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Abstract
The objective of this project is to assess the effects of surface coal mining 
on forest ecosystem disturbance and restoration in the Coal River Subbasin 
in southern West Virginia. Our approach is to develop disturbance impact 
models for this subbasin that will serve as a case study for testing the 
feasibility of integrating currently available GIS data layers, remote 
sensing, and existing Forest Inventory and Analaysis program (FIA) data. 

Using a set of 30-m-pixel based GIS-based predictor layers (topography, 
soils and imagery), we developed models that predict total forest carbon for 
each pixel in the study area. By combining the vegetation change tracker 
(VCT) year of disturbance outputs with an annual biomass map derived 
from modeling the FIA data, we will be able to determine biomass losses 
from mining and estimate potential forest regrowth.

INTRODUCTION

The challenge of mitigating greenhouse gases has resulted 
in considerable focus being placed on the carbon storage 
capacities of forests. Trees and other plants naturally remove 
carbon dioxide (CO2) from the atmosphere and temporarily 
convert (sequester) carbon in wood, roots, leaves and the 
soil. In the Appalachian region of Kentucky, Virginia, 
Tennessee, and West Virginia, mountaintop removal mining 
has been prevalent since 1985 (US EPA 2005). This mining 
technique requires the removal (flattening) of mountain 
peaks to access the coal layers below. The waste material 
that is removed is pushed into adjacent valleys (valley fills), 
burying many headwater streams. Utilization of this mining 
technique increased with the 1990 amendments to the Clean 
Air Act, when mining and electric companies focused on 
extraction of low-sulfur coal to meet the new standards (Fox 
1999). At about the same time, larger and more efficient 
machinery became available for excavation and removal 
(Szwilski and others, 2001). Between 1985 and 2001, 6,697 
valley fills were approved by agencies in these States, and 
these fills would eventually cover 339 square kilometers 
(US EPA 2005). 
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In 2006, 43 percent of all coal extracted from West 
Virginia came from surface mining, 70 percent of which 
was mined using mountaintop removal methods (Britton 
2007). Not only is forest directly lost, but recent studies 
have demonstrated that the integrity of the residual 
forest is significantly altered due to fragmentation and 
the introduction of edge (Wickham and others, 2007). 
Conversion of large tracts of interior forest to edge results 
in a host of ecological changes, both aquatic and terrestrial 
(SAMAB 1996).
 
Prior to the 1977 Surface Mining Control and Reclamation 
Act (SMCRA), most mined land in the Appalachian region 
was planted with trees. The composition and productivity 
of the resulting forests are highly variable and spatially 
irregular due to the physical and chemical properties of the 
residual mine spoil material (Rodrigue and Burger 2002). 
SMCRA was enacted to reduce problems with severe 
erosion, sedimentation, landslides and mass instability 
caused by pre-SMCRA surface mining (Angel and others 
2005). SMCRA regulations require mining companies to 
post a bond that is sufficient to cover the cost of reclaiming 
a surface mined site. Because of the 5-year timeframe 
required to demonstrate successful soil stabilization and 
vegetation reclamation, many surface mined soils are 
severely and purposely compacted by machinery and 
converted to grasslands and shrubs. Native forests have not 
been successfully restored due to several soil factors: poor 
aeration, high alkalinity, and reduced water infiltration, in 
addition to severe compaction (Ashby and others, 1984, 
Andrews and others, 1998). As a result, millions of hectares 
of grassland and scrubland, in various successional stages, 
fragment the otherwise forested mountains and reduce the 
forest’s potential to produce timber and sequester carbon 
(Burger and Maxey 1998). 

The Forestry Reclamation Approach (FRA) is a new 
approach being tested as a method for reclaiming surface-
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coal-mined land to forest within the guidelines imposed by 
SMCRA (Burger and others 2005). FRA recommendations 
are founded on restoring mine-soil quality to increase 
potential carbon sequestration. Restoration guidelines 
include the creation of deep soil rooting medium, suitable 
for planting native ground covers and tree species, to 
improve ecological values. Post-mining forest restoration 
is slowly gaining acceptance; about 30 million trees have 
been planted since 2005 (Personal communication, Patrick 
Angel, forester/soil scientist, USDI Office of Surface 
Mining Reclamation and Enforcement, 421 West Highway 
80, London, Kentucky 40741). These forests are very 
young, hence, the future productivity, value, and carbon 
sequestration potential of these restored forests is still 
unknown. 

The objective of this project is to assess the effects of 
surface coal mining on forest ecosystem disturbance and 
simulated restoration in the Coal River Mountain watershed 
in southern West Virginia. This watershed already has active 
surface mining. Three new and proposed mountaintop 
removal mines are projected to produce more than 47 
million tons of coal from 2009 through 2025 (WV DEP 
2008). Our approach develops disturbance impact models 
for a sub-watershed that will serve as a case study for testing 
the feasibility of integrating currently available GIS data 
layers, remote sensing, and existing data from the USDA 
Forest Inventory and Analysis (FIA) program. Specifically, 
we will 1) identify specific areas and ecosystems that 
have been depleted of carbon stocks; and 2) calculate 
the reduction relative to a previous condition. This paper 
presents the methods used to accomplish these two tasks and 
presents initial results of our biomass modeling efforts. Our 
ultimate goal is to model the change in carbon stocks from 
anticipated forest restoration activities using FRA guidelines 
and make comparisons with the previous condition to 
determine the long-term effects of the proposed mining on 
the watershed. 

MATERIALS AND METHODS

To identify the year and spatial extent of forest disturbance 
due to surface mining and to generate maps to estimate the 
pre- and post- disturbance carbon stocks in these areas, a 
regression tree predictive modeling approach was employed 
using Cubist software (www.rulequest.com), which is based 
on a process created by Quinlan (1992). While the algorithm 
that Cubist employs is proprietary, generally speaking, 
regression trees work by using classification trees to classify 
instances into groups based on values of a set of independent 
variables and a dependent variable, and then developing 
regression models that describe the relationship between the 
dependent and independent variables using the instances 
contained in each of the classification tree’s terminal nodes. 

For our regression tree, we used several GIS-based predictor 
layers as the independent (predictor) variables, and we used 
total aboveground carbon estimates generated from forest 
inventory plots as the dependent variables. 

Independent Variables
Landsat image data were obtained from the US Geological 
Survey (USGS) Global Visualization Viewer (GLOVIS) 
data distribution system (http://glovis.usgs.gov), and 
consisted of a set of annual Landsat 5 scenes collected over 
path/row 18/34 during the growing season. Image dates 
(month/day/year) included the following days: 9/17/1984, 
9/20/1985, 7/5/1986, 6/6/1987, 6/8/1988, 8/17/1990, 
9/21/1991, 6/3/1992, 8/25/1993, 10/15/1994, 8/31/1995, 
10/4/1996, 9/5/1997, 8/7/1998, 6/23/1999, 6/9/2000, 
10/2/2001, 8/2/2002, 6/2/2003, 6/20/2004, 9/11/2005, 
8/13/2006, 9/17/2007, 7/17/2008, and 6/2/2009; suitable 
data were unavailable for 1989. These scenes were 30-m 
pixel size and processed by the USGS to Level 1T (terrain 
corrected) using the Level 1 Product Generation System 
(USGS 2011) and were further processed using the Landsat 
Ecosystem Disturbance Adaptive Processing System 
(LEDAPS) software (Masek and others, 2006). LEDAPS 
software produces atmospherically-corrected, surface 
reflectance-calibrated imagery that can be used to assess 
environmental and land cover change (Masek and others, 
2006). From the scenes that were available for each year 
within the growing season, bands 1-5 and 7 of the scene 
with the greatest cloud-free area were selected. 

Other data used for this study are listed in table 1 and 
included a 10-m elevation dataset obtained from a subset 
of the National Elevation Dataset (NED) (Gesch and 
others, 2002), raster elevation derivate datasets created 
using the NED data, and data from the Soil Survey 
Geographic (SSURGO) database (NRCS 2011). Also, 
for each Landsat scene, the disturbance magnitude of the 
difference Normalized Burn Ratio (dNBR) was created 
using vegetation change tracker (VCT) software (Huang and 
others, 2010).

Dependent Variable
Estimates of total aboveground carbon (TAG) were obtained 
using allometric equations that were applied to data 
collected by the FIA on the 69 inventory plots found in the 
portion of the Coal River watershed found within Landsat 
path/row 18/34 (fig. 1). TAG is calculated as described in 
Woudenberg and others (2011) and includes the carbon mass 
of the aboveground portion of live trees with a diameter of 
2.5 cm or larger and dead trees with a diameter of 12.7 cm 
or larger. The FIA data were collected between 2004 and 
2008 and consisted of plots with pure stands or hardwoods 
or conifers.
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Model Development
The latitude and longitude of the FIA plots were used to 
intersect them with the set of predictor data using a GIS, 
and values for each independent variable were assigned 
to the TAG value associated with each plot to create the 
training data for the regression tree modeling. The elevation, 
elevation derivatives, and SSURGO data were assumed to 
be temporally constant and these and LEDAPS-calibrated 
Landsat and VCT Landsat derivatives (dNBR and NDVI) 
from 2007 were used to build the initial model. Model 
results were assessed using cross validation (10 percent 
holdout) statistics: mean absolute error (MAE); relative 
error (RE), or the ratio of the MAE to the error magnitude 
that would result from always predicting the mean value; 
and the correlation coefficient (r) that describes the strength 
of the relationship between each set of predictions and 
carbon values from the holdout data. Using a combination 
of these metrics, correlation matrices, and experience from 
prior modeling, data reduction was performed automatically 
and heuristically until a set of independent variables was 
chosen to produce the final model for 2007 imagery.

Because the Landsat imagery was calibrated using 
LEDAPS, we, like Powell and others, (2010), made 
the assumption that variations in pixel values between 
corresponding surface reflectance-calibrated images were 
due to changes in the reflective characteristics of the 
landscape and not due to differences in the atmosphere or 
sensor position. We thus applied the regression tree model 
developed for the 2007 Landsat and ancillary data to the 
corresponding data for each year of Landsat data between 
1984 through 2009 to produce a set of 25 (yearly between 
1984 and 2009) maps of carbon estimates for the watershed. 

RESULTS AND DISCUSSION

The nonlinear portion of the regression tree process does 
not have many of the assumptions of linear modeling and 
is generally effective at choosing the best attributes to use 
in decision rules from among several potentially collinear 
variables. However, through a combination of examining 
cross validation (10 percent holdout) results from Cubist and 
arbitrary decisions, only 35 of the original variables were 
used to produce the final model.

The Cubist model output is shown in figure 2. Cubist used 
13 exploratory variables. Five variables were important 
to the classification portion of the Cubist analysis: dNBR, 
landform, X, Y, and profile curvature. Of these, profile 
curvature was present in five of the six rules developed, 
while the remaining four were present in at least half of the 
rules. Two variables, landform and Y, were only used in the 
decision process (table 2). Each of the remaining 
11 variables was involved infrequently with the linear 
models for each rule. Only one variable, heatload, was 

present in half the rules (3 of 6) while the remaining 
variables were present for only one or two of the six rules 
generated. In general, coefficients calculated for specific 
variables during the linear model steps were consistent in 
sign from rule to rule, i.e, if a coefficient was positive for 
a variable in one rule it was positive as well in other rules. 
The actual values plotted against the predicted values have 
a reasonably linear relationship (fig. 3). The correlation 
coefficient was 0.89 (r2 = 0.79).

The Cubist model rules (fig.2) were then applied to the 
aforementioned LEDAPS processed Landsat scenes 
resulting in TAG estimates maps for nearly all years from 
1984-2009. Four of these maps are illustrated in figure 
4, where an 8-year interval was used to demonstrate 
applicability of the model. Rivers and streams clearly 
appear as white lines within the maps, and irregular 
patches correspond with areas of disturbance, some of 
which is already identified as surface coal mining activity. 
The distinct boundaries that appear in the final map are 
due to the use of the Easting and Northing in the decision 
rules. While the existence of these lines creates a visual 
anomaly, the use of the map is a geospatial dataset that 
will provide pixel value summaries that serve as estimates. 
It is recognized that the presence of these discontinuities 
indicates that additional effort is needed to further refine the 
predictive models. 

CONCLUSIONS

Methodology developed to date demonstrates the feasibility 
of utilizing a set of GIS predictor layers to generate 
temporal maps of total aboveground carbon for a watershed 
containing surface mining activity in West Virginia. This 
is an important step in the ultimate goal of assessing the 
amount of carbon stock removed in disturbance events, 
specifically surface coal mining. Subsequent steps will 
compare output from the VCT disturbance maps and the 
predicted TAG maps which will enable temporal removals 
of carbon stock for the period 1984-2009. Additionally, it is 
hoped that these later results will have broader applicability 
to other watersheds containing surface mining activity. 
 
DISCLAIMER—The views expressed in this article are 
those of the authors and do not necessarily reflect the views 
or policies of the U.S. Environmental Protection Agency. 
The U.S. government has the right to retain a nonexclusive 
royalty-free license in and to any copyright covering this 
article.
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Dataset Name Dataset Description Source 

Forest productivity of yellow poplar Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Forest productivity of red oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Forest productivity of white oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index northern red oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index white oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index yellow poplar Index of forest productivity 

Soil Survey Staff, Natural Resources 

Conservation Service, United States 
Department of Agriculture (2011) 

Seedling mortality index Index of seedling mortality likelihood 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to fragipan layer Depth to a fragipan restrictive soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Depth to lithic bedrock 
Depth to a lithic bedrock restrictive soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to paralithic bedrock Depth to a paralithic restrictive soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to restrictive layer Depth to any restrictive layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to water table Depth to the water table 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Liquid limit 

Index related to the range of water 
contents over which a soil exhibits 

liquidity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Plasticity index 
Index related to range of water content 
over which a soil exhibits solidity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Soil organic matter percent 
Percent soil organic matter in the top 
soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Clay percent 
Percent clay content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Sand percent 
Percent sand content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Silt percent 
Percent silt content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Table 1—List of datasets assessed for inclusion in Cubist regression tree modeling procedure
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Rock type 
Categorical value representing different 
bedrock types 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Soil pH in water pH of soil mixed in water 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Cation-exchange capacity (CEC-7) 
Cation exchange capacity of the 
surface soil layer  

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Elevation Elevation Gesch et al. (2002) 

Filtered elevation range 
Elevation range within a 90-m square 
buffer centered on each pixel Gesch et al. (2002) 

Filtered mean elevation 
Mean elevation within 90-m square 
buffer centered on each pixel Gesch et al. (2002) 

Filtered mean-minimum elevation 

range 

Mean elevation - minimum elevation 

within 90-m square buffer centered on 
each pixel Gesch et al. (2002) 

Transformed aspect Linear transformation of aspect Roberts and Cooper (1989) 

Cosine-transformed aspect-slope Cos(aspect) X percent slope Stage (1976) 

Sine-transformed aspect-slope Sin(aspect) X percent slope Stage (1976) 

Relative moisture index 
Index of relative amount of moisture 
available at a site Parker (1982) 

Modified relative moisture index Variation of relative moisture index Parker (1982) 

Heatload 
An index of the relative amount of solar 
radiation that a site receives McCune and Keon (2002) 

Hillshade 

An index of solar radiation a site 
receives, incorporating shadows and 

illumination angle ESRI (2011a) 

Bolstad's landform A landform index Bolstad and Lillesand (1992) 

McNab's landform A landform index McNab (1989) 

Planform curvature 
An index of curvature of the land 
surface ESRI (2011b) 

Slope curvature 
An index of curvature of the land 
surface ESRI (2011b) 

Profile curvature 
An index of curvature of the land 
surface ESRI (2011b) 

Relative slope position 
An index of slope position between 
valley bottom and ridge top 

Unknown; based on ESRI topographic 
functions 

Slope position 
Position of the pixel as a percentage 
between the valley floor and ridgetop. 

Unknown; based on ESRI topographic 
functions 

Landform type 
A categorical variable representing 
landform shape and position Parker (1982) 

Surface area : ground area ratio An index of topographic complexity 
Unknown; based on ESRI topographic 
functions 

Topographic roughness index An index of topographic complexity Riley et al. (1999) 

Easting 
The value of geographic coordinate in 
UTM meters 

Native ESRI functionality (xmap and 
ymap environment variables) 

Northing 
The value of geographic coordinate in 

UTM meters 

Native ESRI functionality (xmap and 

ymap environment variables) 

Easting X Northing Easting X Northing 
Native ESRI functionality (xmap and 
ymap environment variables) 

 

 

Dataset Name Dataset Description Source 

Forest productivity of yellow poplar Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Forest productivity of red oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Forest productivity of white oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index northern red oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index white oak Index of forest productivity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Site index yellow poplar Index of forest productivity 

Soil Survey Staff, Natural Resources 

Conservation Service, United States 
Department of Agriculture (2011) 

Seedling mortality index Index of seedling mortality likelihood 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to fragipan layer Depth to a fragipan restrictive soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Depth to lithic bedrock 
Depth to a lithic bedrock restrictive soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to paralithic bedrock Depth to a paralithic restrictive soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to restrictive layer Depth to any restrictive layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Depth to water table Depth to the water table 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Liquid limit 

Index related to the range of water 
contents over which a soil exhibits 

liquidity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 

Department of Agriculture (2011) 

Plasticity index 
Index related to range of water content 
over which a soil exhibits solidity 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Soil organic matter percent 
Percent soil organic matter in the top 
soil layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Clay percent 
Percent clay content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Sand percent 
Percent sand content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Silt percent 
Percent silt content of the surface soil 
layer 

Soil Survey Staff, Natural Resources 
Conservation Service, United States 
Department of Agriculture (2011) 

Table 1—(Continued) List of datasets assessed for inclusion in Cubist regression tree 
modeling procedure
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 Decision process Regression models  Coefficient positive Coefficient negative 

Variable No. of rules used in No. of rules used in Number Number 

dNBR 3 2 2 0 

Landform 4 0 - - 

X 4 1 1 0 

Y* 4 0 - - 

Profile curvature 5 1 0 1 

Slope* 0 2 2 0 

COS(Aspect) transformation* 0 2 2 0 

Relative slope position 0 1 0 1 

Landsat band 6 0 2 0 2 

Landsat band 4 0 2 2 0 

Transformed aspect 0 2 0 2 

Heatload 0 3 3 0 

Slope position 0 1 0 1 

     

 

 

Table 2— Frequencies of occurence and general coefficient patterns for important variables in Cubist rules

2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists

 

 

 

 

 

 Figure 1—The study site in southern West Virginia, 
compromised of the portion of the Coal River watershed 
found within the boundary of Landsat scene 18/34.
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Forest Systems

Rule 1: [7 cases, mean 1759.924, range 0 to 12319.47, est err 4022.683]
 if
	 dnbr <= 133
 then
	 Total Above Ground Carbon = 1759.924

Rule 2: [6 cases, mean 27173.246, range 11515.6 to 42868.64, est err 15844.396]
 if	
	 dnbr > 133
	 landform in {4, 7, 8}
	 profile curvature <= -0.02502192
	 x * y > 1.846332e+012
 then
	 Total Above Ground Carbon = -241151.452 + 1865 dnbr + 29039 slope * COS(aspect) transformation

Rule 3: [32 cases, mean 49472.605, range 4402.104 to 98225.22, est err 17879.621]
 if
	 dnbr > 133
	 profile curvature > -0.02502192
 then
	 Total Above Ground Carbon = -254641.664 + 0.72 x - 534 relative slope position - 8 landsat band 6 + 2 
landsat band 4

Rule 4: [8 cases, mean 65291.813, range 42630.82 to 80570.83, est err 16716.725]
 if
	 landform in {3, 6, 9, 10}
	 profile curvature <= -0.02502192
	 x * y > 1.846332e+012
 then
	 Total Above Ground Carbon = -129803.498 + 1086 dnbr - 32917 transformed aspect + 1.9 heatload - 8 
landsat band 6
	  + 6841 slope * COS(aspect) transformation + 2 landsat band 4

Rule 5: [12 cases, mean 78180.602, range 59397.14 to 121845.6, est err 12838.607]
 if
	 landform in {6, 7, 8, 10}
	 profile curvature <= -0.02502192
	 x * y <= 1.846332e+012
 then
	 Total Above Ground Carbon = -15215.85 - 29792 profile curvature - 508 slope position + 3.8 heatload

Rule 6: [4 cases, mean 122093.297, range 100926.2 to 153119.2, est err 11975.873]
 if
	 landform in {3, 5, 9}
	 profile curvature <= -0.02502192
	 x * y <= 1.846332e+012
 then
	 Total Above Ground Carbon = -323169.019 - 99972 transformed aspect + 2398 dnbr + 4.7 heatload

Average |error| 10856.566
Relative |error| 0.42
Correlation coefficient 0.89
Figure 2—Cubist output modeling total aboveground carbon.
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(A) 1984 (B) 1992 

(C) 2000 (D) 2008 

Figure 4—Prediction maps for total aboveground carbon. Selected maps were 
produced at 8-year intervals.

2010 Joint Meeting of the Forest Inventory and Analysis (FIA) Symposium and the Southern Mensurationists
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Figure 3—Cubist total aboveground carbon predictive values vs. the 
actual total aboveground carbon values.




