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ABSTrACT
An evaluation of the agreement between photointerpretation- and LiDAR-
based estimates of canopy cover was performed using 397 90 x 90 m 
reference areas in Oregon. It was determined that at low canopy cover 
levels LiDAR estimates tend to exceed those from photointerpretation and 
that this tendency reverses at high canopy cover levels. Characteristics 
of the airborne imagery used, and, to a lesser extent, the density of the 
sampling point pattern employed and the occasional photointerpretation 
error inflated estimate discrepancies. Where available, LiDAR data 
can potentially be used to quantify the magnitude of error embedded in 
estimates of canopy cover obtained via photointerpretation. 

InTroDUCTIon

Forest canopy cover is an important ecological indicator 
that is known to affect, among many other phenomena, 
near-ground solar radiation (Zou and others, 2007), tree 
regeneration (Stancioiu and O’Hara, 2006), and wildlife 
habitat (Ganey and others, 2008). It also plays a key role 
in estimating forest stand attributes from remotely sensed 
data (Jennings, 1999). The importance of canopy cover 
for national forest inventory operations has increased 
since the Food and Agriculture Organization (FAO, 2000) 
established the 10 percent canopy cover threshold as the 
universal criterion defining forest land. Prompted by this 
development, the Forest Inventory and Analysis (FIA) 
Program of the U.S. Forest Service has recently decided 
to adopt canopy cover as forest land determinant and it is 
now participating in an effort designed to model canopy 
cover across the conterminous U.S. Model predictions are 
based on Thematic Mapper imagery and ancillary data 
and will be organized in raster layers. A 5-year updating 
schedule is envisioned. Canopy cover estimates serving as 
training data for model development are obtained by manual 
photointerpretation (PI) of high-resolution airborne imagery. 

The term ‘canopy cover’ adopted by FIA follows the 
definition suggested by Avery and Burkart (1994) according 
to whom it is the percent forest area occupied by the vertical 
projection of tree crowns. In this definition, tree crowns 
are considered opaque or solid objects and it is implied 
that canopy cover estimates obtained in the field should 
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only involve observations performed in the exact vertical 
direction. Dot count (Rautiainen and others, 2005), line 
intercept (Gregoire and Valentine, 2007) and moosehorn 
(Fiala and others, 2006) sampling techniques meet this 
requirement; hemispherical photography (Korhonen 
and Heikkinen, 2009), a popular alternative, does not, 
but, reportedly, the effects of the oblique angle view 
can be minimized by photograph post-processing. All 
these approaches for field estimation of canopy cover are 
logistically infeasible for a project with national scope. 
Estimates based on remotely sensed data are perhaps the 
only plausible alternative.

Spectral imagery acquired by airborne or satellite platforms 
conducive to unbiased estimation of canopy cover should 
have sufficiently fine spatial resolution that allows the 
identification of individual tree crowns or crown clusters 
and the delineation of between-crown openings (gaps), 
and narrow field of view centered at nadir (Korpela, 2004). 
Where the latter requirement is not met, trees depicted in 
high-resolution imagery exhibit substantial ‘layover’ or 
radial displacement of their crown tops relative to their 
bases that is intensified as the distance from the image’s 
nadir point increases. This displacement leads to partial 
obstruction of portions of a tree’s crown or of nearby canopy 
gaps, either by the tree in question or by its neighbors. 
Consequently, the minimum size of canopy gaps that can 
be reliably identified in such imagery increases with the 
distance from the nadir point, ultimately leading to bias 
in the estimation of canopy cover. Solar illumination and 
terrain conditions can inflate the bias.

High-density Light Detection and Ranging (LiDAR) data 
are far less susceptible to bias in part because they are 
independent of solar illumination and terrain conditions 
but primarily due to the fact that laser pulses are capable 
of penetrating tree crowns. LiDAR instruments emit short 
pulses of light propagated as a narrow beam towards 
illuminated objects and record the amount of energy that 
is backscattered to the sensor and the length of time that 
has elapsed. By processing this information the laser 
instrument identifies points, also known as returns or 
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echoes, precisely georeferenced in space, that correspond 
to the locus of the backscattering. Pulses illuminating 
hard objects (bare ground, building roofs, etc.) generate 
a single return. Objects that are not solid, for example 
tall vegetation, typically generate more returns along the 
pulse’s propagation trajectory. LiDAR data over forested 
landscapes comprise large sets of returns known as the 
return ‘clouds’ that represent sampling of terrain and 
vegetation materials. Therefore, unlike spectral imagery, 
LiDAR pulses can sample the portion of a tree crown, even 
its lower components, positioned away from the flight line 
of the airborne platform.

This study compares canopy cover estimates obtained via 
photointerpretation to those assessed from corresponding 
high-density LiDAR data across a variety of topographic, 
physiographic, and forest management conditions in 
Oregon. 

MeTHoDS

The 31500 km2, 75 km wide study area extends from the 
coastal mountains of Oregon, across the Willamette Valley 
and the Cascades, eastward to the nearly the Idaho border 
(Figure 1a), and it is sometimes known as the Oregon 
transect. It is one of the five pilot study areas selected 
for the national canopy cover project undertaken by FIA. 
Forests on the coastal mountains and the western half of the 
Cascades typically present with high canopy cover which 
is progressively reduced in the eastern part of the Cascades 
until the open forests of eastern Oregon are reached. Within 
the study area, 397 reference areas, each covering 90 x 90 
m and centered on FIA plot locations were identified as 
contained in high-density LiDAR acquisitions in the 2008 
– 2010 period. These reference areas will be henceforth 
mentioned as ‘plots.’ In each plot, a regularly-spaced 105 
point grid was superimposed on 1-m airborne National 
Agriculture Imagery Program (NAIP) data acquired in 
2009 (Figure 1b). Using the NAIP imagery as reference, 
experienced photointerpreters labeled each of the 105 points 
in each plot either as belonging either on a tree crown or 
background objects. Estimates of plot canopy cover were 
obtained as the ratio of tree points to the total.

To obtain the LiDAR-based estimates of plot canopy cover, 
the elevation value of each return was first converted to 
above-ground height by using a digital elevation model 
(DEM) also generated from the LiDAR data. All returns 
with height equal to or larger than a threshold were labeled 
as trees and the remaining ones as background returns. 
Three height thresholds (1, 2, and 3 m) were considered. 
Subsequently, raster representations of tree and background 
return frequencies were computed. Raster cells containing at 
least one return labeled tree were assigned a value of 1 while 

cells with only background returns were assigned a value of 
0. Cells with no returns were assigned a ‘nodata’ value and 
were excluded from further consideration. To ensure that 
the frequency of nodata cells, and therefore their effect on 
the canopy cover estimates, is minimized, the resolution of 
the raster frequency representation was set to the mean laser 
(footprint) spacing between spatially adjacent pulses. The 
plot estimates of canopy cover were calculated as the ratio 
of the value 1 cells to the sum of value 1 and 0 cells. This 
method for computing canopy cover estimates from laser 
data was evaluated using precise delineations of tree crowns 
detailed in Gatziolis and others (2010) and was found to 
not deviate by more than 3 percent from the field estimates, 
at least where the density of the LiDAR data exceeded 8 
returns per square meter.

To account for registration discrepancies between the 
LiDAR and NAIP data, all returns on and in the vicinity of 
a plot were jittered 200 times in two dimensions by using 
random azimuths and distances drawn from a -5 to 5 m 
uniform distribution. The magnitude of the jittering was 
determined by measuring the mean adjustment required 
to achieve spatial registration by ocular means. The mean 
LiDAR-based plot canopy cover was finally calculated from 
the 200 plot-jittering instances.

reSUlTS AnD DISCUSSIon

The scatterplot of PI- vs. LiDAR-based canopy cover 
indicates that at low cover levels, PI tends to produce lower 
estimates (Figure 2) than LiDAR. At high canopy cover 
levels this tendency reverses. A second-order polynomial 
regression of PI on LiDAR estimates exhibits coefficient 
of determination R2 = 0.787 with the regression fitted line 
crossing the 1:1 one at canopy cover of approximately 
35 percent. This is in part because at very low canopy 
cover levels, trees in the landscape can be considered rare 
events that are not sampled adequately by the point pattern 
used. At high canopy cover, it is the openings or gaps 
within the crowns that are rare and undersampled. Given 
the 1 m resolution of the NAIP imagery, the horizontal 
footprint of either a small tree or canopy opening would 
have to exceed 4 m2, twice the square of the resolution, 
before it can be identified clearly. To both comply with the 
minimum identifiable object size requirement and avoid 
bias due to undersampling of rare events, the density of the 
point pattern would have to increase by at least an order 
of magnitude above the present level, an option which is 
logistically infeasible. 

Figure 2 features 3 plots with LiDAR estimates higher than 
60 percent and corresponding PI estimates lower than 30 
percent and another 3 plots with LiDAR estimates lower 
than 35 percent and PI estimates higher than 75 percent. 
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These plots and many others have been examined carefully 
using various ancillary data in an effort to identify the 
source of such large discrepancies between the estimates. 
It was determined that for all six plots photointerpretation 
error was responsible for the discrepancies. Among the 
most challenging plots ranked those with uniform hardwood 
tree crowns mistaken for grass or brush and those covered 
with snow at the time of the NAIP acquisition. Two other 
plots with large estimate discrepancy had sustained insect 
infestation, a condition not anticipated by the LiDAR-
based canopy cover estimation procedure which lead to 
overestimation. Smaller discrepancies were attributed to 
poor imagery quality, such as hazy conditions and lack of 
sufficient contrast.

In addition to the undersampling of openings, the PI 
overestimation of canopy cover compared to LiDAR was 
attributed to oblique NAIP imagery. In plots or stands with 
canopy cover higher than 50 percent, or even lower but with 
trees growing in clusters, the effects of imagery obliqueness 
are more pronounced. While only a small percentage of 
pulses had viewing angle greater than 10 degrees, for about 
1/3rd of the study area the effective view angle of the NAIP 
imagery exceeded that angular threshold. In the presence 
of tall vegetation, steep terrain and fairly low sun elevation 
angle, conditions that are actually the norm rather than the 
exception in much of the Pacific Northwest, crown openings 
are partially or completely obstructed from view. Unless the 
airborne imagery is acquired with long focal length lens, its 
information content may not be compatible with unbiased 
estimation of canopy cover regardless of the diligence and 
skill of the photointerpreter or the sampling intensity.

Overlays of the sampling point pattern with the NAIP 
imagery questioned the choice of regularity in the former 
for several plots examined. The arrangement of points in 
the pattern yields a 9-m distance between a point and its 
immediate neighbors. This point spacing is a multiple of the 
planting distance for many commercial forests in the Pacific 
Northwest. Although certainly not an issue in ‘natural’ 
forest stands, systematic sampling can have unintended 
implications where sample points happen to consistently 
lay on crowns or canopy openings. Alternatively, random 
sampling point pattern could perhaps be employed in 
regions with substantial component of commercial forests.

Modifying the object height threshold that separates trees 
from background objects was found to have a small overall 
effect on the agreement between PI and LiDAR estimates 
of canopy cover. For height threshold equal to 1 m, 2 m, 
and 3 m the root mean square discrepancy between the 
two types of estimates was 14.98, 15.20, and 15.92 percent 
respectively. For 21 plots, 5.3 percent of the total, increasing 
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the threshold from 1 to 3 m resulted in a more that 4 percent 
change in estimate discrepancy. It should be noted that 
within the study area there was hardly any portions with 
non-tree vegetation of mean height larger than each of the 
thresholds specified and for the majority of the open forests 
in eastern Oregon there is little or no understory. Such 
conditions facilitate precise estimation of canopy cover, at 
least for the LiDAR-based approach. In different biomes 
and dominant cover types, the distinction between tree and 
non-tree vegetation might be less clear. While LiDAR data 
do describe the vertical structure of vegetation, we are yet 
to see in literature methodologies and applications capable 
of accurately and consistently discerning bushes and brush 
from tree overstory. In such conditions, how well the height 
threshold selected represents the vegetation profile will 
likely determine the accuracy of the estimates obtained. 

Assuming that the LiDAR-based estimates of canopy cover 
are either unbiased or, if not, only marginally biased, the 
results of this study suggest that the PI-based estimates 
contain substantial bias at least for plots with low or high 
true canopy cover. Considering that the primary objective 
for the PI effort is to support the national canopy cover 
project, it should be concerning that the bias in the PI 
estimates will propagate through the modeling function 
and likely bias the outputs. Given the model structure types 
considered for the national project, it is unlikely that one can 
assess a priori the effect of the bias in the input to any bias 
in the output. Perhaps the only viable option is to repeat the 
modeling effort once with PI estimates as input and once 
with their LiDAR equivalent and compare the outputs, at 
least in regions where high-density LiDAR data is available. 
Such a comparison could lead to useful insights towards 
methodological improvement in the PI process and in the 
structure of models employed for future implementations of 
the national canopy cover project.

ConClUSIon

An evaluation of the agreement between PI- and LiDAR-
based estimates of canopy cover was performed using a 
large number of plots across a variety of vegetation and 
topographic conditions. The evaluation indicates that the 
agreement between estimates relates to the value of canopy 
cover. There is sufficient evidence to suggest that the PI 
approach tends to underestimate low and to overestimate 
high canopy cover. In addition to bias, PI estimates appear 
to be imprecise as well, in part because of the characteristics 
of the airborne imagery used. The magnitude of the bias can 
be quantified where high-density LiDAR data is available. 
Additional investigations are needed to determine if bias 
removal or reduction can be achieved.
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Figure 1—a. Study area (shaded rectangle) and State of Oregon boundary, b. 90 x 90 m sampling point 
pattern on NAIP panchromatic imagery for a randomly selected location.

Figure 2—Scatterplot of LiDAR-vs. photointerpretation-
based canopy cover estimates with 1:1 (thick) line and 
second-order regression fit (thin line).




