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ABSTrACT

Foresters are increasingly required to assess trends not only in traditional 
forest attributes (e.g., growing-stock volumes), but also across suites 
of forest health indicators and site/climate variables. Given the tenuous 
relationship between correlation and causality within extremely large 
datasets, the goal of this study was to use a nationwide annual forest 
inventory to determine levels of correlation among a wide array of 
database fields to aid foresters in separating correlation from causality 
in comprehensive forest resource assessments. In examining more than 
15,000 individual correlations, we found the overwhelming majority (> 
85 percent) of correlation coefficients were under 0.1. Site variables (e.g., 
elevation) had the highest mean correlations, while tree variables (e.g., 
live aboveground biomass) had the lowest mean correlations with all other 
variables. Nearly all the high correlations (>0.6) were between variables 
substantially autocorrelated (e.g., site class code and site index). Given that 
most correlations within a large-scale forest inventory dataset are very low 
with the remainder being nonsensical or autocorrelates, finding a highly 
correlated pair of variables with no apparent autocorrelation deserves 
further exploration.

InTroDUCTIon

For most of the 20th century, forest resource assessments 
in the United States and abroad were often conducted 
purposively at small scales using spatially inconsistent 
sample techniques (i.e., relevé sampling such as stand 
exams) or conducted periodically at large scales using 
temporally inconsistent sample techniques (e.g., periodic 
forest inventory programs in the U.S., Frayer and Furnival 
1999). In addition to the lack of spatially and temporally 
consistent forest inventories, the absence of computing 
resources available to forest professionals prevented 
complex forest inventory analyses and resource hypothesis 
testing. Until the 1990s, the analysis of large-scale forest 
resource datasets was severely limited to a few analysts with 
access to inconsistent datasets in computationally limited 
data management systems.

With the emergence of international agreements focused on 
the health of forest biomes (USDA 2004) and greenhouse 
gas accounting, nations have responded by developing 
nationally consistent forest inventories including numerous 
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variables complementary to traditional tree attributes 
(e.g., soils and downed dead wood, Perry and others 2009). 
In addition to field implementation of large-scale forest 
inventories, data management systems have been developed 
such that the multitude of data can be rapidly distributed to 
the public via well-documented web sites. Perhaps never 
before have forest professionals or the public had access to 
such large and extensive datasets for exploration of forest 
resource questions. For example, there are currently 1.1 
and 15.0 million records within the plot and tree tables 
of the U.S. national inventory, respectively (Woudenberg 
and others 2011). Coupling the millions of inventory 
records with the hundreds of database fields provides the 
opportunity to explore numerous facets of forest ecosystems 
such as fire ecology (Woodall and Nagel 2007), climate 
change impacts (Woodall and others 2009), forest health 
(Huebner and others 2009), growth and mortality (Shaw 
and others 2005), and ownership patterns (Butler and 
Leatherberry 2005). 

With the ability to rapidly assess forest resource attributes 
using extensive datasets comes the danger of inferring 
causality from possibly spurious correlations. Given that the 
U.S. national forest inventory data are publicly available for 
rapid download, most analyses will be conducted by users 
not affiliated with the actual data collection or management. 
Forest professionals have received little guidance on the 
frequency of high correlations within large-scale forest 
inventory datasets. Are strong correlations a common 
occurrence? Does autocorrelation confound many analyses? 
The goal of this study was to use a nationwide annual 
forest inventory to determine levels of correlation among 
a wide array of database fields to help foresters separate 
correlation from causality in comprehensive forest resource 
assessments. 

MeTHoDS

This study used data exclusively from the national inventory 
of all U.S. forests. The U.S. Department of Agriculture, 
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Forest Service’s Forest Inventory and Analysis (FIA) 
program is charged by Congress with providing an annual 
inventory of all forest lands. The FIA sampling framework 
is based on a systematic network of ground plots (Bechtold 
and Patterson 2005) obtained by dividing the U.S. into a 
series of 2,400-ha hexagons. Within each hexagon, FIA 
operates a multi-phase inventory. In phase 1 (P1), land 
area is stratified using aerial photography or classified 
satellite imagery to increase the precision of estimates using 
stratified estimation. In second phase (P2), permanent fixed-
area plots are installed in each hexagon when field crews 
visit plot locations that have accessible forest land. Field 
crews collect data on more than 300 variables, including 
land ownership, forest type, tree species, tree size, tree 
condition, and other site attributes (e.g., slope, aspect, 
disturbance, land use) (USDA 2009). The plot design for 
FIA inventory plots consists of four 7.2-m fixed-radius 
subplots spaced 36.6 m apart in a triangular arrangement, 
with one subplot in the center. All trees with a diameter 
at breast height of at least 12.7 cm are inventoried within 
forested conditions. Within each subplot, a 2.07-m microplot 
offset 3.66 m from the subplot center is established where 
live tree seedlings and trees with a d.b.h. between 2.5 and 
12.7 cm are inventoried. In addition to the trees measured 
on these plots, data are also gathered on the condition of 
the area in which the trees are located (e.g., stand-age class, 
ownership group, tree-density class). During the third phase 
of the inventory (P3), forest health indicators are measured 
on a 1/16th subset of the entire FIA ground plot network. 
The suite of forest health indicators includes tree crown 
condition, lichen communities, forest soils, vegetation 
diversity, down woody material, and ozone injury (Woodall 
and others In Press). 

Using FIA’s national database (FIADB version 4.0), we 
extracted forest inventory data for the most recent inventory 
in 49 states (currently no inventory available for Hawaii 
or interior Alaska). Given the multitude of database fields 
and tables examined in this study, FIA’s documented 
nomenclature will be used in this study (Woudenderg and 
others 2011). The data extraction was limited to fields in 
the plot, condition, and tree tables, or variables calculated 
from those fields (e.g., total tree biomass on a plot): INVYR, 
STATECD, UNITCD, COUNTYCD, PLOT, PLOT_
STATUS_CD, MEASYEAR, MEASMON, MEASDAY, 
REMPER, KINDCD, DESIGNCD, RDDISTCD, 
WATERCD, LAT, LON, ELEV, P2PANEL. CONGCD, 
MANUAL, EMAP_HEX, CYCLE, SUBCYCLE, 
CONDID, COND_STATUS_CD, RESERVCD, OWNCD, 
OWNGRPCD, FORTYPCD, FLDTYPCD, MAPDEN, 
STDAGE, STDSZCD, FLDSZCD, SITECLCD, SICOND, 
SIBASE, SISP, STDORGCD, CONDPROP_UNADJ, 
MICRPROP_UNADJ, SUBPPROP_UNADJ, SLOPE, 
ASPECT, PHYSCLCD, GSSTKCD, ALSTKCD, 

DSTRBCD1, DSTRBYR1, TRTCD1, TRTYR1, BALIVE, 
FLDAGE, ALSTK, GSSTK, FORTYPCDCALC, 
SITETREE_TREE, SITECL_METHOD, CARBON_
DOWN_DEAD, CARBON_LITTER, CARBON_SOIL_
ORG, CARBON_STANDING_DEAD, CARBON_
UNDERSTORY_AG, CARBON_UNDERSTORY_BG, 
CYCLE2, SUBCYCLE2, TREE, AZIMUTH, DIST, SPCD, 
SPGRPCD, DIA, DIAHTCD, HT, HTCD, ACTUALHT, 
TREECLCD, CR, CCLCD, TREEGRCD, CULL, 
DAMLOC1, DAMTYP1, DAMSEV1, STOCKING, 
VOLCFNET, VOLCFGRS, VOLBFNET, BOLBFGRS, 
VOLCFSND, DRYBIO_BOLE, DRYBIO_TOP, DRYBIO_
STUMP, DRYBIO_SAPLING, DRYBIO_BG, CARBON_
AG, CARBON_BG. All tree-level variables were summed 
to the plot and condition for live and standing dead trees. 
These calculated tree-level variables were delineated for 
live or dead by preceding each variable with a “L” or “D,” 
respectively. Not all fields from the database tables were 
extracted for this study. Excluded were variables that were 
not alphanumeric or were a duplication of variables (e.g., 
secondary and tertiary tree damages). Finally, records were 
excluded when one or more fields were null. With these 
constraints, this study’s data records totaled 42,617. 

Correlations were calculated using SAS’s CORR procedure 
with Pearson’s correlation coefficients as the primary 
output. To assess the distribution of correlations from a 
large-scale forest inventory, the frequency of correlations 
from the correlation matrix of all this study’s variables was 
determined. Correlations among the same variables were 
excluded from the matrix calculation (coefficient=1) for a 
total of 15,751 correlations. Mean absolute correlations were 
determined among broad categories of variables according 
to plot (i.e, plot selection information such as measurement 
year and county), site (i.e., physiographic information such 
as elevation and latitude), condition (i.e., stand condition 
information such as forest type and stand age), and tree (i.e., 
summed tree attributes such as height and volume). Actual 
individual correlations were examined when correlation 
coefficients exceeded 0.7.

reSUlTS AnD DISCUSSIon

In examining of 15,625 individual absolute correlations, 
we found the overwhelming majority (> 85 percent) to be 
under 0.1 while less than 1 percent was above 0.5 (Fig. 1). 
Site variables (e.g., elevation and latitude) had the highest 
mean correlations (≈ 0.09), while tree variables (e.g., live 
aboveground biomass) had the lowest mean correlations 
(≈ 0.05) with all other study variables. Nearly all the high 
correlations (>0.7) were between variables substantially 
autocorrelated (e.g., algorithm calculated forest type and 
field estimated forest type) (Table 1). The remainder of 
high correlations could be attributed to spurious effects of 
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database manipulation (e.g., latitude and plot number) or 
possible curious ecological relationships (e.g., physiographic 
class and disturbance year). 

If variables would be randomly chosen from a strategic-
scale forest inventory dataset such as FIA’s national 
inventory, it is extremely unlikely that any appreciable level 
of correlation would be found. If indeed the correlation 
exceeded 0.5, then these variables would stand a strong 
chance of being autocorrelated. Examples of autocorrelation 
in this study were measurement year and manual number, 
inventory cycle and kind code, and sum of live tree numbers 
and sum of distances to live trees. Most of these spurious 
correlations should be readily identified by even novice 
inventory analysts. Other spurious correlations, such as 
longitude and site index base, may take identification by 
experts in forest inventory databases and sampling designs. 
Only about a dozen correlations exceeded 0.6 and were 
ecologically interesting. Physiographic class was strongly 
correlated with the year of the most recent disturbance, soil 
organic carbon, understory aboveground biomass, and sum 
of live-tree board foot gross volume. Poor physiographic 
sites (i.e., ridge tops) may have shallow soils with little 
organic soil carbon and may be more prone to disturbances 
thus reducing their aboveground biomass. It appears as 
though approaching such large-scale datasets with readily 
testable ecological hypotheses may be the best method to 
derive meaningful relationships as opposed to the often 
spurious results of massive database computations using no 
a priori assumptions.

ConClUSIonS

Given that most correlations within a large-scale forest 
inventory dataset are very low with most of the remainder 
being autocorrelates, finding a highly correlated pair of 
variables with no apparent autocorrelation is very unlikely. 
Because all correlations were assumed to be linear in this 
study, we suggest that non-linear correlations be examined 
in future studies. With the ever increasing availability of 
large datasets of ecosystem conditions (i.e., national forest 
inventories), a tenet can be forwarded: given the extreme 
rarity of finding highly correlated natural ecosystem 
variables lacking autocorrelation, when identified their 
further investigation is warranted.
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Variables Correlations
0.7 – 0.8 0.8 – 0.9 0.9 – 1.0

Plot Lon
Measyear Manual
Lon Plot
Manual Measyear
Condid Condprop_

unadj,microprop_unadj, 
subprop_unadj

Owncd Owngrpcd
Owngrpcd Owncd
Fortypcd Fldtypcd
Fldtypcd Fortypcd
Siteclcd Second
Sicond Siteclcd
Conprop_unadj Condid Micrprop_unadj, subprop_unadj
Micrprop_unadj Condid Condprop_unadj, subprop_unadj
Subprop_unadj Condid Conprop_unadj, Micrprop_unadj
Gsstkcd Carbon_understory_ag
Dstrbyr1 Carbon_soil_org
Trtcd1 Carbon_standing_dead
Trtyr1 L_carbon_bg
Fldage L_dist
Carbon_soil_org Dstrbyr1
Carbon_standing_dead Trtcd1
Carbon_understory_bg Gsstkcd
L_tree L_azimuth, l_spgrpcd
L_azimuth L_tree L_spcd, l_sprgrpcd
L_dist Fldage
L_spcd L_azimuth L_spgrpcd
L_spgrpcd L_tree L_azimuth L_spcd
L_actualht L_volbfnet
L_volbfnet L_actualht
L_carbon_bg Trtyr1
D_tree D_damtyp1
D_azimuth D_damsev1
D_dist D_decaycd
D_damtyp1 D_tree
D_damsev1 D_azimuth
D_decaycd D_dist

Table 1—Matrix of absolute correlation coefficients for all study correlations exceeding 0.7 (live and dead tree variables 
designated by l and D, respectively)
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Figure 1—Frequency of absolute correlation coefficients among 
a multitude of variables sampled during an inventory of U.S. 
forests. 




