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ABSTRACT 

There are many factors that will determine the final cost of modeling 
and mapping tree canopy cover nationwide. For example, applying a 
normalization process to Landsat data used in the models is important in 
standardizing reflectance values among scenes and eliminating visual seams 
in the final map product. However, normalization at the national scale is 
expensive and logistically challenging, and its importance to model fit is 
unknown. Cost also increases with each location sampled, yet appropriate 
photo sampling intensity relative to the FIA grid has yet to be explored. In 
addition, cost is also affected by how intensively the photo plots themselves 
are sampled with a dot count, and the effect of reducing the number of 
dots on predictive models is also unknown. Using intensively sampled 
photo plot data in 5 pilot areas across the United States, we address these 
three cost factors by exploring the effect of a normalization process of 
Landsat TM data on model fits of tree canopy cover using Random Forests 
regression, the relationship between the sampling intensity of photo 
interpreted plots and model fit, and the relationship between the number of 
dots for each photo interpreted location and model fit. 

INTRODUCTION 

The National Land Cover Database (NLCD, http://www. 
mrlc.gov/) for 2011 will contain a map of tree canopy cover 
that will be a spatially explicit map-based data on percent 
tree canopy cover is used for forest management, estimates 
of timber production, determining the potential for and 
extent of fire danger and other management issues across 
the United States. The 2001 NLCD provides map-based 
estimates of percent tree canopy cover along with land cover 
and percent impervious cover (Homer and others 2004 ). 
The NLCD is a periodic product with an update cycle of 
approximately five years. However, because of funding 
constraints the percent tree canopy estimates were not 
updated for the 2006 NLCD. For the 2011 NLCD the U.S. 
Forest Service Forest Inventory and Analysis program (FIA) 
will take the lead on developing the percent tree canopy 
cover layer. 
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FIA is uniquely positioned to lead the development of the 
2011 NLCD percent tree canopy cover layer. First, FIA uses 
a probabilistic sample design that covers all lands (forest 
and non-forest) and can be easily intensified for geospatial 
modeling purposes. Second, the FIA program is beginning 
to make percent tree canopy cover estimates for all sample 
locations. This provides an opportunity to leverage data 
collected as part of the FIA program to develop predictive 
models used to produce percent tree canopy map products. 
To this end, a pilot study was carried out in 2010. The pilot 
study was designed to answer specific research questions 
and estimate costs for developing the 2011 NLCD percent 
tree canopy cover map. 

Creating a tree canopy cover product that encompasses 
the entire country presents many questions that must be 
answered before prototype or production mapping can 
begin. Consequently, a pilot project was launched that 
included five study areas, one each in Georgia, Michigan, 
Kansas, Oregon, and Utah. Within each study area, over 
two thousand photo plots were photo-interpreted by an 
interpreter looking at a grid overlaid on an aerial photo 
of each plot. At each of the 105 points on the grid, the 
interpreter determined if the point was a tree or not, and this 
response was used to calculate percent tree cover. 

Using data from the pilot project, several issues are 
addressed in this paper to support production of mapping of 
tree canopy cover nationwide. First, the number of samples 
plays an important role in the quality of the model. It is 
important to find a balance between the quality of model fit 
and concerns of cost. Second, normalization of Landsat TM 
images is important because adjacent Landsat scenes on a 
map are not taken on the same day. Because of this, when 
a mosaic of multiple images is constructed, there will be 
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seams in the image where the raw reflectance values for one 
image are not equal to the reflectance values of the adjoining 
image. Normalization of one image to another using the 
overlap between two images will remove the visual seam in 
a map, but the effect of normalization on how well a model 
predicts percent tree canopy cover has not been explored. 
Third, at each sample locations an estimate of percent tree 
canopy cover was made using a simple dot grid approach. 
The pilot study design used 105 dots however, if the same 
information can be obtained with fewer points, we can trim 
costs and maintain the quality of the model. Consequently 
in this paper, we explore the effects of sample size, 
normalization and number of dots on predictive models of 
tree canopy cover. 

METHODS 

Percent tree canopy cover data was collected for five 
study areas in the coterminous United States (Figure 2). 
The standard FIA sampling grid ( 1 plot per 2400 ha) was 
intensified fourfold to l plot per 600 ha using the techniques 
described by White et al. ( 1992 ). At each sample location 
a 105 point dot grid covering a 90m by 90m area was 
developed. At each of the 105 points, a photo interpreter 
determined if the point was a tree or not, by examining 
high resolution digital aerial photography collected in 
2009 (USDA 2009). The percent tree canopy cover for 
each sample location was defined as the number of points 
intersecting tree crowns divided by 105 and was used as the 
dependent variable for random forest model development. 

The independent variables came from a variety of sources 
but they were primarily Landsat 5 data and vegetation 
indices derived from Landsat data (e.g. normalized 
difference vegetation index, tasseled cap). Additionally, 
digital elevation models and derivatives (e.g. slope, 
aspect) were also used as potential independent variables 
for random forest model development. The Landsat data 
were available as normalized mosaics and non-normalized 
mosaics. Because each study area covered multiple Landsat 
scenes differences in spectral values among scenes arise 
because of differing collection data and atmospheric effects. 
The non-normalized data had no correction for these 
effects. The normalized data accounted for these effects by 
standardizing reflectance values from a target scene to a 
reference scene based on the overlap among scenes. 

The specific modeling tool used was Random Forests, 
implemented in R using the library RandomForests (Liaw 
and Wiener 2002). Random Forests is a machine learning 
process that uses decision trees for classification and 
regression. The algorithm computes many trees, with 
each tree getting a "'vote," with the final model being 
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a majority decision (categorical variables) or average 
(continuous variables). For each node in those trees, a 
subset of explanatory variables is randomly selected and a 
dichotomous split in the data is made based on the largest 
decrease in the MSE of the data. To get the final model, the 
process is run for 500 trees, and the results are averaged. 
Each tree is constructed using a randomly selected set of 
the data where approximately one-third is held "out of 
bag" and can, therefore, be used as a validation data set 
and as a measure of model fit. Our measure of model fit is 
called pseudo R2 and it represents the relative amount of 
variation in the data that is explained by the model. Pseudo 
R2 is calculated as 1-MSENar(y) where the pseudo R2 is 
calculated individually for every tree in the forest, then 
averaged over all trees to compute the final value. 

To investigate the question related to sample size, we 
performed an iterative sampling process where, for each 
iteration, plots were randomly sampled from our study site, 
a model is fit using the RandomForest command, and the 
measure of model fit (pseudo R2

) is recorded. Then, for 
the next iteration, the number in the sample was increased 
by 20 plot locations and so on until the number in the 
iterative sample equaled the total sample size for the study 
site. When plotting the pseudo R-squared values against 
the number of study site samples, we applied a lowess 
smoothing cutVe for each of the study site locations to get 
a visual indication of the asymptotic behavior. From this 
method, we were able to get estimates of the variance of 
the fit of the model as well as to determine the asymptotic 
behavior of model fit relative to sample size. 

The simulations described above were performed for both 
the data set that was normalized (corrected for differences in 
Landsat scenes) and for the data set that was not normalized. 
This allowed us to also explore the asymptotic behavior of 
the model fit relative to normalization. 

The final question had to do with the number of dots used 
for the photo interpretation grid. For each study site we 
sampled 500, 1 000, and 1500 study locations and calculated 
the percent tree cover based on randomly sampling a 
number of photo dots. We started with sampling one dot, 
and then fit a Random Forest model and recorded the pseudo 
R 2• The process was then iterated, increasing the number 
of dots by one each time. In the plot of model fit versus the 
number of dots, we applied a lowess smoothing cutVe to see 
patterns in the simulations and to get a visual indication of 
the asymptotic behavior relative to number of dots. Also, 
estimates of the number of man-hours needed to complete a 
prototype of the same size with different number of sample 
plots and numbers of dots were produced. This assumed 3 
minutes for loading each sample plot picture and another 3 
minutes to count all 105 dots. 
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RESULTS 

From these simulations we were able to get an 
understanding of what intensity sampling intensity provides 
the most information for the least cost. In Figure 2 we 
call attention to the smoothed curve of pseudo R2 versus 
the number of sample plots for the non-normalized data 
in Oregon. Looking at the spread of the simulated model 
fits we see that between 1000 and 2000 sample plots the 
variation in simulated pseudo R2 drops off quickly. This is 
of interest because the default FIA sampling intensity grid 
for this study site is approximately 1500. A similar pattern is 
seen in Figure 3, in which the variation in simulated pseudo 
R2 drops off quickly between 1000 and 2000 sample plots 
for the other four study sites. 

Figures 1 and 2 also show the effect of normalization on 
model fit. When looking at the plot of sample size versus 
pseudo R2 for Oregon in Figure 2 we see that there is little 
difference in the fit of our model with regards to whether the 
data was normalized or not normalized. When looking at the 
four plots in Figure 3 we see the same pattern in Georgia, 
Utah, and Michigan, but we have different results in Kansas. 
In the Kansas plot we see that the normalized data model 
outperforms the normalized data model, but the difference 
is small (at 4000 sample points the difference in pseudo 
R2 between the normalized and non-normalized models is 
about .03). These results indicated that normalization plays a 
very minor role in the quality of model fit, and we made the 
decision to consider only the non-normalized data set for the 
rest of the analyses. 

In Figures 3 and 4 we are looking at the plots of pseudo 
R2 versus number of dots on the photo grid. By looking at 
the plots of number of dots versus pseudo R2 in Figure 4 
we see that in Oregon we are not getting more information 
by including more than 40 dots. This is evidenced by the 
inflection in the lowess smoothing curve on the plot. The 
same pattern is repeated in Figure 5 for the other study 
sites. By combining the recommendations of using non­
normalized data and roughly 1000 sample plots per study 
site we are able to make estimates of the amount of man­
hours needed to complete a study site of similar size. Figure 
6 shows the amount of person-hours needed versus the 
number of photo interpretation grid dots for 500, I 000, and 
1500 sample plots. Using our assumptions that each image 
takes three minutes to load and three minutes to calculate 
tree cover using all 105 dots, we plotted the number of 
photo grid dots versus time for 500, 1000, and 1500 sample 
plots. From this we can see that if we used 1000 sample 
plots with 40 dots we would expect one person to finish all 
five study areas in about 12 weeks. 

DISCUSSION 

By looking at the smoothed curves for the non-normalized 
data in Figures I and 2 we see the relationship between the 
number of sample plots and the precision of the model fit as 
measured by pseudo R 2• We see that between I 000 and 2000 
sample plots the variation in pseudo R2 decreases rapidly 
versus the number of sample plots when compared to larger 
sample sizes. This suggests diminishing returns in model 
fit when increasing the number of sample plots beyond 
values in the 1000 to 2000 range. This suggests that we can 
get good model relative to cost in the 1000 to 2000 sample 
plot range, which also happens to be approximately the FIA 
standard sampling intensity grid for each study site. 

Choosing to use only non-normaJized data to fit a Random 
Forests model has major implications for the budget of the 
project. Normalization is an expensive and time consuming 
process, especially on a scale the size of the entire United 
States. Our results indicate that the Random Forests model 
performs equally well using either normalized or non­
normalized data. From this result, we are able to make 
recommendations to get a higher quality product for less 
cost. However, the visual effects of not normalizing are still 
under investigation. 

Because a human observer will be used to measure percent 
tree cover in the final product, using fewer dots will 
decrease the time the observer will spend on each photo, 
which will decrease the overall cost of the project. Since 
it appears that we gain little in terms of model fit when 
considering more than 40 dots, this suggests that we can 
reduce the person-hours needed for the prototype. 

CONCLUSION 

Because there are limited resources available it is important 
to get an understanding of the behavior of the sampling 
protocols and model fits relative to the costs of the process. 
The recommendations in this paper give guidelines for the 
next prototype phase of the NLCD Canopy Cover project. 
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Figure 1-Location and extent of the five pilot study areas. 

Oregon R2 vs Sample Size 
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Figure 2-Shows the pseudo-R2 values plotted against the number of plots sampled for Oregon for both the 
nomalized and non-normalized data sets with the solid lines representing a lowess smoothing curve. 
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Figure 4-Shows the pseudo-R2 values plotted against the number of dots sampled for Oregon, for both the 500, 1000, and 
1500 sample plots with the solid lines representing a lowess smoothing curve. 
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Utah R2 vs Number of Dots 
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Figure 5-Shows the pseudo-R2 values plotted against the number of dots sampled for Georgia, Kansas, Michigan, and Utah, for 
both the 500, 1 000, and 1500 sample plots with the solid lines representing a lowess smoothing curve. 
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Number of Dots vs Time 
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Figure 6-Shows the amount of time to complete a prototype of 
similar size toon the five study sites versus the number of dots used 
in photo interpretation for 500, 1 000, and 1500 sample plots. 


