wood-
using industries to derive estimates of logging residuals. 
For all runs, we consider two separate scenarios of residual 
utilization, one in which utilization of residuals increases 
over time and peaks at a 50 percent utilization rate in 2020, 
and one in which utilization peaks at 25 percent. Utilized 
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residuals are assumed to reduce biomass demand for 
roundwood, with the net remaining roundwood demand 
shifting demand for both pine and hardwood pulpwood 
proportionately. 

GHG Implications
Finally, we consider the GHG implications of our modeled 
scenarios. As in previous analyses, we convert SRTS 
inventory output into estimates of forest carbon using forest-
type-specific relationships and equations defined by the U.S. 
Forest Service (see Foley, 2009; Abt and others, 2010b). 
Although Abt and others (2010b) include an estimate of 
emissions displaced from a reduction in coal usage as 
compared to observed shifts in on-the-ground forest biomass 
carbon sequestration, we limit our discussion here to the 
GHG implications of shifts in planting and harvest behavior. 

RESULTS AND DISCUSSION

The results of the analysis are described below, beginning 
with an overview of total biomass co-fire demand. We 
then describe the effects of increased biomass demand 
on pulpwood prices, displacement, forested acreage, 
and forest carbon for each of the three assessment scales 
evaluated here. We conclude with a brief discussion of the 
implications of these findings for bioenergy policy.

When maximizing co-firing capacity at existing coal-
fired boilers, we estimate an aggregate average co-firing 
rate of approximately 10.1 percent. This translates to an 
annual biomass consumption of approximately 532 million 
MMBTU or just over 59 million green tons of wood. 
Disaggregating the larger region into seven distinct supply 
subregions and into the ten individual States, we find that 
biomass co-fire demand varies significantly across the 
Southeast (Table 1). 

We next examine the relative shift in the price of pine 
pulpwood, the biomass component most likely to be affected 
by increases in near-term demand. Because our price output 
for each State or subregion is reported as a price shift 
relative to 2006 prices (and not as an absolute value), we use 
the weighted average of these price shifts over time to make 
comparisons across the different assessment scales. The 
weighted average is based on the relative price shift reported 
for each State or subregion, multiplied by the volume of 
removals in that State or subregion. When summed across 
all States or subregions and divided by total removals, this 
yields a single metric for each assessment scale, allowing 
direct comparison. There is of course some detail lost in this 
aggregation process; this is further discussed below in the 
context of pulpwood capacity displacement.

Figure 2 compares the relative pine pulpwood price shifts 
over time. The regional assessment (South-wide) has the 

smallest shift, followed by the subregional assessment. The 
greatest relative shift is generally found in the State-level 
assessment. The pattern holds for both residue utilization 
scenarios, though is slightly shifted lower in the 50 
percent scenario. This is expected, as the greater amount 
of available residues both satisfies a greater portion of the 
biomass demand and tempers price increases in the process. 
There is also a temporal component, as prices tend to 
diverge somewhat as magnitude of biomass co-fire demand 
increases over time and is sustained through the later years 
of the assessment.

The shift in resource pricing is expected to have several 
affects. One area of concern is feedstock allocation, or 
the source of biomass from which increasing levels of 
demand are met. Although previous work indicates that 
significant differences in feedstock source exist when 
comparing different portions of the study to each other 
(Abt and others, 2010b), we are more concerned here with 
aggregate feedstock contributions across three assessment 
scales. Specifically considered in the analysis were shifts 
in hardwood and pine pulpwood harvests, displacement 
of existing hardwood pulpwood capacity, displacement 
of existing pine pulpwood capacity, harvest residues from 
hardwood or pine pulpwood, and residuals stemming from 
harvest of roundwood specifically for biomass.

Focusing on the displacement component, we find that 
relative displacement likewise varies by assessment scale. 
Further exploration of the findings, however, expose the 
potential hazards of weighting or aggregating findings at 
different assessment scales for comparison at the regional 
level. This is because harvest patterns in the SRTS model 
shift over time based on relative price pressure, which is 
itself driven on the supply side by changes in inventory. 
Inventory change across regions is driven by harvest and 
growth distributions and age class structure of the inventory. 
On the demand side, regional variation is driven by the 
regional co-firing capacity tempered by the availability of 
residuals. Co-firing capacity tends to be associated with 
population while residual availability is associated with 
the distribution of forest product industry capacity. The 
interrelationship between harvest and co-firing demand 
drive the displacement impacts.

The overall displacement pattern increases as co-firing 
demand increases from 2015 to 2030 (Figure 3). After 2030 
wood supplies increase as the trees planted in response to 
initial price increases enter the product supply inventory. For 
both State and subregional assessment scales, the available 
supply is constrained relative to the regional one. Figure 
3 also shows that both the State and subregion assessment 
scales follow a similar pattern. The higher displacement for 
the subregion assessment stems a very high correlation (r= 
+.98) between initial harvest levels (industry location) and 
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co-firing demand. Across States, the correlation is much 
smaller (r= +.46).

For the regional assessment, the same overall pattern of 
displacement over time occurs, but another dynamic exists 
since supply can react to differences in price pressure across 
regions. Because the regions with the highest initial pine 
inventory increases also have the highest concentration of 
current industry as reflected by harvest (r= +.61), biomass 
harvest in the regional assessment shifts to areas with 
existing industry (e.g., Alabama, Florida, Georgia). This 
results in a higher displacement trend during the 2015 to 
2030 period. Over time the increased harvest from co-firing 
reduces the comparative advantage of these regions and 
correlation of additional harvest with initial harvest declines 
(Figure 4). Since this harvest is also located in areas with the 
largest planting response to prices, displacement drops faster 
as new plantations come online.

We would also expect to see a land use response consistent 
with the ranking of resource pricing shifts. Stated another 
way, if relative price increases are greater the smaller 
the assessment area, we would expected forest land use 
response to be greater with a State-level policy requirement 
than in the presence of a subregional and regional one. This 
is reflected in the findings, with the State-level assessment 
possessing the greatest relative shift in forested acres 
relative to the baseline, non-co-fire scenario, followed by the 
subregional assessment, and finally the regional assessment 
(Figure 5). As before, the influence of residue harvest 
efficiency is evident, with a lower amount of forest acres 
being added relative to the baseline in scenarios in which 
greater residue availability is assumed.

Finally, we examine the effects of assessment scale on 
aggregate forest stand carbon. As with forested acreage, the 
greatest amount of forest carbon storage is found under a 
State-level assessment (Figure 6), followed by subregional 
and regional levels. We note, however, that some reductions 
in forest carbon relative to the baseline scenario are found 
for all three policy scenarios, but that the storage under a 
State-level policy scenario is greatest. Even though forested 
acreage increases relative to a non-co-fire scenario, total 
forest carbon falls due to management intensification and a 
shift towards younger (and smaller), faster growing trees. 
Net carbon sequestered under a given assessment scale and 
for a given year is a function of both this shift in intensity, 
as well as the total number of forested acres across the 
landscape.

While forest stand carbon provides one measure of the 
GHG performance of a policy scenario, also important to 
consider are corresponding reductions in GHG emissions 
from fossil fuels. We do not specifically evaluate this 
component here, but hypothesize that a State-level policy 

scenario would result in greater net emission reductions 
relative to both the regional and subregional assessment 
scales. The amount of fossil GHG emissions foregone 
through the use of forest biomass in place of coal is the 
same across all policy assessment scales, as is the volume 
of biomass being removed from the forest. This means that 
the carbon dynamics of the standing forest would likely 
determine the net GHG performance of the scenario. Using 
a similar level of biomass demand and a similar method 
to calculate the effects of this demand, Abt and others 
(2010b) find that GHG emissions relative to a non-co-firing 
scenario are possible at both region-wide and subregional 
assessment scales. In the current study, estimated State-
level forest carbon exceeds the carbon stored for either of 
these, implying that GHG reductions would likely exceed 
those reported in Abt and others (2010b) for regional and 
subregional levels. 

CONCLUSION

The results presented here indicate that the scale at which 
bioenergy policy is enacted can influence the resource 
management trends, even if the amount of energy produced 
as a result is unchanged. This suggests that if acreage, 
displacement, and carbon are the only metrics of concern, 
then a program encouraging the use of forest biomass 
for renewable energy production may be most efficiently 
implemented at the State level, rather than at some larger 
scale. Given the wide variety of other environmental, 
economic, and social objectives that must be satisfied, 
however, continued careful evaluation of the multiple 
impacts of increased forest biomass use is necessary. There 
are also site-specific opportunities and tradeoffs to consider, 
such as the local and community impacts of increased 
harvest activity, construction and operation of new energy 
facilities, or shifts in activity in existing mills, none of 
which are directly addressed here.

Furthermore, we make no assumption about the type of 
policy that is put in place to achieve this increase in biomass 
demand; we assume only that the demand exists. Because 
different types of policies can affect markets in various 
ways, we do not suggest that this finding is universal. 
In situations where compliance with bioenergy targets 
are mandated and energy producers are less sensitive to 
pricing increases than existing industrial users of biomass 
resources, however, the price effects induced by the increase 
in demand for woody biomass are greater the smaller the 
assessment scale.

An important concluding point is the impacts of increased 
bioenergy demand for woody biomass demand vary over 
time and space, and that the scale of the policy applied also 
influences modeled effects. As assessment scale decreases 
from the region to the subregion to the state level, price 
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increases lead to increased forest acreage retention and 
moderated carbon loss. Our displacement estimates at 
different scales are complicated by spatial and temporal 
dynamics of biomass allocation, and break from this trend 
somewhat, with subregional and regional assessments 
experiencing greater relative displacement than at the state 
level.
 
The empirical findings with regard to shifts in pricing, 
acreage, and carbon confirm the otherwise intuitive 
relationship between assessment scale and increases in 
biomass demand. Further investigation of the spatial 
and temporal dynamics necessitated by our initially 
counterintuitive findings with regard to displacement 
likewise provide interesting perspective on resource 
allocation over time. As such, we believe that the analysis 
adds much-needed information and perspective to the 
debate over the role that biomass utilization is to play in 
state, regional, and national climate and energy policy. 
More research is needed to fully grasp the economic, 
social, and environmental implications of increased forest 
biomass utilization. In particular, the potential market for 
harvest residues remains uncertain, with multiple questions 
remaining with regard to the cost-effectiveness of their 
harvest, transportation, and use. The potential for dedicated 
energy crops, including switchgrass and short rotation 
woody biomass, to displace forest biomass as a fuel of first 
resort is likewise uncertain at the present time. Further 
work to evaluate the economics of these key questions is 
necessary to improve our understanding of biomass market 
response to policy drivers. 
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Figure 2—Weighted shift in pine pulpwood prices for a) 25 percent and b) 50 percent residue utilization scenarios. Values indicate 
magnitude of shift relative to 2006 pine pulpwood prices (100 = 2006 pine pulpwood prices).
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Figure 3—Percent of demand met from displacement of existing soft and hardwood pulpwood capacity, for a) 25 percent and 
b) 50 percent residue utilization.
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Figure 4—Spatial correlation between starting pulpwood harvest and 
increased pulpwood harvest due to biomass demand. The example 
presented here is for a 50 percent residue utilization scenario.
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Figure 5—Percent acerage differential, co-fire scenario versus baseline, for a) 25 percent and b) 50 percent residue utilization 
scenarios. Values above 100 percent indicate an increase in forested acerage relative to baseline conditions.
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scenarios. Values above 100 percent indicate an increase in forest carbon storage relative to baseline conditions.
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Abstract
Accounting for forest components in carbon accounting systems may be 
insufficient when substantial amounts of sequestered carbon are harvested 
and converted to wood products in use and in landfill. The potential of 
forest offset – in-woods aboveground carbon storage, carbon stored in 
harvested wood, and energy offset by burning harvested wood – from 
loblolly pine plantations was evaluated for greenhouse gas (GHG) 
mitigation over a half-century period. The in-woods carbon in well-
managed loblolly pine plantations across the South totaled 341 million 
metric tons. This is equivalent to 20 percent of total energy-consumed 
GHG emission in the United States in 2006. Present-day carbon storage 
in southern pine plantations averaged 30.54 Mg•ha-1 (± 2.54 percent) for 
in-woods carbon. Annual wood production was 62.1 and 45.9 million green 
metric tons from pulpwood and sawtimber yield, respectively, with roughly 
one-fourth of the green weight being carbon. The carbon storage in wood 
products increased steadily over the half-century projection and showed no 
sign of leveling off, while the storage in plantations was found to remain 
constant or increase slightly over time. An additional 11 million metric tons 
of harvested carbon was used for energy per year on average, equivalent 
to 25 percent of annual forest-products-industry renewable energy use 
in U.S.A. Intensified application of fertilizers and herbicide and genetic 
improvement showed the potential to increase total storage in in-wood and 
harvested carbon pools as much as 30 percent, and energy offset up to 40 
percent. Reducing management intensity greatly increased in-woods carbon 
storage potential, but eliminated the wood-products carbon sink. 

INTRODUCTION

Forest ecosystems in the United States sequester 140-300 
million metric tons (Mg) of carbon per year, or between 
18 percent and 39 percent of the equivalent CO2 emissions 
from the Nation’s coal-fired power plants (Pacala and 
others, 2001; Heath and Smith, 2004; U.S. Environmental 
Protection Agency, 2007b). Despite scientists’ knowledge 
that U.S. forests are an important terrestrial carbon sink, 
challenges remain in estimating the magnitudes of carbon 
storage attributed to forests in different geographic regions 
and in quantifying the magnitudes of fluxes for various 
forest carbon pools (Houghton and others, 1999; Schimel 
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and others, 2000; Pacala and others, 2001; Janssens and 
others, 2003). One challenge involves incorporating 
uncertainty into estimates, so that decision-makers can 
plan in accordance with the quality of information in-
hand (Gong, 1998; McKenney and others, 2004). Another 
challenge is to account for carbon sequestered in wood 
removed from forests as wood and paper products that 
may persist for long periods of time (Skog and Nicholson, 
1998; Perez-Garcia and others, 2005). Such information 
is generally not a standard component in forest carbon 
estimates (Heath and others, 2003); however, both concerns 
are essential in making decision or plans for managed forest 
ecosystems, including the loblolly pine (Pinus taeda L.) 
plantations extensive throughout the southern United States. 

Carbon stored above ground in loblolly pine plantations 
includes both merchantable and non-merchantable trees and 
vegetation, along with dead wood and plant detritus (Smith 
and others, 2004a). Regarding “long-lived” aboveground 
carbon pools, i.e. those in which carbon remains sequestered 
for decades or more, separate accounting is often made for 
live trees and coarse woody debris (CWD) based on the 
differing biological and ecological processes acting on each. 
Live trees sequester carbon on temporal scales of several 
decades, corresponding to rotation lengths. Carbon in CWD 
may persist in forests for years to decades depending on the 
relative rates of accumulation and decomposition (Duvall 
and Grigal, 1999; Vanderwel and others, 2008; Radtke and 
others, 2009). While aboveground carbon stored in live 
trees can be reliably assessed and projected over time and 
space, accumulations of CWD are considerably variable 
across landscapes and depend significantly on disturbance 
and management (Duvall and Grigal, 1999; Fridman and 
Walheim, 2000; Campbell and others, 2008).

In evaluating the potential of managed forest ecosystems 
such as loblolly pine plantations in mitigating atmospheric 
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GHG accumulations from the burning of fossil fuels, 
accounting for carbon stored in live trees and CWD is 
insufficient because substantial amounts of sequestered 
carbon are harvested and converted to end-use wood 
products, e.g. building materials, furniture, and paper 
products, or used as a fuel source to displace GHG emission 
from fossil fuels (Birdsey and Heath, 1995; Smith and 
others, 2006). Although harvested wood is not a part of 
in-woods carbon pools, the linkages between management 
activities, forest carbon sequestration, and the timing and 
amount of wood harvested are inextricable. Wood products 
may persist longer than plantation rotation lengths, and the 
amount of carbon remaining in wood products – products 
in use and landfills – contributes significantly to carbon 
sequestration over time (Skog and Nicholson, 1998). 
Moreover, the magnitudes and rates of carbon remaining in 
wood products depend on the timing, intensity, and extent 
of harvesting activities, which affects what products the 
harvested wood is allocated to and life spans of wood in 
these products. On the other hand, wood processing at mills, 
e.g. drying, peeling, slicing, and sawing, uses energy from 
burning wood residues and pulping liquors that reduces 
some need for using fossil fuels. Such energy sources 
currently supply 1.5 percent of the total energy consumption 
in the U.S.A. (Perlack and others, 2005). Compared to 
the combustion of fossil fuels, bioenergy from harvested 
wood is relatively carbon-neutral and can be renewable 
(Schiermeier and others, 2008). Reliable accounts of 
long-term carbon mitigation potential from these managed 
ecosystems should not fail to take harvested carbon into 
account (Smith and others, 2006). As demand for wood 
products grows, so too will plantation management intensity. 
Both factors will likely impact the amount of atmospheric 
carbon sequestered in southern U.S. forests and the wood 
products derived from them. Effective policy-making, 
planning, and management will require good information 
to ensure that these factors are accurately accounted for in 
optimizing carbon sequestration that can be supported by 
southern U.S. forests (Wear and Greis, 2002).

Plantation management in the U.S. South is expected to 
increase in intensity in order to provide more raw materials 
to meet rising societal demands for wood resources 
(Prestemon and Abt, 2002). Loblolly pine plantations 
comprise 9.7 million hectares of southern U.S. timberland, 
roughly 65 percent of the southern plantation area, and their 
area is projected to increase by 67 percent in the next thirty 
years (Prestemon and Abt, 2002; Wear and Greis, 2002; 
Smith and others, 2004c). Through woody and herbaceous 
vegetation control and fertilization, site characteristics are 
being actively managed to enhance productivity (Allen, 
2001). Intensive site preparation, including bedding, disking, 
subsoiling, ripping, or combinations of these treatments, 
can efficiently reduce competition from non-commercial 
hardwood species (Morris and Lowery, 1988). In addition, 

herbicide application can improve seedling establishment 
and early growth (Nilsson and Allen, 2003). Fertilization has 
become an important silvicultural tool in treating nutrient-
deficient midrotation stands for increasing volume growth 
(Fox and others, 2007). Planting genetically-improved 
growing stock has become a standard management tool to 
increase growth efficiency, with gains in volume growth 
averaging 10 to 30 percent over unimproved planting stock 
at harvest (Li and others, 1999; McKeand and others, 
2003). Tree breeding and other efforts to improve genetic 
properties of plantation growing stock are increasingly 
producing commercially available families and genotypes 
for increased volume production in loblolly pine (McKeand 
and others, 2003; Allen and others, 2005; McKeand and 
others, 2006). Intensive management operations appear 
to have potential for sequestering greater carbon, and 
projections of management scenarios will provide an insight 
on dynamics of in-woods and products-based carbon pools.

Recently, national-scale inventory-based carbon 
assessments have been augmented to account for carbon 
stored in aboveground forest pools, as well as the carbon 
stored in wood products (Skog and Nicholson, 1998; 
Heath and others, 2003; Jenkins and others, 2003; Smith 
and others, 2003). To date, such assessments have not 
directly considered the resolution, intensity, nor timing of 
management activities prescribed at forest stand scales. 
Because management is typically carried out on the scale 
of forest stands, carbon accounting at the same scale 
will allow for tracking of the full range of management 
and harvesting activities (Harmon, 2001). In addition, 
stand-level accounting can be scaled up with increasing 
certainty, while downscaling of national-scale estimates 
generally leads to greater uncertainty (Freese, 1967; Smith 
and others, 2004a). Here, predictions will be made at the 
resolution of individual forest stands for greatest flexibility 
in prescribing management conditions. Results will be 
aggregated to state and regional scales to make broader 
geographic assessments, presumably with a relatively high 
degree of precision (Smith and others, 2004a). The resulting 
analyses should serve the information needs of individuals 
ranging from those who develop policies for climate change 
mitigation, to those who set long-term regional goals for 
carbon sequestration, to those who aim to increase the total 
carbon stored in the wood grown on and products harvested 
from their forest lands. 

The goal of this research was to assess impacts of forest 
management on carbon storage in loblolly pine plantations 
across the southern United States over the next half-century. 
Of specific interest here are the in-wood carbon pools of 
aboveground live tree and CWD, and pools of carbon in 
wood products produced from southern forests. To preserve 
information related to stand-level management activities, 
extensive field-plot inventory data were coupled with stand-
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level prediction models to reduce uncertainty in estimates 
and facilitate aggregation across different spatial and 
temporal scales. Four specific objectives were pursued as a 
part of the overall goal:

Objective 1—Estimate the amount of carbon stored 
aboveground in live trees and CWD at scales ranging from 
individual stands to the entire southern United States.

Objective 2—Predict the annual production of harvested 
wood under operational management over a 50-year span, 
distinguishing between wood harvested for use in solid 
wood and paper products, and accounting for trends related 
to management intensity;

Objective 3—Project in-woods carbon pools and carbon 
disposition in harvested wood over a 50-year time span, 
linking inventory-based data and management activities to 
existing models of growth and yield and accounting for the 
lifespan of wood products;

Objective 4—Evaluate long-term effects of intensive 
management of loblolly pine in the U.S. South, including 
competing vegetation control, fertilization, and planting 
of genetically improved growing stock, on carbon 
sequestration and storage.

MATERIALS AND METHODS

Data
The primary data source used in addressing the study 
objectives is the database of forest inventory records 
available online from the USDA Forest Service Forest 
Inventory and Analysis (FIA) program (Forest Inventory 
and Analysis, 2009a). The FIA data used here are composed 
of two-phase sample data collected using double-sampling 
for stratification (Smith, 2002; Reams and others, 2005). 
Phase I data begin with the interpretation and classification 
of remote-sensing imagery. Strata weights are estimated 
for each remote-sensing class, and areas of interest, such 
as the areal extent of loblolly plantations, can be estimated 
by aggregation based on strata weights. Phase II field plots 
are established on subsets of Phase I strata to provide field 
observations of forest conditions and conventional timber-
based measurements on trees larger than 2.54 cm diameter 
at breast height (DBH). The spatial sampling intensity of 
FIA field plots is one plot per 2,430 hectares, and each field 
plot comprises a cluster of four 7-m fixed-radius subplots, 
occupying a 0.067-ha area (Bechtold and Scott, 2005). 
Within each subplot is nested a 2-m radius microplot where 
detailed measurements of small trees (< 2.54 cm DBH) are 
made.

Phase II inventory data obtained, from 2005 – 2007 
survey data for loblolly pine plantations of 11 southern 
states (Figure 1, Table 1), were used as the source of 
information for stand information, including plot datasets, 
plot-condition datasets, tree datasets, seedling datasets, 
and site-tree datasets (Forest Inventory and Analysis, 
2009a). Plot datasets bridged Phase I data and plot-
condition datasets to estimate forestland areas represented 
by each plot given its growing condition. Plot datasets 
provided plot geographic coordinates, remeasurement 
period (yr), a unique plot identification code and previous 
plot conditions if any remeaurement occurred. Field 
observations from plot condition datasets included plot 
conditional classes, condition status codes, condition 
proportions, subplot proportions, stand origin codes (natural 
stands or plantations), stand origin species, stand ages, 
treatment codes, year of treatment, and year of inventory. 
Conventional timber-based variables from tree datasets 
measured in subplots included tree status codes (live 
or removed), species, DBH, height, and live/removed 
cubic-foot volumes. Site-tree data included site index 
relevant measurements, i.e. height and age of dominant 
or codominant sample trees. Seedling data measured in 
microplots provided information on planting density.

The FIA data were screened to identify conditions consistent 
with “well-managed” loblolly pine plantations such as those 
used in the development of the FASTLOB growth-and-
yield model developed by the Forest Modeling Research 
Cooperative at Virginia Tech (Amateis and Burkhart, 
2009). Only those plantations having ≤ 20 percent of 
the stand basal area comprised of hardwood species and 
those having ages between 0 and 50 years were defined as 
“well-managed” and subsequently included in the analyses. 
These conditions were consistent with the data used to 
develop FASTLOB and its computer implementation (Ralph 
Amateis, personal communication, March 1, 2010). Among 
12.4 million hectares of planted loblolly pine forest, a set of 
5,480 FIA inventory plots matched the screening conditions 
and the total area was 11.2 million hectares, including 3,139 
plots on which the screened condition was observed on the 
entire plot, and 2,341 on which the screened condition was 
observed on a portion of the plot.

Stand-level Growth-and-yield Model
The FASTLOB model was developed to reflect management 
activities common to loblolly pine plantations established 
from the late 1950s to early 1990s (Amateis and Burkhart, 
2009). FASTLOB uses site index (base age 25 years), age, 
stem density, amount of competing vegetation, thinning 
operations, fertilization, and other stand characteristics to 
project merchantable yields (pulpwood and sawtimber) and 
in-woods biomass by component, including stem and bark, 
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branches and bark, foliage, and CWD, at different ages. 
Not only projections but also predictive values for initial 
growing stock can be obtained while inputs are established. 
Stand-level equations that comprise the nucleus of 
FASTLOB project dominant height, survival and basal area, 
and serve as a baseline thinned and unthinned model for 
stands. In addition, model inputs including information of 
latitude and longitude provide more precise locale-specific 
predictions if data are available. FASTLOB is presently used 
in ongoing forest management across the private sector of 
the South.

Quantify Current Forest Carbon Pools
Coupled with FIA stand attributes, FASTLOB was used 
to initialize current stand-level forest carbon pools, but 
an indication of how close the estimate from FIA is to the 
population parameter was not readily available through 
applying FIA area expansion factors to scaling up stand-
level estimates to state and southwide levels (Scott and 
others, 2005). “Forest carbon pools” in this study refer to 
the carbon content (one-half the mass of oven-dry biomass) 
in aboveground live trees and CWD, including standing 
snages and downed-woody material. Variances of in-woods 
carbon estimates were used to characterize the uncertainty 
of current forest carbon pools.

Bootstrap variance estimation and its corresponding 
Monte Carlo approximation were used to compute the 
estimate of in-woods carbon mass (live trees and CWD) 
at various regional scales (Booth and Sarkar, 1998). 
Because the probability density function of the population 
distribution was unknown, a nonparametric approach was 
applied to assess various regional-level carbon quantities. 
In the application of bootstrap sampling, predictive 
values of current in-woods carbon mass from FASTLOB 
initialization, weighted with representative areas for each 
FIA plot, were treated as a substitute for the population of 
in-woods carbon. Then, from these 5,480 observations (the 
number of FIA plots in the dataset), bootstrap samples of 
size 5,480 were selected with replacement from the FIA 
dataset. An estimate of in-woods carbon was obtained from 
each bootstrap sample at state and southwide levels. Two 
thousand bootstrap samples from the data were generated 
in total (Booth and Sarkar, 1998). Standard errors and the 
2.5th and 97.5th percentiles of the confidence interval for the 
in-woods carbon were then approximated from the bootstrap 
sample distributions.

Assumptions of Baseline Management
Management conditions considered here included the area 
and density of planting, timing and intensity of thinnings, 
ages to harvest (rotation ages), and silvicultural activities 
associated with high-intensity management. Final (clearcut) 
harvests are simply referred to as “harvest” in this study, 
in contrast to wood harvested by thinning, which is 

referred to simply as “thinning.” Maximum-likelihood 
was used in analyzing FIA data to estimate parameters for 
management-related inputs including planting densities, 
levels of residual stems per unit area, and ages for thinning. 
Log-normal distributions were fitted to planting density and 
residual stem density. A gamma distribution was fitted to 
approximate the distribution of thinning ages for subsequent 
simulations. Empirical cumulative distribution functions 
(ECDFs) and Quantile-Quantile (Q-Q) plots were used to 
evaluate quality of fit for empirical frequencies with those 
fitted to density functions.

Distribution functions were fitted to 2005 – 2007 measured 
plot attributes from FIA to simulate inputs for simulations 
to be consistent with real-world conditions of planting 
density, timing, and intensity of thinning (Figure 2, Figure 
3, Figure 4). Mean and median planting densities of 1,473 
and 1,349 trees•ha-1, respectively, coincided with planting 
spacings typical of southern U.S. pine plantations and a 
lognormal distribution function fitted to FIA data (Figure 
2). No relationship existed between age of thinning and site 
index. Therefore, age of thinning from FIA records was 
fitted to a gamma distribution function (Figure 3). Post-
thinning residual densities were simulated by a lognormal 
distribution (Figure 4). All three of these distribution 
functions represented the general shape and scale of the FIA 
data for planting density, thinning age and residual density, 
although some lack-of-fit was noted, especially in the upper 
tails of these right-skewed distributions.

Rotation length, the plantation age at final harvest, was 
needed to schedule operations on individual stands; 
however, rotation length was only directly observed on 
a small number (n = 22) of the FIA phase II field plots – 
namely those that had been visited at two different times 
and were harvested between visits. In these data an inverse 
relationship between site index and rotation length was 
noted (Figure 5A). Their mean rotation length was 27.5 
years (s = 6.1), over plantations that averaged 18.50 m in 
site index (s = 2.18). Although the relationship between 
rotation length and site index was relatively weak, a trend 
describing it (Figure 5A) was used to predict rotation 
length for the full set of FIA phase II plots where rotation 
lengths had not been observed. Predicted rotation lengths 
by plantation area averaged 27.5 years using this approach, 
with 80 percent of plantation area having rotation lengths 
between 23 and 32 years (Figure 5B). Dividing the total 
area of plantations by the mean predicted rotation length 
indicated an annual harvest area over time of 406,000 ha, 
which was roughly consistent with published report of 
524,000 ha planted in loblolly and shortleaf pines in the 
southern U.S. in 1998 – including those subjected to all 
levels of management intensity (Moulton and Hernandez, 
2000; Smith and others, 2004c).

Carbon and Biomass
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Simulation of Silvicultural Operations
Loblolly pine plantations were assumed to be managed 
primarily for timber benefits over the 50-year simulation. 
With regard to management objectives, plantations were 
categorized into two populations throughout the commercial 
range of species, those that would be thinned at some point 
during a rotation, and those that would remain unthinned 
up to the point of their final harvest. An area of 288,623 ha 
was set as the target for the area of thinnings to be simulated 
each year, based on the estimated annual area of thinning in 
FIA plantation area. The same area was targeted for final-
harvest operations in previously-thinned stands each year so 
that the area of thinned plantations would remain constant 
over time. The area to be harvested annually from never-
thinned stands was set at 117,377 ha as an initial target 
value, so that the area harvested from thinned and never-
thinned plantations would target a total of 406,000 ha per 
year, as was determined in the previous section.

In simulation of area harvested annually from either thinned 
or unthinned stands, it was necessary to assign the annual 
area harvested to various plantation ages. Much as growth 
and yield share an inherent relationship the plantation area 
harvested in various age classes over time has an cumulative 
effect on the age distribution of plantation growing stock 
(Clutter and others, 1983). To reflect this relationship, the 
mathematical derivative of plantation area with respect 
to age across the South was used in assigning an age 
distribution to the area annually harvested. To implement 
this method, plantation area was first expressed as a function 
of stand age to match the empirical conditions characterized 
from the FIA database. 

Graphs of plantation area by age for thinned and unthinned 
stands showed distinct trends of declining area beginning 
around age 22 for thinned stands, and age 16 for those that 
were never thinned (Figure 6). These values were used 
to establish the minimum ages for final harvesting, i.e. 
the minimum rotation lengths, in thinned and unthinned 
plantations, respectively Then the first derivatives of area 
with respect to age were calculated to represent suitable 
functions of harvest area (i.e. change in plantation area) by 
plantation ages. These first derivatives of area harvested 
from thinned and unthinned stands were defined by 
functions, Eq. [1] and Eq. [2], respectively:

 						            [1]

 						            [2]

where
x = stand age (yrs)
yx = total area harvested at age x
c1 and c2 are refined factors through simulations

To focus on changes in plantation area that were due to 
removals by harvesting, only the declining portions of the 
age class by area distributions were considered (Figure 6). 
Thus, in accord with the FIA data it was assumed that final 
harvesting for thinned stands took place no sooner than 
22 years after planting in loblolly pine plantations, and no 
sooner than 16 years for unthinned stands.

All thinnings were simulated based on a thinning intensity 
of 20 percent removals by row thinning and an additional 
≥5 percent reduction in stem density removed by thinning 
from below. Following thinning, a minimum of 6 years was 
required in any particular stand before final harvest was 
allowed in order to capture the volume growth response to 
the thinning treatment. Timings and total area of plantation 
thinnings were specified by the gamma-model-specified 
distribution of stand ages at thinning, along with the target 
for total area to be thinned each year across the South. 
End-of-rotation harvest timing and area also targeted an 
age-distribution and total area. A time period for harvesting, 
site preparation and subsequent planting was assumed to 
be one year; therefore, artificial regeneration was simulated 
to follow an end-of-rotation harvest with a one-year fallow 
period.

Simulation Annual Operations
Forest management regimes span decades for a rotation, 
and individual stands experience all stages of the forest 
management cycle including final harvest, site preparation, 
regeneration, and thinning. Concerning stable production 
of timber harvests from year to year, total southern 
loblolly pine plantations were treated as a single entity 
and management activities were manipulated through 
coordinating all stands. Final harvests were assumed to 
be operated on 406,000 ha annually, i.e. 288,623 ha from 
previously-thinned stands and 117,377 ha from never-
thinned stands. Regarding changes in plantation area on 
rotation ages, Eq. [1], Eq. [2], and rotation ages modified 
from FIA data (input rotation ages) were programmed 
into simulations of area harvested annually. Intermediate 
simulation results were used to refine the two constants 
c1 and c2 in Eqs. [1] and [2], respectively, along with the 
specified target area for annual harvesting in unthinned 
plantations. The sequence of steps performed in the 
simulation algorithm follows (Figure 7): (1) if stand age is 
equal to its predicted rotation age or greater, then this stand 
becomes one candidate to be harvested; (2) with regard 
to the size of candidates’ representative area, candidates 
with large areas have top priority to be harvested; (3) 
select candidates from the pool of candidate stands to meet 
requests from each age-class area of Eq. [1] or Eq. [2]; (4) 
if total area from Step 3 meets the target harvest area, then 
stop; (5) otherwise, more candidate stands harvested are 
needed. In this step, number of overdue years of predicted 
rotation age is used instead as the criterion for choice of 
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exp(15.83-1307x-1+66550x-2-1202000x-3+7219000x-4)

y=c2 x 0.13 x exp(15.16-0.13x)

y = c1 x (1307x-2 - 133100x-3 + 3606000x-4 - 28876000x-5)x
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candidate stands to be harvested. Select candidates from 
more overdue years to meet target harvest area; (6) means 
of simulated rotation ages and areas harvested by year are 
evaluated whether simulation underperforms or not; (7) if 
underperformance occurs, refine c1 in Eq. [1] or c2 in Eq. 
[2]; (8) re-run steps 1-7 for the next 50-year-simulation 
iteration until simulation output is in good shape. After final 
harvest and a one-year fallow period for site preparation, all 
stands were established and their planting densities followed 
the lognormal-model-specified distribution. 

Assignment of stands to be treated by thinning, or remain 
unthinned during the lengths of their rotations was made 
using a Bernoulli distribution with values 1 for thinning, 
and 0 for no thinning. The probability that a stand would 
be thinned (p) was defined by the total area harvested from 
thinned stands divided by total harvest area across the South 
from the previous year in the simulation. As previously 
noted, the area to be treated by thinnings annually was set at 
288,623 ha and its age structure was defined by Eq.[1]. This 
simulation required four component inputs including target 
area, Eq. [1], input rotation ages, and the gamma-model-
specified distribution of stand ages at thinning. The steps 
of the algorithm procedure follow (Figure 8): (1) if stand 
age is equal to its gamma-specified age or greater, then this 
stand becomes one candidate to be thinned; (2) candidates 
have top priority to be thinned if their representative area are 
large; (3) select candidate stands to meet demands of future 
harvest areas from Eq. [1] coupled with predicted rotation 
ages; (4) if total area from Step 3 meets target thinned area, 
then stop; (5) otherwise, select more candidate stands to 
meet the target area. Number of overdue years of thinned 
age serves as the criterion for choice of candidate stands 
to be thinned. From large overdue years, select candidate 
stands to meet target thinned area.

Harvested Wood Production over Time
Projections of future production of timber products (i.e. 
pulpwood and sawtimber) were made under the baseline 
management scenario described above, which was 
determined from FIA data. Simulated variables including 
areas harvested either from thinned or unthinned stands, 
thinned areas, rotation ages, and ages for thinning were 
linked to FASTLOB to generate timber products estimates. 
Pulpwood was defined as 15.24 cm (6 in) DBH and larger 
and minimum diameter top was 10.16 cm (4 in) outside 
bark; and sawtimber was defined as 22.86 cm (9 in) DBH 
and larger to a minimum 17.78 cm (7 in) top diameter 
outside bark using the International 1/4-inch log rule. Green 
weights outside bark for both types of timber products were 
predicted for comparison to regional analyses that express 
production on the basis of weight (Bullock and Burkhart, 
2003). For validation purposes, primary-mill survey 
results from 2006-2008 were obtained from FIA timber 
product output (TPO) reports of pulpwood and sawtimber 

production from roundwood (e.g. Cooper and Becker, 2009; 
Johnson and others, 2010).

To assess the potential role of wood products in mitigating 
GHG emission from fossil fuel, i.e. carbon pools and energy 
offset, the method for calculating harvested carbon by Smith 
and others, (2006) was used. The amount of carbon in wood 
products each year was estimated, including products in 
use and products in landfill, through 2056, beginning with 
wood harvested in 2006. Carbon remained in harvested 
wood products was expressed as metric tons per hectare 
(Mg•ha-1) even though the disposition of carbon over time 
for such wood products are not directly linked to forest 
area. With regard to renewable energy consumption from 
wood residues and pulping liquors generated by the forest 
products industry, the amount of emitted carbon by year 
was estimated. Year-to-year changes in stocks of carbon 
sequestered in the wood-products pool was estimated to 
evaluate whether this pool is a carbon sink, balance, or 
source.

The carbon content in harvested wood was estimated using 
green weight of pulpwood and sawtimber production from 
FASTLOB output and moisture content (MC) of sapwood 
110 percent (Glass and Zelinka, 2010). Disposition of 
carbon in harvested wood products for products in use, 
products in landfill, and energy offset was estimated as 
follows: (1) Ovendry weight = Green weight/(MC+1); 50 
percent of this is carbon mass; (2) allocate sawtimber and 
pulpwood to primary wood products (e.g. lumber, plywood, 
panels, and paper) according to region and category in Table 
D6 of Smith and others, (2006); (3) compute carbon amount 
of primary products remaining in use or in landfill each 
year based on Tables 8 and 9 of Smith and others, (2006), 
respectively; (4) estimate amount of carbon associated with 
energy recapture using Table D7 of Smith and others, (2006) 
(See Smith and others, (2006) for details).

In-woods Carbon over Time
To evaluate long-term effects of baseline management on 
sequestering carbon and maintaining in-woods carbon, 
FASTLOB was used to project biomass of aboveground live 
trees and mass of CWD in a 50-year timeframe since 2006. 
Rate of change of sequestering carbon was computed to 
assess whether the managed forest was a carbon-balanced 
system or not. FASTLOB has embedded prediction 
equations that estimate biomass for various components 
(Baldwin and others, 1997; Landsberg and Waring, 1997; 
Radtke and others, 2009). Carbon mass was assumed to be 
50 percent of biomass (Smith and others, 2003).

Intensive Management Scenarios
With regard to an increase in management intensity in the 
southern plantations, two management intensity scenarios 
were developed to estimate potential loblolly pine growth 
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and yield and the corresponding effects of management on 
carbon storage. The two management scenarios included 
(1) scenario 1: intensive site preparation, herbicide 
application, and mid-rotation fertilization; and (2) scenario 
2: the management regime from scenario 1 plus planting of 
genetically improved growing stock. The term “genetically 
improved” here assumes that growing stock came from 
third- or fourth-generation seed orchards which have not 
previously been deployed in the South (McKeand and 
others, 2003).

The intensive management regimes 1 and 2 were used 
according to the embedded functionality of the FASTLOB 
modeling system. For completeness, an overview of the 
FASTLOB implementation for intensive management is 
given here. Growth responses to intensive silviculture in 
FASTLOB are added to baseline-management predictions. 
According to research that showed growth responses 
to intensive site preparation and herbicide application 
varying from site to site, the effect of competing vegetation 
control on growth and yield was modeled in FASTLOB 
by increasing site index by 0 to 1.5 m (Siry and others, 
2001; Nilsson and Allen, 2003). A uniform distribution was 
used to simulate random site index increases within this 
range for each stand. In accord with common mid-rotation 
fertilizer applications of 28 P kg•ha-1 and either 224 or 196 
N kg•ha-1, the amount of N fertilizer applied in a given stand 
was set to follow a Bernoulli distribution with p (224 N 
kg•ha-1) = 0.58, and 1 – p (196 N kg•ha-1 ) = 0.42 (Albaugh 
and others, 2007). For unthinned stands, the timing of 
fertilization was assumed to take place between ages 13 
to 20 and no harvesting within six years of fertilizing; for 
thinned stands fertilization was performed after thinning. 
Timing assumptions for fertilization were primarily based 
on published studies varying management intensities that 
Siry and others, (2001) assumed fertilization at age 15 years 
for medium intensity and 5-to-10 years for high intensity; 
Allen and others, (2005) assumed age 17 years for medium 
intensity and 5-to-21 years for high intensity; Liechty 
and Fristoe (2010) used ages 17-to-22 years for timing of 
mid-rotation fertilization. Genetically improved stock was 
assumed to increase volume by 10 to 20 percent at harvest 
ages and this increase corresponded to a 1.5- to 3-m site 
index gain (McKeand and others, 2006). Site index gains 
due to planting of genetically improved seedlings were 
simulated by generating a uniform random variate on the 
interval [1.5, 3.0] for each stand.

RESULTS

Estimates for Current Carbon Pools
In well-managed loblolly pine forestland across the South, 
the estimate of in-woods carbon mass total exceeded 340 

million Mg (1 Mg = 1 metric ton or approximately 1.1 U.S. 
tons) (Table 2). The mean of area-weighted averaged carbon 
was 30.54 Mg•ha-1. State-by-State in-woods carbon totals 
varied from 3.3 to 53.7 million Mg, and 21.30 to 35.51 
Mg•ha-1 for carbon means per hectare by accounting for 
forestland area (Table 2). Carbon total stocks in Tennessee 
and Florida were significantly less than those in the other 
nine States, largely due to their comparatively small 
plantation areas. Aside from the effects due to its small 
plantation areas, Tennessee had relatively low carbon stocks 
of 21.30 Mg•ha-1, in part because of its comparatively 
low average basal area (Table 1). In general, States with 
the lowest average plantation ages had the lowest yields 
per hectare, while those with the highest plantation ages 
had higher yields (Table 1, Table 2). The percentages of 
aboveground live trees and CWD, contributing to the in-
woods aboveground carbon pool, were about 93 percent and 
7 percent, respectively (Table 3, Table 4).

Bootstrap Results
Sampling distributions for in-wood carbon quantities 
(i.e. carbon total and carbon per hectare) in loblolly pine 
plantations across the South appeared to be consistent with 
a normal distribution, with the bootstrap-simulated means 
being approximately equal to estimates from FASTLOB 
(Figure 9, Figure 10). The simulated results for standard 
errors and the 2.5th and 97.5th percentiles of distributions 
were given in Table 2 , Table 3 , and Table 4. Bootstrap 
confidence intervals for southwide carbon spanned ±2.80 
percent for total carbon mass and ±2.54 percent for carbon 
per hectare (Mg•ha-1) in the in-woods pool, respectively. 
Variances in live-tree carbon were ±2.77 percent and ±2.44 
percent for carbon total and per hectare, respectively, and 
those of CWD carbon quantities were ±7.38 percent and 
±7.30 percent. 

State-level uncertainties for estimates of carbon quantities 
were assessed using the same set of bootstrap samples 
(Table 2, Table 3, Table 4). Compared to southwide 
estimates, State-by-State estimates were relatively 
imprecise. Uncertainty in the in-woods estimates was 
primarily contributed by variability from live-tree pools. 
Despite the larger dispersion of CWD pools across States, 
because of their smaller size, CWD pools contributed less 
to overall in-woods variablity. Tennessee and Florida had 
greater variance of carbon estimates, mainly because of 
the relatively small numbers of FIA field plots in loblolly 
pine plantations in those States. Therefore, their standard 
errors of estimated totals and means for in-woods carbon 
were relatively large compared to other States’ estimates. 
Excepting Tennessee and Florida, 95 percent bootstrap 
confidence intervals for States’ carbon means in well-
managed plantation forestland did not exceed ±15 percent of 
the estimated values.
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Age-class Simulations of Area
The target area for annual harvesting from unthinned stands 
was set to 112,583 ha following test simulations used 
to determine whether this value was consistent with the 
constant c2 in Eq. [2]. Hypothetical distributions of harvest 
area by age classes (Figure 11), were multiplied by constants 
c1 = -2.48 in Eq. [1] and c2 = -0.65 in Eq. [2], which ensured 
consistency between target harvest areas, Eqs. [1] and 
[2], and the predicted distribution of rotation ages. The 
derivative functions or harvest area by age classes reflect the 
assumed restriction of final harvesting in thinned plantations 
to those ≥22 years of age and unthinned plantations 
≥16 years. In addition, these hypothetical distributions, 
especially the harvest curve for thinned stands [1], agreed 
with the predicted distribution of rotation ages (Figure 5B, 
Figure 11).

In plotting the area of simulated thinning and final harvest 
operations in each year of the simulation (Figure 12A), two 
periods, each spanning about 10-years, reflected relatively 
low projected areas of thinning (2015 – 2025) and final 
harvest (2025 – 2035) activity. These periods corresponded 
to a decade of relatively low establishment of loblolly pine 
plantations across the South in the 1990s, which is reflected 
in the relatively low area of 5 to 15 year old plantations in 
the initial age-class distribution (Figure 13A). At the end of 
the 50-year simulation, the same pattern was not evident in 
the age-class structure of loblolly pine plantation area across 
the South (Figure 13B).

Simulated results of year-by-year areas operated by 
thinning and harvesting, and their corresponding mean 
ages for operations were plotted in Figure 12. The annual 
area of final harvest averaged 400,000 ha over the 50-year 
simulation, including 290,000 ha (± 9,600) harvested from 
thinned stands and 110,000 ha (± 3,300) from unthinned 
stands. Rotation lengths in the simulations ranged between 
26 and 33 years. Accounting for the occurrence of projected 
thinnings, simulated rotation ages of thinned stands 
averaged about one year more than those of unthinned 
stands, at 28.2 and 27.4 years, respectively. The annual area 
of thinning operations averaged 280,147 ha with a standard 
deviation of 27,000 ha over 50 years, with an average age of 
thinning = 18.0 years (s = 0.7 yrs).

Projected Timber Production
An example of the effect the simulated thinning regime 
had on stand-level volume and biomass accretion over the 
50-year projection period can be compared with that of a 
stand not subjected to thinning (Figure 14). In both thinned 
and unthinned simulated stands, all aboveground volume 
and CWD was set to zero prior to the artificial regeneration 
of the stands. As is typical of most models that project 
growth and yield after thinning in plantations, volume 
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was immediately reduced at the time of thinning, and then 
allowed to re-accumulate over time until final harvest. In 
the years immediately following thinning, standing volume 
growth rates exceeded the rates realized before thinning for 
a time; however, volume production at final harvest was 
lower in thinned stands than their unthinned counterparts. 
The period of no apparent volume or biomass that occurs 
between rotations is a minor artifact of the way volume 
accretion is estimated in FASTLOB. In particular, the 
youngest age at which any volume outputs are generated is 
five years after planting.

Timber production southwide for each year was computed 
as an aggregate of all stand-level projections. Results 
showed that through carrying out thinning operations, 
stands supplied one-fourth timber production annually 
including pulpwood and sawtimber, and final harvest three 
fourths, drawn from Figure 15. Further, thinnings primarily 
produced pulpwood; and final harvests produced pulpwood 
and sawtimber. Annual total pulpwood yield was 62.1 
million green metric tons, ranging from about 49 to 76 
million green metric tons, 38 percent from thinning and 
62 percent from final harvest. However, total sawtimber 
production of 36 – 60 million green metric tons was almost 
100 percent made up by final harvests. Mean projected 
annual pulpwood production was nearly equivalent to 2006 
– 2008 TPO reported pulpwood production. For sawtimber 
the projected mean was about 35 percent lower than the 
TPO value (Figure 15).

Carbon Pools and Fluxes
Figure 16. showed the effects of annual thinning and final 
harvesting activities on reductions of carbon from the in-
woods pool. Intra-annual increases in the trend represented 
net growth through the growing season, while intra-annual 
decreases represented removals. Timing of removals was 
arbitrarily set to follow the annual growth each year, without 
detailed consideration of the timing of growth and removals 
within any given year. Considering both additions and 
losses of carbon in the wood-products pool, which includes 
products in use and in landfills, harvested wood products 
created a sink of 6 to 9 million metric tons of carbon per 
year (Figure 17). Compared to the landfill pool, fluxes of 
sequestered carbon in the products-in-use fluctuated more 
from year to year, especially in pulpwood products because 
of their relatively short lifetimes. For a long run, landfills 
added more carbon in the accounting system with reference 
to annual positive carbon fluxes.

Effects of Various Management 
Intensities
Regarding increasing demands of wood products, intensive 
management might provide opportunities for GHG 
mitigation. With the intensive approaches, the amount 
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of carbon stored in all individual pools was substantially 
increased. Overall, applying fertilizers and herbicide, and 
deploying genetically improved growing stock increased 
15 percent of carbon stocks, respectively (Figure 18). 
However, the increased magnitudes varied among pools. 
The more-intensive scenario (scenario 1) produced carbon 
gains 20 percent in sawtimber-in-use, and 10 percent in 
pulpwood-in-use, landfill, and in-woods pools, respectively. 
For the most-intensive scenario (scenario 2), sawtimber-in-
use had a 40 percent increase; pulpwood-in-use and landfill 
had a 25 percent increase, respectively; and in-woods had 
a 35 percent increase in carbon stocks by comparing to the 
baseline scenario. For both intensive-management scenarios, 
carbon stocks in sawtimber-in-use grew much faster than the 
other pools, primarily due to gains in volume growth that 
increased long-lifetime sawtimber production (Figure 19). 

Beginning with applying more intensive silvicultural 
approaches in 2006 and following each year, southwide-
level timber yield responded to such applications with a 
time lag at least four years (Figure 19). Use of fertilizers 
and herbicide enabled substantial increase in pulpwood 
yields from 2013 and sawtimber yields from 2010. Genetic 
improvements increased pulpwood yields from 2021 and 
sawtimber yields from 2027. As expected, with increasing 
yield, annual energy recapture from wood products 
increased 20 percent and 40 percent for the more- and most-
intensive scenarios, respectively, compared to the burning 
wood products of 11 million metric tons of carbon per year 
from the base scenario (Figure 20).

DISCUSSION AND CONCLUSIONS

Regional forest carbon storage in loblolly pine plantations 
was modeled as an aggregate of stand-level estimates based 
on FIA data and FASTLOB, which served as a baseline 
for assessing the potential of managed extensive forests to 
increase carbon storage. As of 2006, aboveground carbon 
pools held an estimated 341 million metric tons of carbon, 
an amount equivalent to 20 percent of GHG emissions 
from energy consumed in the United States in 2006 (U.S. 
Environmental Protection Agency, 2008). This estimate 
corresponded to an average of 31 Mg of carbon accumulated 
on each hectare of planted loblolly pine across the South. 
Sources other than planted loblolly pines are excluded 
from these estimates. Live trees comprised 93 percent of 
the projected aboveground carbon, with the remaining 7 
percent stored in CWD. Smith and others, (2004b) reported 
that carbon content in aboveground woody pools ranged 
between 43 and 60 Mg•ha-1 in southern loblolly-shortleaf 
pine forests. Their comparatively high estimates included 
some 45 percent natural forests, by area, compared to only 
plantations considered here (Forest Inventory and Analysis, 
2009a). Presumably, the relatively low management 

intensity in natural forests allows for greater accumulations 
of in-woods carbon than what is accomplished in 
well-managed plantations. Smith and others, (2004b) 
also reported that CWD comprised 12 percent of in-
woods carbon, an amount higher than was found here. 
This difference can also be attributed to differences in 
management intensity between their study data set and 
the one used here. Compared to the 11.17 million hectares 
of “well-managed” loblolly pine forests studied here, the 
FIA loblolly-shortleaf forest type comprised 25.2 million 
hectares of forestland (Forest Inventory and Analysis, 
2009a). 

Uncertainties for baseline carbon assessments were 
approximated by a bootstrap procedure that showed error 
rates of 1.40 percent for total carbon across the South and 
1.27 percent for carbon mass per hectare. The relatively 
small sampling error rates confirm that in-woods carbon 
estimates from FIA survey data can be highly precise 
(Figure 9, Figure 10). Smith and Heath (2001) reported 
an error rate of 6.5 percent for carbon mass stored in 
aboveground softwoods of maple-beech-birch forests 
for area of 105-107 ha, based on growing stock used by 
FIA (Smith and others, 2003; Smith and others, 2004a). 
Bootstrap error rates for loblolly pine plantation area 
estimates from the same FIA data used here (details not 
shown) verified that the FIA-mandated maximum sampling 
error rate of 1.91 percent for one million hectares of 
forestland was not exceeded (Forest Inventory and Analysis, 
2009a). These results support the widely-held understanding 
of bootstrap sampling as a state of the art method for 
quantifies uncertainty in complex statistical analyses such as 
the regional carbon estimates generated here.

Rotation lengths varied between 26 and 33 years for 
stands projected over the course of the baseline simulation, 
based on the targets established by the weak relationship 
between site index and rotation length noted in FIA data, 
and also accounting for target harvest levels, thinning, and 
the modeled age-distributions of thinning and harvesting 
operations over the region. Rotation lengths were generally 
consistent with optimal ages to harvest based on financial 
returns or experts’ insight that final harvests occur between 
ages 25 and 35 years (Siry, 2002; Huang and Kronrad, 
2006; Carino, 2009). Year-to-year simulated averaged 
ages of thinning between 17 and 20 years agreed with 
pulpwood harvest ages in southern pine plantations from 
2000 through 2010 (Fox and others, 2004). In addition, the 
dip in projected annual areas for thinnings and final harvests 
reflected past conditions. According to Conner and Hartsell 
(2002), industry ownership decreased throughout the South 
between 1989 and 1999, to the point where the removals of 
growing stock in 1999 exceeded the year’s annual growth. 
Since then the area of southern pines planted has increased, 
in part because of conversion of some nonforested land 
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area to pine plantations (Conner and Hartsell, 2002). The 
projected trends here reflect both the decrease in growing 
stock prior to 1999 and the subsequent increase reported by 
Conner and Hartsell (2002). 

FIA initial area conditions most strongly influenced 
projection results during the first 30-years of the 50-year 
simulation period. Beyond 30 years, the assumptions 
embedded into the simulation, notably those assumptions 
related to areas managed over time, exerted stronger 
influence on projection results. This can be seen in the dip 
observed in the FIA age-class distribution (Figure 12, Figure 
15) that affects areas projected to be available for thinning 
and final harvest, along with timber production, particularly 
sawtimber yields, through 2035. After 2035 projected timber 
production and areas harvested or thinned became relatively 
stable over time, presumably the result of the repeated 
application of modeling assumptions that fail to replicate 
variations that would occur under real-world conditions. 
In addition, the simulation assumed the area of plantation 
forestry will remain constant across the South for 50 years 
and that age distributions of growing stock and harvested 
wood will remain stable over time. Trends in demographics, 
land uses, timber supply-and-demand relationships, and 
timber price are all known to affect timber resources, but 
were deemed to be outside the scope of this study (Adams 
and others, 2003). The simulation methods developed 
here could be improved upon by accounting for future 
dynamics of number of planted hectares, financial returns, 
and individual ownerships and their associated management 
objectives.

Projected sawtimber yields here were lower than reported 
TPO values by about 35 percent. In contrast pulpwood 
projections matched TPO reported values almost exactly. 
Sawtimber output in TPO reports are derived from the 
loblolly-shortleaf pine forest type, which includes natural 
and planted pine forests with all levels of management 
intensity. Management goals for such forests may be 
considerably different than what are defined here as “well-
managed” loblolly pine plantations. For example, goals may 
include management for aesthetics, wildlife habitat, and 
recreational uses for a portion of the stand’s lifetime, with 
sawtimber harvesting taking place once economic returns 
become a motivating factor (Guldin, 2004). On the other 
hand the fact that pulpwood production results here strongly 
agree with TPO pulpwood production implies that loblolly 
pine plantations are a major source of softwood raw material 
for pulpwood production in the South. Challenges remain 
for comparing broad-scale market results such as TPO to 
management-oriented projections like the one conducted 
here.

Based on this 50-year-projection method, long-term effects 
of thinning and final harvest on future carbon stock in the 

products-in-use and landfills can be extended through 100 
years or more to address the climate change issue (Miner, 
2006). Projected results showed that removals in the five 
decades total approximately 25.7 million metric tons of 
carbon per year, while maintaining the region’s plantation 
resources with a net carbon increase in growing stock over 
time; the harvested wood product preserves carbon with a 
positive flux of 6-9 million metric tons per year; an average 
of 11 million metric tons per year of carbon is burned for 
energy, equivalent to 25 percent of annual forest-products-
industry renewable energy use in the United States (Perlack 
and others, 2005).

It has been argued that forests managed under natural 
conditions will store more carbon than those managed for 
timber production, even when carbon stored in products 
are accounted for (Harmon and others, 1990). For example, 
after a 50-year unmanaged period, all planted loblolly pine 
forests had quadratic mean breast height diameter of 15.5 
cm, and averaged in-woods carbon mass of 115 Mg•ha-1, 
varying from 18 to 251 Mg•ha-1 (Figure 21A). Managed 
systems appear to store less carbon than their natural 
counterparts by means of projection (e.g. 75.3 Mg•ha-1 for 
the management regime and 115 Mg•ha-1 for the natural 
regime). Given enough time, however, carbon flux of old 
forests would theoretically approach zero for the rate of 
change of carbon accumulations (i.e. second derivative) is 
negative (Figure 21B). Such phenomenon in old forests is 
analogous to a carbon balance in planted forests between 
carbon captured by photosynthesis and carbon removed by 
thinning and final harvest. Further, wood products offer a 
potential advantage over manufactured materials for locking 
up sequestered carbon. For example, a simple sawed wood 
product requires 44 percent less energy consumption than 
steel, 93 percent less than aluminum, 60-80 percent less than 
concrete, or 77-83 percent less than plastic (Petersen and 
Solberg, 2005; Jansson and others, 2010). Managing forests 
to supply wood products may provide low-cost opportunities 
for GHG mitigation. Therefore, proper carbon mitigation 
policy should be a compromise between managing forests 
and preserving forests.

Increased demand for wood products often results in 
landowners adopting more intensive forest management 
practices (Prestemon and Abt, 2002). Management scenarios 
showed that through intensified application of fertilizers and 
herbicide and genetic improvement, improved plantation 
productivity increases not only the production potential 
of forests but also in-wood/harvested carbon stock up 
to 30 percent. However, fertilizers and herbicide require 
additional energy to produce and apply, and some of the 
applied fertilizers and herbicide is inevitable lost as GHG 
such as N2O (Sathre and others, 2010). Such potential for 
lowering the GHG benefit is not accounted in management 
scenarios explored here. 
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In total, the carbon stored aboveground in loblolly pine 
plantations and wood harvested from them, including that 
used for energy production, has considerable potential 
to offset GHG emissions from fossil fuels. To better 
assess roles of such forest offset, GHG offset payments 
to landowners are necessary to model future market 
adjustments (Cairns and Lasserre, 2004; Im and others, 
2007). Forestry-related policies implemented in efforts to 
mitigate GHG emissions or accomplish other public goals 
have the potential to affect landowners’ management of 
plantation lands (Pohjola and Valsta, 2007). Despite the lack 
of any direct linkage to proposed public policies here, the 
approach used here allows for flexibility and adaptability 
in changing assumptions or inputs when new data and 
information become available. The results of projections like 
those presented here provide potentially useful information 
for use in addressing questions about the role southern pine 
plantations can play in GHG mitigation and climate policy. 
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Area SI
†
 Planting Age TPA BA

‡
 Thinning 

State Plots 

(10
6
 ha) (m) (seedlings·ha

-1
) (yrs) (trees·ha

-1
) (m

2
·ha

-1
) Age TPA 

Alabama 976 1.95 20.0 1,040 14 867 13.8 19 425 

Arkansas 406 0.85 17.0 1,127 18 788 15.8 24 413 

Florida 116 0.24 19.7 1,095 16 912 14.9 - - 

Georgia 833 1.66 19.8 941 16 870 14.2 20 390 

Louisiana 508 1.09 19.7 1,038 14 964 14.2 23 467 

Mississippi 823 1.63 19.8 1,080 15 833 14.9 21 445 

North 

Carolina 
394 1.00 18.5 1,191 19 818 15.6 24 319 

South 

Carolina 
575 1.10 19.6 1,240 17 855 16.1 21 405 

Tennessee 83 0.15 18.5 751 14 754 11.5 20 425 

Texas 437 0.87 19.1 1,176 14 843 12.6 18 415 

Virginia 329 0.63 18.5 1,038 19 813 15.4 24 334 

South 5,480 11.17 19.4 1,067 16 855 14.7 21 410 

Table 1—Summary of stand attributes (area-weighted mean) for FIA sampled field plots and their representative 
forestland area of loblolly pine plantations by southern States

 † Site index at base age of 25 years
 ‡ Basal area
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  In-woods carbon total (10
6
 Mg)  In-woods carbon mean (Mg·ha

-1
) 

95% CI  95% CI 
State  Estimate

†
 SE

‡
 (%) 

2.5
th

 97.5
th

  
Estimate

†
 SE

‡
 (%) 

2.5
th

 97.5
th

 

Alabama  53.7 4.21 49.4 58.2  27.49 2.74 26.02 28.89 

Arkansas  26.7 7.12 23.2 30.7  31.43 4.69 28.69 34.39 

Florida  7.2 12.35 5.5 9.1  30.25 7.70 25.76 34.98 

Georgia  49.4 4.50 45.1 53.8  29.83 2.86 28.19 31.55 

Louisiana  31.2 6.89 27.1 35.4  28.58 5.33 25.67 31.59 

Mississippi  52.5 4.52 47.9 57.2  32.11 2.90 30.28 33.91 

North Carolina  35.4 6.73 30.7 40.3  35.51 4.36 32.48 38.53 

South Carolina  38.5 5.58 34.4 42.8  34.97 3.42 32.66 37.20 

Tennessee  3.3 18.15 2.2 4.5  21.30 12.94 15.84 26.69 

Texas  21.4 6.78 18.6 24.2  24.52 4.66 22.43 26.86 

Virginia  22.1 7.71 18.7 25.4  34.99 4.75 31.74 38.15 

South  341.1 1.40 331.7 350.5  30.54 1.27 29.77 31.31 

 

Table 2—State-level and southwide in-woods carbon mass totals (106 Mg) and means (Mg•ha-1): FIA estimates and 
bootstrap standard errors and 95 percent confidence intervals

 † Estimate based on FIA 2005—2007 data and FASTLOB yield predictions
 ‡ Estimated standard error from bootstrap sampling

 

 

 

  Live-tree carbon total (10
6
 Mg)  Live-tree carbon mean (Mg·ha

-1
) 

95% CI  95% CI 
State  Estimate

†
 SE

‡
 (%) 

2.5
th

 97.5
th

  
Estimate

†
 SE

‡
 (%) 

2.5
th

 97.5
th

 

Alabama  50.5 4.19 46.5 54.7  25.85 2.71 24.46 27.17 

Arkansas  24.6 6.88 21.4 28.0  28.96 4.36 26.56 31.50 

Florida  6.8 12.36 5.2 8.6  28.62 7.70 24.33 33.08 

Georgia  46.8 4.49 42.7 50.8  28.22 2.82 26.64 29.82 

Louisiana  28.5 6.62 24.9 32.1  26.11 4.93 23.70 28.65 

Mississippi  49.5 4.49 45.1 53.8  30.28 2.84 28.58 31.95 

North Carolina  31.3 6.47 27.3 35.5  31.35 3.94 28.99 33.71 

South Carolina  36.1 5.59 32.2 40.2  32.78 3.41 30.57 34.90 

Tennessee  3.0 18.17 2.0 4.1  19.53 12.92 14.50 24.52 

Texas  19.9 6.65 17.3 22.5  22.81 4.45 20.97 24.83 

Virginia  19.7 7.51 16.8 22.6  31.28 4.42 28.57 33.91 

South  316.4 1.35 308.1 324.7  28.32 1.22 27.63 29.00 

 

Table 3—State-level and southwide live-tree carbon mass totals (106 Mg) and means (Mg•ha-1): FIA estimates 
and bootstrap standard errors and 95 percent confidence intervals

 † Estimate based on FIA 2005—2007 data and FASTLOB yield predictions
 ‡ Estimated standard error from bootstrap sampling
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  CWD carbon total (10
6
 Mg)  CWD carbon mean (Mg·ha

-1
) 

95% CI  95% CI 
State  Estimate

†
 SE

‡
 (%) 

2.5
th

 97.5
th

  
Estimate

†
 SE

‡
 (%) 

2.5
th

 97.5
th

 

Alabama  3.2 8.59 2.7 3.8  1.65 8.01 1.39 1.91 

Arkansas  2.1 15.16 1.6 2.8  2.47 13.99 1.87 3.20 

Florida  0.4 15.94 0.3 0.5  1.63 12.86 1.24 2.06 

Georgia  2.7 6.90 2.4 3.1  1.61 6.11 1.44 1.81 

Louisiana  2.7 15.23 2.0 3.6  2.47 14.75 1.81 3.24 

Mississippi  3.0 7.17 2.6 3.4  1.83 6.35 1.61 2.07 

North Carolina  4.2 13.30 3.2 5.4  4.16 12.31 3.27 5.29 

South Carolina  2.4 7.56 2.1 2.8  2.19 6.38 1.91 2.46 

Tennessee  0.3 32.96 0.1 0.5  1.77 30.62 0.84 2.89 

Texas  1.5 13.49 1.1 1.9  1.71 12.65 1.31 2.16 

Virginia  2.4 14.69 1.8 3.1  3.71 13.36 2.83 4.77 

South  24.7 3.69 23.0 26.5  2.21 3.65 2.06 2.38 

 

Table 4—State-level and southwide CWD carbon mass totals (106 Mg) and means (Mg•ha-1): FIA estimates and bootstrap 
standard errors and 95 percent confidence intervals

 † Estimate based on FIA 2005—2007 data and FASTLOB yield predictions
 ‡ Estimated standard error from bootstrap sampling

 

 Figure 1. Approximate Forest Inventory and Analysis (FIA) plot locations for loblolly pine plantations and the 
natural range† of loblolly pine forests (shaded) in the southern United States. State codes – 01: Alabama, 05: 
Arkansas, 12: Florida, 13: Georgia, 22: Louisiana, 28: Mississippi, 37: North Carolina, 45: South Carolina, 47: 
Tennessee, 48: Texas, and 51: Virginia. 
† Geographic distribution of loblolly pine is obtained from Little (1971). 
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Figure 2—Fitted log-normal distribution of planting density (μ = 7.21, σ = 0.42, while the variable at natural logarithm scale): (A) Histogram of 
observed data versus fundamental shape; (B) Empirical versus theoretical cumulative distribution functions (ECDF versus CDF) (C) Empirical 
quantiles versus theoretical quantiles from a log-normal distribution.

 

Figure 3—Fitted gamma distribution of age of thinning (α = 14.31, λ= 0.68): (A) Histogram of observed data and fitted gamma density function; 
(B) ECDF versus CDF; (C) Empirical quantiles versus theoretical quantiles from a gamma distribution.

 

 
Figure 4—Fitted log-normal distribution of residual density after thinning (μ = 5.86, σ = 0.58, while the variable at natural logarithm scale): (A) 
Histogram of observed data and fitted lognormal function; (B) ECDF versus CDF (C) Empirical quantiles versus theoretical quantiles from a log-
normal distribution.
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 Figure 5—Distribution of rotation ages, accounting for site index at base age 25: (A) The relationship between FIA observed rotation 
ages and site index; (B) Predicted rotation ages for all stands across the South with a mean . ̂ .= 27 5

 

 Figure 6—Quality of fit for distributions of planted area by age classes throughout the South (A) Stands with evidence of thinning 
which age class at 22 yrs has largest fitted area; (B) Stands without thinning observed which age class at 16 yrs has largest fitted 
area. 
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predicted rotation age) of the rest 
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Harvest 

Stop 

(Simulated harvest area 2) 

YES 
NO 

YES 

YES 

YES 

NO 

NO 

Next year 

NO 

Accumulated candidates’ area by ages hypothetical 

age-class area (Eq. [1] or Eq. [2]) + median of FIA plot 

representative area? 

Start 

(Simulated harvest area 2)

(Simulated harvest area 1)

Figure 7—Rules used to select FIA plots for harvesting from thinned [1] and never-thinned [2] plantations. 
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Rank overdue years (i.e. stand age – 
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Thinning 
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(Simulated thinned area 2) 

YES 
NO 

YES 

YES 

YES 

NO 

NO 

Next year 

NO 

Accumulated candidates’ area by ages hypothetical 

age-class area (Eq. [1] coupled with predicted rotation 

ages) + median of FIA plot representative area? 

Start 

(Simulated thinned area 2)

(Simulated thinned area 1)

Figure 8—Rules used to select FIA plots for thinning.
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 Figure 9—Bootstrap sampling distribution of southwide in-woods carbon totals (106 Mg) (A), and its quality of fit based on a normal 
distribution (B).

 

 Figure 10. Bootstrap sampling distribution of southwide in-woods carbon mean per hectare (Mg•ha-1) (A), and its quality of fit based 
on a normal distribution (B).
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Figure 11—Hypothetical function of annual harvest area on ages, 
accounting for previous thinning operations. A dotted line represents 
that annual harvest areas may not be restricted to hypothetical 
values because areas of predicted rotation ages <25 are less than 
that of rotation age at 25 years (Figure 5B). 

 

 

Figure 12—Simulations of area operated each year in the span of 50 years: (A) Area operated by thinning, and final harvest on 
thinned and unthinned stands; (B) Mean values of ages when activities of timber removed occur. 
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 Figure 13—Age-class distribution of loblolly pine plantations throughout the South before and after a 50-year harvest period: (A) 
Initial plantations based on FIA 2005 – 2007 inventory data; (B) plantations after a 50-year harvest period.

 

 Figure 14—Temporal changes in in-woods stocks of volume (A) and aboveground biomass (B) for two different management 
regimes: thinned and unthinned planted loblolly pine yield and growth in 50-year projections. Two final harvests occur at age 27 
years for each regime. For a thinned stand, thinnings occur at ages 16 and 19.
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Figure 15—Timber production projections from thinnings and final harvests: (A) Pulpwood; (B) Sawtimber.

 

 

Figure 16—Effects of management activities including planting, thinning, and final harvest on the southern in-woods carbon storage: 
(A) Carbon total (106 Mg); (B) Carbon mean (Mg•ha-1).
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 Figure 17—Carbon fluxes in harvested-wood-products pools 
including products in use and landfills. 

 

 Figure 18—Effects of management intensity on carbon pools of sawtimber in use, pulpwood in use, landfill, and in woods: (A) Baseline 
management; (B) Management scenario 1 – fertilizer and herbicide application (plus baseline management); (C) Management scenario 2 – 
planting of genetically improved growing stock and fertilizer and herbicide application (plus baseline management). 
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Figure 19—Effects of management intensity on timber production (A) Pulpwood green weight; (B) Sawtimber green weight.

 

 Figure 20—Effects of management intensity on energy offset and 
assumed energy content of biomass = 38×106 BTU/Mg C (U.S. 
Energy Information Administration, 2010). 
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Figure 21—Hypothetical in-woods carbon mass per hectare of loblolly pine plantations across the South after a 50-year unmanaged 
period: (A) Distribution of carbon mass per hectare; (B) Examples of stand-level carbon mass per hectare (i.e. High, Medium, and 
Low) which planted stands are no longer being managed at all.

Carbon and Biomass
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Abstract
Given the ability of forests to mitigate greenhouse gas emissions and 
provide feedstocks to energy utilities, there is an emerging need to assess 
forest biomass/carbon accretion opportunities over large areas. Techniques 
for objectively quantifying stand stocking of biomass/carbon are lacking 
for large areas given the complexity of tree species composition in the 
U.S. Relative density, as determined through the Stand Density Index, 
may provide a technique to rapidly assess stand biomass/carbon stocking 
across the entire U.S. Using this approach in the eastern U.S. for 24 of 
the most common tree species, we found that maximum live aboveground 
tree carbon decreased as tree interspecific stocking decreased (i.e., toward 
more pure forest stands); this result was more pronounced in overstocked 
stands. Although the relative approach detailed in this study may not be 
appropriate at local scales for intensively managed forest types, it would be 
useful for making informed policy decisions at large scales where complex 
stocking and tree species mixtures complicate carbon/biomass studies. We 
suggest that future studies explore refinement of the maximum SDI model 
for national applications in the carbon/biomass arena. 

INTRODUCTION

Forests and their products play a critical role in the carbon 
(C) cycle by reducing atmospheric levels of CO2 and other 
greenhouse gases through emission avoidance and reduction 
of atmospheric levels (Malmsheimer and others 2008, 
Ryan and others 2010). In particular, forests may prevent 
C emissions through wood substitution (e.g., wood instead 
of concrete for construction), biomass substitution (e.g., 
biomass fuels for energy instead of fossil fuels), wildfire 
behavior modification (e.g., biomass removal before 
wildfire emissions), and avoided land-use change (e.g., 
deforestation). In addition, forests can reduce atmospheric 
concentrations of C through sequestration (e.g., increasing 
ecosystem C storage through standing live-tree growth) 
and C storage in wood products (e.g., C stored in lumber 
and furniture) (Ryan and others 2010). Given the ability 
of forests to mitigate C atmospheric concentrations, there 
is a growing need to evaluate the effects of various forest 
management practices on C budgets (Lindner and others 
2008, Malmsheimer and others 2008). Recently, forest 

STAND DENSITY INDEX AS A TOOL TO 
ASSESS THE MAXIMIZATION OF FOREST 
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Christopher W. Woodall, Anthony W. D’Amato, John B. Bradford, Andrew O. Finley
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management strategies for maximizing forest volume 
or biomass have been applied to the maximization of C 
sequestration (e.g., even-aged, single-species plantations; 
Jacobs and others 2009). The increased application of forest 
management for maximizing aboveground C storage will 
likely encounter a novel array of tree species compositions 
and stand densities. Basic tenets of tree species diversity 
and biomass stocking attributes would greatly aid efforts 
to estimate the effects that various management activities 
would have on maximizing aboveground C storage.

A major hurdle to assessing C storage opportunities is 
accurately quantifying the biomass/carbon stocking of 
individual stands, especially given the diversity of forest 
species compositions across the U.S. Stocking may be 
defined as the number of trees per unit area currently in 
a stand relative to the maximum potential possible The 
relative density (RD) of live trees in any given forest may 
be defined as a function of Stand Density Index (SDI) and 
maximum SDI. SDI was first proposed by Reineke (1933) 
as a stand density assessment tool based on size-density 
relationships observed in fully stocked pure or nearly pure 
stands. A metric version of SDI is defined as the equivalent 
trees per hectare at a quadratic mean diameter of 25 cm and 
is formulated as:

SDI = tph (DBHq/25)1.6			    (1)

where tph is number of trees per hectare, and DBHq is 
quadratic mean diameter (cm) at breast height (d.b.h.; 1.4 
m) (Long 1985). One way to appropriately determine SDI 
in stands with non-Gaussian diameter distributions is to 
determine the SDI for individual d.b.h. classes and then 
add them for the entire stand (Long and Daniel 1990). This 
methodology (Shaw 2000, Ducey and Larson 2003) is 
formulated as: 

SDI = Σ tphi (DBHi/25)1.6			    (2)
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where DBHi is the midpoint of the ith diameter class (cm) 
and tphi is the number of trees per hectare in the ith diameter 
class (Shaw 2000).

To determine a stand’s RD, the SDI of the stand is 
typically compared to an empirically observed, species-
specific maximum SDI. This process is straightforward in 
monocultures, but confounded in mixed-species stands. 
To overcome this limitation, Woodall and others (2005) 
proposed a methodology to estimate stand-specific 
maximum SDI regardless of species mixture by using the 
mean specific gravity of all trees in the stand to estimate a 
stand’s maximum SDI (SDImax):

E(SDIMax)= bo+b1(SGm)+e				          (3)

where E() is statistical expectation and SGm is the mean 
specific gravity for all trees in each plot. The higher the 
specific gravity of a species, the higher its modulus of 
elasticity within its bole, the more foliage that can be 
supported in its crown, and the fewer trees per unit area 
needed to support a site-limited amount of leaf area (Dean 
and Baldwin 1996). By using the summation method (Shaw 
2000) to determine the current SDI of a stand and the 
Woodall and others (2005) model to predict a maximum SDI 
(based on the mean specific gravity of all tree species in the 
plot), we can determine the RD of a given plot by dividing 
current SDI by potential maximum SDI. With the ability 
to estimate the biomass stocking of any given forest stand 
regardless of species diversity, the goal of this study was to 
assess how 99th percentiles of standing live and dead tree 
aboveground C storage relate to stand relative density (RD) 
and levels of interspecific stocking in the eastern U.S. 

METHODS

The Forest Inventory and Analysis (FIA) programof the 
USDA Forest Service is the primary source for information 
about the extent, condition, status, and trends of forest 
resources in the United States (Smith et al. 2009). FIA 
applies a nationally consistent sampling protocol using a 
quasi-systematic design covering all ownerships in the entire 
nation (national sample intensity is one plot per 2,428 ha) 
(Bechtold and Patterson 2005). Land area is stratified using 
aerial photography or classified satellite imagery to increase 
the precision of estimates using stratified estimation. 
Remotely sensed data may also be used to determine if plot 
locations have forest land cover; forest land is defined as 
at least 0.4 ha in size, at least 36.6 m wide, and at least 10 
percent stocked with tree species (Bechtold and Patterson 
2005). FIA inventory plots established in forested conditions 
consist of four 7.2-m fixed-radius subplots spaced 36.6 m 
apart in a triangular arrangement with one subplot in the 
center (USDA Forest Service 2007). All trees (standing live 
and dead) with a d.b.h. of at least 12.7 cm are inventoried on 

forested subplots. Within each subplot, a 2.07-m microplot 
offset 3.66 m from subplot center is established where 
all live trees with a d.b.h. between 2.5 and 12.7 cm are 
inventoried. All subplots within the same forest condition 
(e.g., forest type or stand age) were combined for areal 
estimates of tree attributes at the hectare level (study plot).

All inventory data are managed in a publicly available FIA 
database. Data for this study were taken entirely from the 
FIA database using the most recent annual inventory in 
30 eastern states for a total of 72,025 unique observations. 
The associated field data are available for download at 
the following site: http://fiatools.fs.fed.us (FIA Datamart). 
Annual inventories for each state were first initiated between 
2000 and 2003 and run through 2008, and sample intensities 
may vary by state. The 24 most common tree species in 
terms of total live tree aboveground gross cubic foot volume 
were selected as focus study species. For computing stand 
attributes such as density and species composition, all tree 
species were considered on each study plot. Interspecific 
stocking was assessed by comparing the RD of each study 
species on each plot to RD of the plot (species composition 
purity ratio, SCP). For example, if a plot is 100 percent 
stocked with white oak (Quercus alba L.), then its stand 
RD and white oak SCP ratio would be 1.0. By contrast, if it 
is 100 percent stocked, but only 10 percent of the stand is 
stocked with white oak and 90 percent of the other stocking 
is occupied by other species, then its plot RD would be 
1.0 and its white oak SCP ratio would be 0.1. The 99th 
percentile live aboveground tree C stocks (LAGC) and 
standing dead tree C stocks (DAGC) stocks were calculated 
for a matrix of stand stocking and SCP ratios: three classes 
of stand stocking (under-stocked, 0.0-0.3 RD; well-stocked, 
0.3-0.6; over-stocked, 0.6+) and 10 classes of SCP ratios 
(0.1 intervals). 

RESULTS AND DISCUSSION

Across all study species, means of the 99th percentile LAGC 
ranged from 40 to 50 Mg/ha, 70 to 105 Mg/ha, and 110 
to 165 Mg/ha, for under-, well-, and over-stocked stands, 
respectively (Fig. 1a). Overall, as stand stocking increased, 
the average 99th percentile of LAGC for all study species 
decreased with increasing stand purity (increasing SCP 
ratios) along with a difference in the average 99th percentile 
LAGC between classes of stand stocking. In contrast, as 
stand stocking increased, the 99th percentile of DAGC 
decreased with increasing stand purity (increasing SCP 
ratios); however, there was no difference in the average 99th 
percentile DAGC between classes of stand stocking (Fig. 
1b). The mean 99th percentile of DAGC across all study 
species ranged from 20 to 27 Mg/ha when the SCP ratio was 
0.3 compared to a range of 7 to 14 Mg/ha when the SCP 
ratio was above 0.7. 

Carbon and Biomass
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The trends in 99th percentiles of LAGC indicate that, for 
many tree species assemblages, increasing tree species 
diversity might increase maximum LAGC storage. This 
relationship between maximum LAGC and species has 
important implications for emerging objectives such as 
indentifying optimal species mixtures for forest management 
strategies aimed at providing carbon and biodiversity 
benefits (Paquette and Messier 2010). Based on the findings 
of previous work examining productivity within mixed-
species stands, these benefits may be best achieved in stands 
composed of species with complementary characteristics 
(e.g., differences in shade tolerance and height growth rates; 
Kelty 2006).

A most promising finding was that RD may be rapidly 
determined for forest stands through use of SDI and 
maximum SDI models. In the context of opportunities to 
maximize C or biomass in forest stands, SDI provides a 
viable technique for quantitatively exploring numerous 
policy issues related to tree species diversity and C/biomass 
stocking potentials. We suggest that future studies explore 
the use of RD, as estimated through SDI and the maximum 
SDI model, as a tool in large-scale C/biomass studies. 
Furthermore, refinement of the maximum SDI model for 
national application, based on emerging work by Ducey and 
Knapp (2010), will be a critical step toward increasing the 
accuracy of future large-scale estimates.

CONCLUSIONS

RD, as determined through SDI and maximum SDI 
models, provides a quantitative technique to rapidly assess 
stand biomass/C stocking across the entire U.S. Although 
this approach may not be appropriate at local scales for 
intensively managed forest types, it is useful for making 
informed policy decisions at large scales where complex 
stocking and tree species mixtures complicate C/biomass 
studies. We found in this study that maximum LAGC 
decreased as tree interspecific stocking decreased (i.e., 
toward more pure forest stands), a result that was more 
pronounced in over-stocked stands. It is suggested that 
future studies explore refinement of the maximum SDI 
model for national applications in the biomass/C arena. 
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Carbon and Biomass

 1 
 2 

 3 
Figure 1—Means and associated standard errors of the 99th 
percentile aboveground live tree carbon for all study species for 
(a) standing live and (b) standing dead trees by 3 levels of stand 
stocking (under-, well-, over-stocked) and 10 levels of increasing 
species composition purity (stocking assessment based on relative 
density, RD). 



297

Abstract

Given the importance of standing dead trees in numerous forest ecosystem 
attributes/processes such as carbon (C) stocks, the USDA Forest Service’s 
Forest Inventory and Analysis (FIA) program began consistent nationwide 
sampling of standing dead trees in 1999. Modeled estimates of standing 
dead tree C stocks are currently used as the official C stock estimates for 
the National Greenhouse Gas Inventory (NGHGI). Given the enhanced 
rigor of empirical estimates of standing dead C stocks, it is paramount to 
assess the differences between empirical and modeled C stocks for standing 
dead trees. The goal of this study was to compare field- and model-based 
(Carbon Calculation Tool) estimates of plot-level (FIA plots) standing 
dead-tree C for the United States. The results suggest a strong divergence 
between the predictions of the model versus the field estimates. The model 
appears to have underestimated observed carbon stocks at the extremes 
(i.e., plots with very low and very high amounts of standing dead-tree 
biomass) and overestimated C stocks in between. Most notably, there was 
an enormous difference in the number of plots observed versus predicted 
to have little or no standing dead-tree mass, which field data suggest make 
up the bulk of the FIA plots. Some of this discrepancy may be caused by 
too many non-observations of dead trees at FIA plots (i.e., zero-inflated 
data) — a focal point for continuation of this line of research. The results of 
this study suggest that the current model-based estimates do not accurately 
reflect observations in the field. 

INTRODUCTION

Because of the recognized role that forests play in the 
global carbon (C) cycle, in particular the mitigation of 
carbon dioxide emissions, the United Nations Framework 
Convention on Climate Change (UNFCCC) requires 
signatory countries to develop and report their national 
inventories of forest sources and sinks (Brown 2002). The 
official National Greenhouse Gas Inventory (NGHGI) of the 
U.S. bases its forest C stock and stock change estimates on a 
national forest inventory conducted by the U.S. Department 
of Agriculture’s Forest Inventory and Analysis program 
(FIA). In the NGHGI, standing dead-tree C stocks are 
simulated for every FIA plot based on location and live-
tree attributes (e.g., forest type) using a system of models 
embodied in the Carbon Calculation Tool (CCT). The CCT 
estimates standing dead-tree C stocks based on average 
ratios of dead/live biomass by region and forest type (Smith 
and others 2007). Due to the lack of a fully implemented 
field inventory of standing dead trees in the conterminous 
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U.S. before 2010, a full comparison of simulated and 
field-based estimates has never been conducted. Given 
the potentially enhanced rigor of field-based estimates 
of standing dead C stocks, it is paramount to assess the 
differences between field- and model-based C stocks for 
standing dead trees. The goal of this study was to compare 
the frequency distributions of field- versus model-based 
estimates of aboveground standing dead-tree C stocks from 
FIA plots that could be used in the NGHGI.

METHODS

Data for this study came entirely from the FIA program’s 
plot network, which is the foundation for the NGHGI. The 
FIA program is the primary source for information about 
the extent, condition, status, and trends of forest resources 
in the United States (Smith and others 2009). FIA applies 
a nationally consistent sampling protocol using a quasi-
systematic design covering all ownerships in the entire 
nation (national sample intensity is one plot per 2,428 ha) 
(Bechtold and Patterson 2005). Land area is stratified using 
aerial photography or classified satellite imagery to increase 
the precision of estimates using stratified estimation. 
Remotely sensed data may also be used to determine if plot 
locations have forest land cover; forest land is defined as 
area at least 10 percent stocked with tree species, at least 0.4 
ha in size, and at least 36.6 m wide (Bechtold and Patterson 
2005). FIA inventory plots established in forested conditions 
consist of four, 7.2-m fixed-radius subplots spaced 36.6 m 
apart in a triangular arrangement with one subplot in the 
center (USDA 2007). All trees (standing live and dead) 
with a diameter at breast height of at least 12.7 cm are 
inventoried on forested subplots. All subplots within the 
same forest condition (e.g., forest type or stand age) were 
combined for areal estimates of tree attributes at the hectare 
level (study plot).

All inventory data are managed in a publicly available FIA 
database. Field data for this study were taken entirely from 
the FIA database, using the most recent annual inventory 
in the conterminous 48 states for a total of 127,996 
unique observations. One exception is Wyoming where 
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a periodic inventory was conducted in 1999 using the 
national plot design, ensuring compatibility with all other 
state inventories. The associated field data are available 
for download at the following site: http://fiatools.fs.fed.
us (FIA Datamart). Annual inventories for each state were 
first initiated between 2000 and 2003 and run through 2008 
(except for Wyoming), so sample intensities may vary by 
state.

Using all available FIA plot-level data, sampled between 
1999 and 2008 (using periodic inventories that sampled 
standing dead; e.g., Wyoming), the aboveground standing 
dead-tree C stocks were determined by using FIA’s 
regional volume equations (Woodall and others In Press) 
to determine sound cubic foot volume, which was then 
converted to dry biomass using the Component Ratio 
Method (Heath and others 2009) and the specific gravity 
value of each species (Miles and Smith 2009, Woudenberg 
and others 2011). Total biomass was converted to C by 
assuming that 50 percent of dry biomass is C. To account for 
the decay reduction of standing dead trees by decay class, a 
decay reduction factor was created for standing dead trees 
based on the weighted mean decay reduction factor by decay 
class for the U.S., using national mean decay reduction 
factors for coarse woody debris decay classes (Harmon and 
others 2008). More accurate species and decay-class specific 
decay reduction factors are currently under development. 
Individual study plots were considered individual, unique 
forest conditions (e.g., stand age) on each FIA plot with 
a field-based estimate of the plot’s aboveground standing 
dead-tree C stock. A corresponding plot-level simulated 
aboveground standing dead tree C stock was determined 
for each study plot using CCT and as currently used in the 
NGHGI (Smith and others 2007). 

RESULTS AND DISCUSSION

Field estimates of total standing dead-tree C suggest that a 
large number of FIA plots across the U.S. have little or no 
standing dead-tree C and that there is an exponential decline 
in the number of plots observed with increasing standing 
dead-tree C up until the 10+ Mg/ha class, where an increase 
was observed (Fig. 1). The results also suggest a strong 
divergence between the predictions of the modeled- versus 
field-based estimates. The model appears to underestimate 
observed C stocks at the extremes (i.e., plots with very 
low and very high amounts of standing dead-tree biomass) 
and overestimated C stocks in between (Fig. 1). Perhaps 
most importantly, there was an enormous difference in the 
number of plots observed versus predicted to have little or 
no standing dead-tree mass, which field data suggest make 
up the bulk of the FIA plots. Almost two thirds of all plot 
observations had less than 1 Mg/ha of standing dead-tree 
C, while the NGHGI model estimated only 15 percent of 
the plots having less than 1 Mg/ha of standing dead-tree C. 

Additionally, one quarter of all plot observations had no 
standing dead tree C whatsoever. So it is possible that some 
of the discrepancy between model and field estimates in 
areas with very low C stocks may be caused by too many 
non-observations of dead-trees at FIA plots (i.e., zero-
inflated data). Most forest inventory plots had very little 
standing dead-tree C (< 1 Mg/ha), while the NGHGI model 
predicts at least an appreciable amount of standing dead-tree 
C at every plot as long as there is live-tree biomass present. 
The CCT model estimates standing dead-tree C based on 
some fraction of live-tree C, so every forest inventory 
plot with at least some live-tree C will be assigned a 
corresponding ratio of dead-tree C. This ratio estimator may 
be biased, a prevalent attribute of ratio estimators. A bias 
would be expected if the mean dead-tree mass was non-zero 
when the mean live-tree mass was zero or if the relationship 
is non-linear. Most FIA plots had very little standing dead-
tree C, while less than 10 percent had greater than 10 Mg/
ha. Because most forests across the U.S. are not overstocked 
(Woodall and others 2006), we would expect most forests to 
have very little density-induced tree mortality resulting in 
standing dead-tree C. On a minority of FIA plots, standing 
dead-tree C stocks may be exceeding 10 Mg/ha due to 
stochastic disturbances (e.g., insect mortality or fire) or 
overstocked conditions (i.e., density induced mortality). 
 
CONCLUSIONS

The frequency distribution of standing dead-tree C stocks 
in the U.S. appears to show little or no standing dead-tree 
C in the majority of locations (FIA plots) with a decreasing 
frequency of plots with greater C and with a minority 
of locations having very large stocks (> 10 Mg/ha). It is 
possible that current field-based methods overestimate the 
number of locations with little or no standing dead-tree 
carbon, because of too many non-observations of dead-trees 
at FIA plots; this should be a focal point for continuation 
of this line of research. Otherwise, it is clear that the 
current model-based estimates used for the NGHGI do 
not accurately reflect observations of standing dead tree C 
stocks in the field.
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Figure 1—Frequency distribution of forest inventory plot-level standing dead C stocks (Mg/ha) estimated 
by field measurements and models, U.S., 1999—2008.
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These proceedings represent the range of topics covered during 
the 2010 Joint Meeting of the Forest Inventory and Analysis (FIA) 
Symposium and the Southern Mensurationists, October 5-7, 2010 in 
Knoxville, TN. The meeting was a gathering of forest scientists with a 
quantitative leaning and, as such, the papers discuss the aspects of the 
observation, estimation, modeling and monitoring of forest resources 
that are of contemporary interest. Papers included in this publication 
have been sorted into a number of general topic areas. Those areas 
include International Forest Monitoring, Biometrics, Forest Ecosystems, 
Forest Heath, Data Integrity, Cover Estimation, and Carbon and 
Biomass.
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