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Investigations of hydrologic responses resulting from reducing vegetation den-
sity are fairly common throughout the Eastern United States. Although most studies
have focused on the potential for increasing water yields or documenting effects from
intensive practices that far exceed what would be done for fuel-reduction objectives,
data from some less-intensive manipulations—such as thinnings, understory remov-
als, and controlled burns for seedbed establishment—that are more easily related to
fuel-reduction activities are available. In this chapter, findings from the entire range of
available manipulation intensities are presented so that results can be applied to various
levels of fuel reductions. Even though site preparation is a silvicultural technique and
is not traditionally considered in the context of fuels reduction, activities such as shear-
ing, roller chopping, and windrowing are included in this review because they affect
the architecture, mineralization rates, and surface area of materials left onsite, and thus,
have relevance to combustibility and fuels management.

The ways and extent to which hydrologic responses from vegetation manipulation
occur depend on whether they are expressed as surface flows, such as streamflow, or
changes in water-table elevations. Surface flows typically are associated with uplands
(Sun and others 2004) because the steeper terrain results in rapid runoff, which encour-
ages the concentration of water and channel formation (Jackson and others 2004).
Hydrologic expression via water-table changes typically is associated with flat or
depressional terrain (Sun and others 2004) because the lack of slope slows water move-
ment and limits channel network formation and the presence of surface flows (Grace
and others 2003, Jackson and others 2004). Surface flow in southeastern wet flatlands
occurs primarily within drainage ditches created to make lands more amenable to forest
plantation or agricultural growth (Amatya and others 1996, Lebo and Herrmann 1998).
Water contributing to these ditches comes principally from saturated or nearly saturated
lateral subsurface flow (Amatya and others 1996, 1997; Sun and others 2004); to reflect
that this source water results from situations that differ from typical streamflow, drain-
age in these ditches is sometimes referred to as outflow (Amatya and others 1997, 2002;
Grace and others 2006; Lebo and Herrmann 1998).

The various hydrologic responses are described by similar equations. Streamflow in
a given time period is described and predicted by the water balance equation:

Streamflow = Precipitation — Evapotranspiration + A Soil Moisture Storage
+ A Ground Water Storage (D

Often ground water changes are assumed to be approximately zero, which simplifies
the equation for calculations on a water year basis. Changes in soil moisture storage can
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be substantial in the short term or seasonally, but over a water year, this term generally
is assumed to approach zero. Thus, annually, the equation further simplifies so that total
streamflow is determined by how much incoming precipitation is lost to evapotranspira-
tion (ET), which is defined as the cumulative losses of evaporated canopy interception,
soil evaporation, and vegetative transpiration. Obviously, climate is a dominant term
in controlling ET. But in forest land, ET can be substantially affected by differences in
species composition, vegetative density, and microclimate resulting from forest man-
agement activities; consequently, streamflow also can be substantially affected.

Equation 1 can be used to predict total stream discharge in the short term, but doing
so would require inclusion of changes in soil moisture because these changes are
important in controlling streamflow yields. By contrast, the shape of the storm hydro-
graph cannot be predicted from only the water balance equation—in fact, hydrograph
behavior is extremely difficult to predict accurately because precipitation events are
unique and random, and physical factors of the watershed affecting the timing of water
delivered to stream channels are not constant with time.

Streamflow or outflow in channels or drainage ditches supplied primarily by satu-
rated lateral water movement is similarly described, with one additional component to
account for lateral seepage across watershed boundaries (Amatya and others 1996):

Streamflow = Precipitation — Evapotranspiration + A Lateral Seepage
+ A Soil Moisture Storage — Deep Seepage 2)

The deep seepage term for wet flatlands often also is considered to be approximately
zero because the soils involved often are poorly drained (Amatya and others 1996;
Grace and others 2003, 2006; Riekerk 1989).

The change in the height of a wetland water table for a given time period is described
by the equation (Sun and others 2001):

A Water table height = (A Inflow — A Outflow — A Evapotranspiration) /
Soil Specific Yield 3)

Although inflow and outflow rates can have substantial effects on water-table height,
ET becomes the dominant factor in controlling water-table height if water exchange is
slow. Soil specific yield, also known as drainable soil porosity, is the ratio of the volume
of water that drains from a saturated soil as a result of lowering the water table relative
to the volume of that soil. Its value ranges between zero and one, but it is not actually
a constant and depends on position of the water table, rate of water-table change, and
soil characteristics (Hillel 1982). Fuel-reduction activities primarily would affect the
variables in the numerator of equation 3 (Sun and others 2001).

To ensure that changes in water-table responses are measured and interpreted accu-
rately, measurement wells must be at least as deep as the lowest water-table levels
expected during monitoring. If the well is not deep enough, a water table may rise or
fall, but documenting the change will be impossible. In these instances, “no measured
effect” should not be interpreted as “no effect.”

Hydrologic Groupings of Provinces
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Hydrologic studies of vegetation manipulation have been performed in all the major
landforms of the Eastern United States; commonly, the study areas have been experi-
mental forests operated by either the U.S. Department of Agriculture Forest Service or
universities, although in the South studies have been applied fairly broadly, particularly
on forest-industry lands in the Coastal Plain.

For consistency throughout this volume on Eastern landscapes, the approach is to
classify and describe responses by ecological divisions and provinces (chapter 3) to
the extent possible. Ecological divisions are defined by “regional climatic types, veg-
etational affinities, and soil order”; and provinces are defined by “dominant potential
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natural vegetation, and highlands or mountains with complex vertical climate-vegeta-
tion-soil zonation” (U.S. Department of the Interior 2003). As a result, these boundaries
do not fall strictly along those that largely define hydrologic behavior, such as the more
commonly employed physiographic boundaries defined by geology and topography
(U.S. Department of the Interior 2003). Thus, in an effort to keep to the ecological divi-
sion/province approach as much as possible, we have defined groups of provinces with
fairly similar hydrologic characteristics (table 1) and present subsequent discussions
based on those groupings. However, because most groupings include provinces from
different divisions, these groupings have been assigned more traditional physiographic
names (North Central States, Northeastern States, Ozark Mountains and Ouachita
Plateau, Central and Southern Appalachian Mountains, Piedmont, and Coastal Plain)
because these can be more concisely described and easily understood. The results and
interpretations from the reviewed literature should be generally applicable throughout
the area encompassed by the respective provinces within the grouping. The principal
exception to grouping by distinct ecological province is our separate consideration of
the Piedmont and Coastal Plain. Hydrologically, these two areas behave very differently
from one another, but the boundaries of the ecological provinces involved (chapter3) do
not coincide with the boundaries of the Coastal Plain and Piedmont physiographic areas
(fig. 1). Consequently, the Southeastern Mixed Forest Province within the Subtropical
Division (230) is included in both the Piedmont and Coastal Plain (table 1).

Table 1. Groupings of ecological divisions and provinces that are expected to have similar hydrological responses to fuel-
reduction treatments (to simplify discussions in the text, these groupings are assigned physiographic titles)

Physiographic area

Division and provinces

North Central States

210 Warm Continental

212 Laurentian Mixed Forest

220 Hot Continental

222 Midwest Broadleaf Forest

Northeastern States

210 Warm Continental

211 Northeastern Mixed Forest

M210 Warm Continental—Mountain
M211 Adirondack—New England Mixed Forest—Coniferous Forest—Alpine Meadow

220 Hot Continental

221 Eastern Broadleaf Forest (northern portion only)

Ozark Mountains and
OQuachita Plateau

M220 Hot Continental—Mountain
M223 Ozark Broadleaf Forest—Meadow

M230 Subtropical—Mountain
M231 Ouachita Mixed Forest—Meadow

Central and Southern
Appalachian Mountains

M220 Hot Continental—Mountain
M221 Central Appalachian Broadleaf Forest—Coniferous Forest—Meadow

220 Hot Continental

221 Eastern Broadleaf Forest (southern portion only)

Piedmont

230 Subtropical

231 Southeastern Mixed Forest

Coastal Plain

230 Subtropical

231 Southeastern Mixed Forest
232 QOuter Coastal Plain Mixed Forest
234 Lower Mississippi Riverine Forest

250 Prairie

255 Prairie Parkland (Subtropical)
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Figure 1. Piedmont and Coastal
Plain boundaries.

77/, Coastal Plain
Piedmont

No hydrologic response data applicable to the Prairie Parkland (Temperate) Province
(251) were found in the literature, so this province is not included in our chapter.
Likewise, the Everglades Province (411) is not included, but fuel-reduction activities
are not being practiced in this area.

Hydrologic Responses

Physiographic areas are discussed in order from north to south in subsequent sec-
tions, so that responses from similar climates are grouped closely. When data exist,
water-yield and water-table results are presented seasonally (growing and dormant) as
well as annually. Storm event responses also are described where data were available.
The term stormflow—also called quickflow—is used in this chapter to describe the
volume of flow composed of the sum of precipitation falling directly into the channel,
surface (overland) flow reaching the channel, and precipitation delivered to the chan-
nel by subsurface flow during and immediately following precipitation or snowmelt or
both events combined (Hewlett and Hibbert 1961). Peakflow is defined as the instan-
taneous maximum magnitude or rate of discharge during a precipitation or snowmelt
event.

North Central States

232
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The North Central States are characterized by two different types of sites: those that
have unsaturated mineral soils (often uplands), and those that are lowland bogs with
organic (peat) soils. Often the elevational or topographic differences between the two
are not great, but they are large enough to result in different soil characteristics that
substantially affect hydrologic responses. Hydrologic changes from vegetation manipu-
lation in organic soils usually are measured as water-table fluctuations, and those in
mineral soils usually are measured as streamflow changes.

Streams can exist in lowland bogs, but hydrologic expression in them is generally
less demonstrative than in water tables because peatland soils tend to transmit water
laterally very slowly (Boelter and Verry 1977). For example, strip cutting followed
later by clearcutting black spruce (Picea mariana) in a lowland bog on the Marcell
Experimental Forest in northern Minnesota did not change streamflow yields (table
2), partially because of the low hydraulic conductivity (Verry 1981). However, the
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type of peat soil present in the area of harvesting substantially influences hydrologic
responses in streams, if present, or water tables. Water moves laterally fairly freely and
rapidly in poorly decomposed peats, making these soils hydrologically quite respon-
sive. Conversely, well decomposed organic soils, which are most common in the North
Central States, have many small pores that hold water tightly because of extremely low
hydraulic conductivities, so losses from these organic soils are primarily as ET (Boelter
and Verry 1977).

Water-table responses also are affected by the type of ground water involved. If
the harvested stand is over a ground-water fed water table, removing or reducing the
ET will have little effect on water-table fluctuations or levels because aquifer supplies
greatly exceed precipitation inputs. By contrast, harvesting over perched water tables
can result in measurable changes in water-table levels. If precipitation frequency is ade-
quate, water tables in harvested areas will rise because interception losses are reduced.
If precipitation is infrequent, the water table will drop after harvesting because there is
increased ET caused by winds and increasing transpiration by sedges, which can access
deeper moisture than many other plants (Boelter and Verry 1977). This is the type of
water-table response that Verry (1981, 1986) reported in the 4 years after clearcutting
a bog. Water tables rose 100 mm during wet periods (table 2), because interception
was reduced by approximately 170 mm (30 percent), thereby adding that much more
precipitation to the peat soils. Conversely, during dry periods, water tables lowered
by as much as 190 mm after clearcutting—the result of high ET attributable to more
wind and solar radiation, higher surface temperatures, and rapid herbaceous vegetation
growth (Verry 1981). Water tables also fluctuated to a greater degree after clearcutting
during years of higher than average or lower than average precipitation compared to
preharvest conditions.

Harvesting on mineral soils can increase soil moisture (Blackmarr and White 1964,
Verry 1972), or water-table levels (Urie 1971), or both; but because mineral soils trans-
mit water to streams quickly, measurements of hydrologic change often are focused on
streamflow. Harvests in areas with mineral soils often cover a higher percentage of total
watershed area than those on organic soils, further contributing to the degree of hydro-
logic changein mineral soils. Upland clearcutting of aspen (Populus tremuloides) over
two-thirds of watershed 4 on the Marcell Experimental Forest in Minnesota resulted
in significant increases to annual runoff for 9 years following harvesting (Hornbeck
and others 1993, Verry 1987), with approximately half of the 9-year change occurring
during harvesting and the 3 years after harvesting (table 2). Changes during those 3
years were 40 to 70 percent above those when trees were present on the watershed.
Most of the annual stream augmentation occurred during the growing season (Verry
1972, 1987). No change in annual yield was reported after clearcutting an oak-hickory
(Quercus spp.—Carya spp.) stand in a 0.67-ha watershed at Rose Lake Wildlife
Experiment Station in southern Michigan, and ET was estimated to have returned to
pretreatment levels within 5 years after the clearcut (Blackmarr and White 1964).

Stormflow effects in the North Central States tend to be a function of whether snow-
melt or rainfall is involved and how much of the stand is harvested. Harvesting only
about half of watershed 4 of the Marcell Experimental Forest reduced peak runoff dur-
ing spring snowmelt by 35 percent because the melt in the forest and open areas became
desynchronized (Verry 1972, Verry and others 1983). But increasing the area harvested
to approximately two-thirds of the watershed increased spring snowmelt peaks from 11
to 143 percent for 7 years (Verry and others 1983), although effects may have lasted
for as many as 15 years (Verry 1986). The increases presumably occurred from less
desynchronization of snowmelt—resulting from increased heat transfer to the snow-
pack (from solar radiation) and reradiation of longwave radiation to the snowpack by
the regrowing sprouts (Verry 1986, Verry and others 1983). Consequently, snowmelt
peak discharges began 3 to 5 days earlier (Verry 1972, Verry and others 1983); however,
none of the changes to snowmelt peaks resulted in significant increases to total snow-
melt volumes (Verry and others 1983).

By contrast, stormflow volumes from rain events increased by 100 percent or more the
first 2 years after harvesting two-thirds of the watershed, but they were not significantly
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affected by the third year. Rainfall-induced peakflow rates were significantly higher for
8 years—the increases during the first 3 to 5 years were about double preharvest levels.
Increases in rainfall-associated peakflows were the result of reductions in soil moisture
deficits after harvesting (Verry and others 1983). Peakflow rates from the annual series
for 2-year events increased about 1.5 times preharvest levels, compared to 2.5 times
for 10-year events (Verry 1986, Verry and others 1983). Similarly, flow duration curves
showed that average daily flows increased across all ranges of flow rates with the excep-
tion of the very highest flows associated with maximum snowmelt peaks (Verry 1972).

Northeastern States

Most of the studies in the Northeastern States involve clearcutting or whole-tree har-
vesting (table 3). First-year water-yield increases from these intensive harvests generally
were in the range of 150 to 350 mm or 20 to 40 percent (table 3), although occasion-
ally higher percentage increases were reported from whole-tree harvests (Pierce and
others 1993). Small single harvests or small sequential harvests—such as progressive
strip cuts—yielded substantially lower annual discharges (Hornbeck and others 1987,
Mrazik and others 1980). Regardless of the amount of augmentation, increases were
short lived, lasting <6 years (table 3); and after 10 to 15 years, water yields commonly
fell to levels lower than pretreatment (table 3). This may be because regenerating spe-
cies had higher transpiration rates than the original stand (Hornbeck and others 1987).

With one exception (Mrazik and others 1980), seasonal data show that annual aug-
mentation in the Northeastern States was almost entirely the result of increased dis-
charge during the growing season, and that water-yield changes during the dormant
season were very small (table 3). Water-yield increases of >300 percent have been
reported from a clearcut during the first one to two growing seasons (Hornbeck and
others 1970). Thus, as growing season augmentation diminished, so did annual water
yields. Mrazik and others (1980) found that percentage increases in streamflow were
higher during the growing season, but the actual volumes of streamflow augmentation
during the growing and dormant seasons were similar (table 3). They attributed the lack
of seasonal differences to the milder climate in central Massachusetts (such as the study
sites at Caldwell Creek and Dickey Brook) compared to other New England study sites,
such as Hubbard Brook in New Hampshire.

Increases in streamflow were expressed primarily during low flows. Shifts in flow
frequency curves for Caldwell Creek and for watersheds 2, 4, and 5 at Hubbard Brook
indicated increases in the numbers of days of occurrence across all flows; but the great-
est displacement of the curves was at the lowest flows (Hornbeck and others 1997,
Mrazik and others 1980), primarily during the growing season (Hornbeck and others
1997). This same pattern was observed for basal area reductions ranging from about
35 percent (Mrazik and others 1980) to 100 percent of the watershed, although curve
displacement was greatest when herbiciding followed clearcutting (Hornbeck and
others 1997). For example, average daily growing-season flows equaling or exceed-
ing 1 mm occurred an average of 26 days before clearcutting watershed 2 at Hubbard
Brook. After clearcutting and herbiciding, growing-season flow equaled or exceeded
1 mm for 116 days. Removing overstory vegetation by clearcuts, block cuts, and strip
cuts resulted in changing the timing of spring snowmelt, but it did not change the over-
all volume of spring discharge (Hornbeck and Pierce 1970; Hornbeck and others 1970,
1987, 1997; Pierce and others 1970, 1993). More extensive and continuous overstory
removal resulted in slightly earlier snowmelt peaks than did light cuts that had sub-
stantial residual shade from edge vegetation (Hornbeck and others 1987). On all of the
harvests at Hubbard Brook, peakflow from spring snowmelt occurred an average of 4
to 8 days earlier than from a fully forested watershed, although in one year clearcutting
caused a shift forward of 17 days on one watershed (Hornbeck and Pierce 1970, Pierce
and others 1970). Resulting streamflow and peakflow were higher than normal during
these earlier periods of snowmelt and lower than predicted later in the snowmelt season.
Snowmelt also ended 2 to 4 days earlier in a clearcut watershed than in an uncut water-
shed with the same aspect (Hornbeck and Pierce 1970).
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Reducing vegetation can result in other hydrograph responses, but the limited results
reported in the literature from the Northeastern States indicate that changes to peak-
flow and stormflow were small even after clearcutting an entire watershed (table 4). No
changes in average peak discharges were observed for 3 years at Dickey Brook after
32 percent of the basal area was removed using a combination of clearcutting and thin-
ning (Bent 1994). High flows (> 0.2 m*/second/km?) increased an average of 13 percent
during the first 3 years after clearcutting and herbiciding watershed 2 at Hubbard Brook
(Hornbeck and others 1970). The average annual increase in stormflow during the first
3 years was 21 percent (Hornbeck and others 1970), but the largest relative increases
in storm peaks and the largest increases in stormflow volumes have been reported pri-
marily during the largest events (Hornbeck 1973, Mrazik and others 1980) during the
growing season (table 4). Average annual stormflow on Hubbard Brook watershed 2
increased 99 mm during the first 3 years, with two-thirds of that occurring during the
growing season (table 4). Dormant season stormflow increases were restricted primar-
ily to spring melt events, because snowmelt was concentrated in only one short period
or a few short periods. Individual stormflow totals during these spring melts can be
much higher than during other times of the year. For example, the maximum increase in
spring stormflow from Hubbard Brook watershed 2 was 50 mm, compared to a maxi-
mum summer stormflow increase of 30 mm (Hornbeck 1973). By contrast, changes to
average peak discharge at Caldwell Creek were distributed relatively evenly between
growing and dormant seasons during the first 4 years after deadening or harvesting
approximately 35 percent of the watershed (Mrazik and others 1980).

Ozark Mountains and Ouachita Plateau

Unlike the other areas described in this chapter, available discharge data from the
Ozark Mountains and Ouachita Plateau focus on stormflows and peakflows rather
than annual yields, because runoff data have been collected primarily from ephemeral
channels.

In the Ozark Mountains, clearcutting a third of a 6.6-ha oak watershed did not
change stormflow even though half of the harvested area was cut using a logger’s choice
method and soil disturbance was substantially more than what would have occurred
with best management practices (Settergren and others 1980). The lack of change was
attributed to the limited area that was harvested and the fact that disturbance was con-
fined to the ephemeral headwaters. Had the harvesting been in lower portions of the
watershed closer to the nonephemeral portions of the channel, stormflow increases via
reductions in soil infiltration and subsequent overland flow may have occurred as a con-
sequence of the extensive soil disturbance. For example, mechanical removal of litter
significantly reduced infiltration rates of four Missouri soil series by 11 to 25 percent,
with an average reduction of 18 percent (Arend 1941). Annual burning of the hardwood
litter layer for 5 to 6 years across a variety of soils exposed mineral soil and reduced
soil infiltration 20 to 62 percent, with an average reduction of 38 percent (Arend 1941).

Even though Settergren and others (1980) observed no changes to stormflow after
clearcutting a third of a watershed, some local soil moisture augmentation may have
occurred because of reductions in transpiration. Substantial differences in soil moisture
deficits were observed between clearcut and forested plots on the Koen Experimental
Forest (Rogerson 1976). Average maximum soil water deficit in the clearcut plots was
78 mm, only 29 percent of the average maximum deficit of 267 mm in the forested
plots. Soil moisture deficits in the clearcut plots were present only during summer and
autumn; recharge occurred earlier than in the forest because summer deficits grew only
at an average daily rate of 0.6 mm in the clearcut plots compared to 2.1 mm in the
forest.

The soil disturbance associated with site preparation following clearcutting of short-
leaf pine (Pinus echinata) substantially affected hydrology in three small watersheds in
the Ouachita Mountains of Oklahoma (Miller 1984). Site preparation following clearcut-
ting included roller chopping, burning, and contour ripping the subsoil. The resulting soil
disturbance increased roughness and detention storage in the furrows, and cut off soil
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macropores connected to ephemeral channels. Precipitation then became routed into the
subsoil rather than laterally to streamflow. As a result, average stormflow in the clear-
cut watersheds fell to levels below the uncut controls (table 5) even though transpiration
and probably interception losses were reduced greatly by harvesting and site preparation.
Only during the second year after treatment, which was unusually dry, were the reduc-
tions in ET in the clearcut watersheds enough to significantly increase stormflows. Annual
average peakflow rates also were not affected by harvesting and site preparation.

In the Ouachita Mountains of Arkansas, stormflow responses resulting from clearcut-
ting followed by roller chopping and burning were compared to those from selection
harvesting with no site preparation and with uncut controls (Miller and others 1988).
The large average annual stormflow increases that were observed (table 5) indicated

Table 5. Water yield responses (as stormflow volumes) to harvesting treatments in the Ozark Mountains and Ouachita

Plateau
Acreage,
Location aspect, soils Treatment description Time period  Stormflow changes Reference
Ouachita 1.6 t0 4.2 ha, Three replicate watersheds, Year 1 -94 Beasley and others
Mountains,  southwest, loam clearcut, roller chop, Year 2 49 a 2000, Miller 1984
Oklahoma overlaying silt burn, contour soil ripping Year 3 -1
clay (subsoiling), hand plant Year 4 -17
Ouachita 4.08, 5.11, and Three replicate watersheds, Year 1 101 Beasley and others
Mountains,  5.91 ha, north, clearcut and roller chop, Year 2 92 2000, Miller and
Arkansas southeast, and burn, hand plant Year 3 193 others 1988
northwest, loam
overlaying clay
4.15, 4.35, and Three replicate watersheds, Year 1 101 Beasley and others
5.74 ha, north, selection harvest Year 2 74 2000, Miller and
south, and west, Year 3 149 others 1988
loam overlaying
clay
Ouachita 0.52 ha, northeast, Overstory pine thinned, Year 1 109 a6 (79 percent) Rogerson 1985
Mountains,  stony silt loams 57 percent basal area Year 2 57
Arkansas removed, mixed hardwood Year 3 82
understory herbicided Year 4 66
annually for 3 years Year 5 0
Year 6 49
Year 7 41
0.59 ha, northeast, Overstory pine clearcut, Year 1 259 2 b (193 percent) Rogerson 1985
stony silt loams mixed hardwood understory  Year 2 141
herbicided annually for 3 Year 3 113
years Year 4 135
Year 5 143
Year 6 160
Year 7 102
Athens 21to 5 ha, aspect  Three replicate watersheds, Year 1 166 2 Beasley and others
Plateau, not given, fine clearcut, shear, windrow, Year 2 388 1986, 2000
Arkansas sand or fine plant Year 3 2372
loam
210 5 ha, aspect  Three replicate watersheds, Year 1 -3 Beasley and others
not given, fine clearcut, chemical site Year 2 176 1986, 2000
sand or fine preparation, plant Year 3 -4
loam

2 indicates a statistically significant change at the alpha level used by the original authors. Unless otherwise indicated, values without an 2
are nonsignificant.
b Significance/nonsignificance for this study was specified only for year 1.
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that stormflow increased roughly proportionally to the amount of harvesting and site
disturbance; however, the increases were not significant because of substantial variabil-
ity in responses across the replicated sites. One of the three replicated sites in each
harvesting treatment consistently yielded much higher annual stormflow volumes than
the controls, presumably because they had more lateral moisture movement through the
soil (Miller and others 1988). Hydrologic increases calculated from those sites provide
a measure of high-end responses that could be expected: the stormflow increase for
the clearcut/site-prepared watershed would have been 98 mm more than the average
reported for year 1 and 100 mm more than year 2 (table 5). By contrast, selection-
harvest values from the first 2 years essentially would have been unchanged (-5 and
0 mm different). These larger stormflow values suggest that all clearcut/site-prepared
watersheds (including those dominated by vertical soil moisture) had substantial short-
term reductions in transpiration and interception compared to the selection harvests.
The changes in soil moisture from all clearcut and selection-harvest watersheds were
large enough to increase the number of stormflow events that occurred the first 2 years
after harvesting and also lengthen the time that stormflows, albeit in small volumes,
were present. After harvesting, periods of stormflow extended farther into the summer
and began earlier in the autumn. Peakflow increases also were related to the intensity
of treatment, but peakflows did not differ significantly among the treatments and the
controls.

In other nearby watersheds in the Ouachita Mountains, clearcutting and thinning
pine followed by 3 years of herbiciding to control hardwood regrowth also decreased
soil water deficits, which in turn increased discharge from ephemeral channels (table 5).
The first growing season after treatment, soil water deficits were reduced by as much
as 51 to 76 mm on the thinned watershed and 76 to 102 mm on the clearcut water-
shed (Rogerson 1985). Elevated soil moisture levels continued for at least another six
growing seasons. Dormant-season soil moisture was not affected by either harvesting
treatment. Resulting first-year water-yield increases for both types of harvests were
substantial, but those from the clearcut were about 2.5 times larger, both in volume and
percentage (table 5). Water yields over the 7-year study increased an average of 23 per-
cent from thinning and 67 percent from clearcutting; more than half of those volume
increases occurred during the growing seasons (thinned 52 percent, clearcut 61 percent)
(Rogerson 1985).

Clearcutting with mechanical site preparation in the Athens Plateau of Arkansas
increased stormflow significantly the first and third years after treatment (Beasley and
others 1986), but clearcutting followed by chemical site preparation did not increase
streamflow during any of the years (table 5) because vegetation deadening was incom-
plete, stump sprouting was common, and overall disturbance to watershed soils was
less. Thus, more soil moisture augmentation was needed before stormflow could be
generated. Stormflow increases in year 2 were very large because that year was unusu-
ally wet with several large rainfalls; however, stormflow was not statistically differ-
ent than pretreatment because of substantial variability in responses among replicate
watersheds attributable to variable soil depths. The Athens Plateau is an area of transi-
tion between the Ouachita Mountains and the west Gulf Coastal Plain, and watershed
replicates in the west Gulf Coastal Plain had deeper soils than the replicates located in
the thinner rocky soils of the Ouachita Mountains. The result was almost no stormflow
discharge in the Coastal Plain area except during the unusually wet second year; repli-
cates in the Ouachita Mountain soils yielded much more stormflow.

Central and Southern Appalachian Mountains

242
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The Appalachian Mountains cover a fairly extensive north-to-south range. In the
northern portions, snow is an important component of the hydrologic cycle, although
snowpacks are typically not continuous throughout most winters (U.S. Department of
Agriculture 1987). In the southern portion, snow comprises only a small percentage
of the hydrologic budget (Hewlett and Hibbert 1961). The vast majority of the avail-
able data for this area is from the Fernow Experimental Forest in north central West
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Virginia and Coweeta Hydrologic Laboratory in western North Carolina. Limited
amounts of data also are available from central Pennsylvania (including the Leading
Ridge Watershed Research Unit) and the Cumberland Plateau. These studies provide
data from a wide variety of experiments, including thinnings, other partial harvests, and
understory removal/reduction experiments.

In general, more intensive levels of harvesting in the Appalachian Mountains result
in greater augmentation of annual flows (table 6), and first-year water-yield increases
are proportional to the basal area removed (Hewlett and Hibbert 1961, Kochenderfer
and others 1990). Thinnings in which only small percentages of the basal area were
removed typically resulted in small, nonsignificant changes in annual discharges,
whereas with few exceptions clearcutting most or all of a watershed increased annual
water yields by at least 100 mm (and often more) during the first year or two after har-
vesting. Site preparation following clearcutting at Clover watershed in West Virginia
(Kochenderfer and Helvey 1989) and Coweeta watershed 6 (Hibbert 1969) did not
increase annual water yields (table 6) more than from clearcutting alone (Douglass
and Swank 1972, Hewlett and Helvey 1970, Hoover 1944, Johnson and Kovner 1954,
Kochenderfer and others 1990, Kovner 1956, Lull and Reinhart 1967, Meginnis 1959).
However, vegetative reductions do not have to be restricted to the overstory to increase
annual discharge. Removal of a thick understory of mountain laurel (Kalmia latifolia)
and rhododendron (Rhododendron maximum) that accounted for 22 percent of the basal
area of Coweeta watershed 19 resulted in significant, albeit short-term increases in
annual yields (table 6).

In the Appalachian Mountains, yields typically decline quickly because of rapid
regrowth and restoration of ET encouraged by high precipitation levels and relatively
long growing seasons. For example, after clearcutting at Fernow, Leading Ridge, and
Coweeta, discharges returned to pretreatment levels in 5 to 10 years (Hornbeck and
Kochenderfer 2001, Hornbeck and others 1993, Swank and others 2001). After recov-
ery, streamflow can fall below that of the uncut stand because of changes in species
composition and/or leaf area index of the regrowing stand (Swank and others 2001).

More severe deforestation treatments using herbicides to kill residual vegetation and
prohibit regrowth (Fernow watersheds 6 and 7) resulted in higher annual increases than
from clearcutting alone (table 6). This was likely because nearly all of the transpira-
tion on the watersheds ceased from the deadening, whereas in traditional clearcuts sub-
stantial live vegetation remains in residual saplings and understory plants. Because the
denudation lasted several years and regeneration occurred primarily by seed sources
rather than root or stump sprouts (Hornbeck and others 1993), the effects lasted about
15 years, which is substantially longer than harvest-only studies at Fernow (table 6).
Annual cutting for almost 15 years to eliminate regrowth on Coweeta watershed 17 also
elevated streamflow during the entire period (Johnson and Kovner 1954). The annual
discharge levels were similar to initial levels from clearcutting other north-facing water-
sheds at Coweeta (table 6).

High road density or a lack of best management practices or both factors had little
effect on annual water yields. Fernow watershed 1 had both a high density (7.3 per-
cent of watershed area) of skidroads and no best management practices applied dur-
ing or after harvesting (Reinhart and others 1963), and annual stream discharge was
similar to other clearcut watersheds on the Fernow (table 6). Likewise the absence of
best management practices in Kentucky (table 6) resulted in only slightly higher annual
water yields (~30 mm) than a nearby watershed that had the same cutting treatment and
application of best management practices (Arthur and others 1998). Coweeta water-
shed 28 had a high road density with 66 percent of basal area removed but lower yields
than watershed 37, which has a similar aspect and only 50 percent basal area removed
(Hewlett and Helvey 1970).

A major difference between watershed responses on Fernow and Coweeta is the
influence that aspect has on annual water yields after clearcutting and other inten-
sive treatments. Aspect at Fernow did not affect annual discharge; at Coweeta annual
increases from watersheds with a northerly aspect were almost always higher than those
with a southerly aspect (Hewlett and Hibbert 1961). Discharges from most south-facing
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clearcut catchments at Coweeta were similar to those from clearcut watersheds at
Fernow (table 6) and were typically 100 to 200 mm less than north-facing Coweeta
watersheds the first year or two after clearcutting. Complete reduction of the forest on
north-facing slopes yielded an average of 400 mm of discharge the first year following
harvest. Removing half of the basal area correspondingly reduced yields by about half
(200 mm) on Coweeta watershed 22 (Hewlett and Hibbert 1961). South-facing Coweeta
watershed 7 was the exception to the aspect differences. For unknown reasons, it had
first- and second-year increases that were similar to those of north-facing watersheds at
Coweeta (Swank and others 1982, 1988). Aspect responses could not be evaluated from
the Pennsylvania or Kentucky data because harvesting was not performed on multiple
aspects in either location.

The causes for the differences in runoff between north- and south-facing aspects at
Coweeta have not been definitively identified. Hewlett and Hibbert (1961) initially sug-
gested that they might be due at least partially to soil depth, watershed configuration,
and aquifer characteristics. However, a more likely reason is that substantially different
solar energy inputs affect north- and south-facing slopes (Douglass 1983). First-year
streamflow yield increases from the Appalachian Mountains are explained primarily
by basal area removed—positively related—and incoming energy—negatively related
(Douglass 1983, Douglass and Swank 1975). South-facing hillsides receive more
radiation year round than north-facing ones, so that changes in ET, and subsequently
discharge, after harvesting on the south-facing slopes may not be as dramatic as on
north-facing slopes. Sites in the Central Appalachian Mountains may not experience
aspect differences because the watersheds are not as steep and do not have as large ele-
vational ranges (Hibbert 1966), so all aspects may receive more similar energy inputs.

Aspect differences at Coweeta also influence the way that water-yield increases are
expressed seasonally. Clearcuts on north-facing watersheds tend to have their largest
quantitative augmentation of flow during the late dormant season—such as January to
April (Hewlett and Hibbert 1961)—because of the lag that results from the time needed
for these deep soils to recharge (Kovner 1956, Meginnis 1959). South-facing clear-
cut watersheds at Coweeta tend to express the majority of their water-yield increases
during the late growing season (Hewlett and Hibbert 1961) because reductions in ET
caused by harvesting elevate soil moisture, which subsequently becomes streamflow
(Swank and others 2001). Lower intensity treatments at Coweeta tend to display asso-
ciated water-yield increases during the growing season (Hewlett and Hibbert 1961),
but seasonal expression of flow is less consistent and predictable. Riparian clearing in
Coweeta watershed 6 created only small water-yield increases restricted to the growing
season (Dunford and Fletcher 1947); understory removal on watershed 19 produced
small increases distributed throughout the year (Johnson and Kovner 1956).

At both Leading Ridge and Fernow (table 6), water-yield increases during the first 1 to
3 years after clearcutting predominantly occur during the growing season (Kochenderfer
and others 1990, Lynch and others 1972, Reinhart and Trimble 1962, Reinhart and others
1963). Significant dormant season increases also can occur during those first years, but
the magnitude of increase is usually substantially less than during the growing season.
Typically growing season yields return to preclearcut levels after only 5 to 7 years at both
Leading Ridge and Fernow (table 6), but dormant season increases at Fernow tend to last
much longer (Kochenderfer and others 1990). For example, growing season yields for
Fernow watershed 3 returned to preharvest conditions in about 5 years, but dormant sea-
son yields remained elevated for all but 2 years during 18 years of postharvest monitoring
(Kochenderfer and others 1990). Delaying regrowth with herbicides following clearcut-
ting extended the duration of both growing and dormant season responses on Fernow
watersheds 6 and 7. On watershed 6 significant increases for both growing and dormant
seasons lasted about 20 years, reaching similar levels during both seasons 8 years after the
first-half clearcutting. On Fernow watershed 7, most of the growing season increase dis-
appeared after 10 years, but the dormant season increase lasted at least another 15 years
(Kochenderfer and others 1990).

Low-intensity thinnings on Fernow watersheds 2 and 5 had small but significant
effects on augmenting growing season flows, but these lasted only a year or two (table
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6). Even the second thinning on watershed 2 that removed only 12 percent of the
basal area increased growing and dormant season streamflow significantly for 2 years.
However, dormant season flow behavior became somewhat erratic in subsequent years,
so it is unknown if the changes from such a light thinning actually were attributable to
the treatment (Kochenderfer and others 1990).

Regardless of location and seasonality of streamflow increases, most measurable
increases in water yields occur during periods of low flow in the Appalachian Mountains
(Douglass and Swank 1975). Flow frequency curves show shifts in the position of the
curves in the low-to-moderate ranges of average daily flow after treatment compared
to preharvest conditions at Fernow, Coweeta, and Leading Ridge (Johnson and Kovner
1954, Johnson and Meginnis 1960, Lynch and others 1972, Patric and Reinhart 1971,
Reinhart and Trimble 1962), indicating these lower end flows occurred more frequently
after harvesting (table 7). Changes in high-end flows were much smaller or nonexistent.
For clearcut Coweeta watersheds 13 and 17, there were no significant shifts in the flow
frequency curves for flows >50 L/second/km? (Johnson and Meginnis 1960). Curve
positions for flows >55 L/second/km? were not shifted during either half or total water-
shed clearcutting and herbiciding on Fernow watersheds 6 or 7 (Patric and Reinhart
1971). Following riparian clearcutting and control of sprouting at Leading Ridge water-
shed 2, flow frequencies during growing and dormant seasons were not changed for
flows >8.7 L/second/km? (Lynch and others 1972). The actual changes in the volumes
associated with the low flows are each relatively small (table 6), but because these
flows occur so frequently, their accumulated totals over a year or a season are quite siz-
able and much larger than the small increases to moderate or higher flows. In general,
the higher intensity of vegetation removed, the larger the shift in the frequency curve
(Reinhart and Trimble 1962) for a given site.

Excluding clearcut watershed 3, table 7 shows that all of the other harvested Fernow
watersheds had much higher percentage increases of low flows than Coweeta—this is

Table 7. Flow frequency curve results for the Appalachian Mountains (refer to table 6 for watershed and treatment

descriptions)
Flow level
equaled or Average Volume
Location Time period exceeded? increase increase Reference
percent L/second/km?
Fernow Watershed 1 First 2 growing 84 1700 0.9 Reinhart and others 1963
seasons 50 500 4.9
16 132 22.3
Fernow Watershed 2 First 2 growing 84 200 0.7 Reinhart and others 1963°
seasons 50 221 3.4
16 84 15.7
Fernow Watershed 3 First 2 growing 84 20 0.1 Reinhart and others 1963°
seasons 50 33 0.3
16 0 0
Fernow Watershed 5 First 2 growing 84 100 0.4 Reinhart and others 1963°
seasons 50 38 1.4
16 20 6.5
Coweeta Watershed 13 First 7 years 84 62 7 Johnson and Kovner 1954,
50 41 8 Johnson and Meginnis 1960
16 17
Coweeta Watershed 17 First 7 years 84 124 Johnson and Kovner 1954
50 50
16 35

2 A flow level of 50 percent represents median flow; 84 percent represents the median flow plus one standard deviation; 16 percent
represents the median flow minus one standard deviation.
b\/olume data were determined from contemporary reconstruction of flow frequency curves presented in Reinhart and others (1963).
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true even for thinned Fernow watersheds 2 and 5, which were cut much less heavily
and treated less intensively than clearcut Coweeta watersheds 13 and 17. However,
the data are not fully comparable, as the Coweeta values represent average responses
over 7 years and the Fernow data are average responses over only the first two growing
seasons. Even with this longer “averaging time,” the median absolute increase from
Coweeta watershed 13 was about double that from the Fernow watersheds (table 7).
This is expected because of the lower absolute increases observed across the Fernow
compared to north-facing Coweeta watersheds.

Supplements to low flows can measurably decrease the number of low-flow or no-
flow days in Appalachian headwater channels (table 8). Streams on clearcut and her-
bicided Fernow watersheds 6 and 7 always dried up for at least a month each year
before deforestation; but when each was only half deforested, streamflow never
dropped <0.55 L/second/km?. When each was fully deforested, flows were always
>3.3 L/second/km? (Patric and Reinhart 1971). Clearcutting on Fernow watersheds 1
and 3 and thinning on Fernow watersheds 2 and 5 reduced the number of days that
streamflow was <0.55 L/second/km? (Troendle 1970). Discharge was doubled on clear-
cut Coweeta watershed 7 during low-flow months (Swank and others 2001). Cutting
only the riparian zone on Coweeta watershed 6 added 10 to 13 m? of extra water daily
to the stream during rainless days the first growing season after treatment and 4 to 8 m?
during the second growing season (Johnson and Kovner 1954). More intensive harvests
tend to result in a larger reduction in the number of low-flow days (Trimble and oth-
ers 1963) and greater loss of the diurnal fluctuations in streamflow that are typically
observed during low flows (Dunford and Fletcher 1947). A reduction in low-flow days
contributes to prolonging ground-water depletion rates during baseflow hydrographs,
at least for watersheds subject to intensive harvests (table 9). For example, clearcutting
Coweeta watershed 17 resulted in lengthening the time needed for flow to decrease
from 20 to 4.7 L/second/km? by 25 days (Johnson and Meginnis 1960).

Fewer years of stormflow data and analyses are available for the Appalachian
Mountains compared to annual and seasonal analyses. However, the available results

Table 8. Decreases in the number of days during which designated low-flow levels occurred following harvesting in the
Appalachian Mountains (refer to table 6 for watershed and treatment descriptions)

Decrease in number
of days during which

Location Flow level Time period low flow occurred Reference
L/second/km?

Leading Ridge Watershed 2 <7.34 Year 1 402 Lynch and others 1972
Year 2 5
Year 3 612
Year 4 462

Fernow Watershed 1 <3.67 Year 1 722 Reinhart and others 1963,
Year 2 382 Trimble and others 1963
Year 3 632
Year 4 392

Fernow Watershed 2 <3.67 Year 1 222 Reinhart and others 1963,
Year 2 472 Trimble and others 1963
Year 3 272

Fernow Watershed 3 <3.67 Year 1 212 Reinhart and others 1963,
Year 2 142 Trimble and others 1963

Fernow Watershed 5 <3.67 Year 1 5 Reinhart and others 1963,
Year 2 132 Reinhart and Trimble 1962,
Year 3 5 Trimble and others 1963

2 Indicates a statistically significant change at the alpha level used by the original authors. Unless otherwise indicated, values without an @
are nonsignificant.
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are consistent, showing that changes to most hydrograph components are small and
nonsignificant (tables 10 and 11). Even though clearcut Coweeta watersheds 13 and 17
had the largest annual augmentation of streamflow of any watersheds shown in table
6, neither experienced significant annual changes to peakflow rates or stormflow vol-
umes (table 10); thus, streamflow increases were almost entirely from baseflow (Kovner
1956). Coweeta watershed 37 had only a 7-percent increase in average annual peakflows
and an 11-percent increase in average annual stormflow for the 30 largest storms during
the first 4 years after clearcutting (Hewlett and Helvey 1970), so even more extreme
events were affected little. The largest increase in stormflow volume for a single storm
on watershed 37 was 25 percent (Hewlett and Helvey 1970). Generally changes to
stormflows at Coweeta only occur for larger storms, as the moisture storage associated
with the deep soils prohibits changes to stormflow volumes that are <25 mm (Hewlett
and Helvey 1970). Clearcut Coweeta watershed 7 had the most consistent responses
to larger precipitation events across all variables, although the increases to stormflow
components were fairly small (tables 10 and 11). The small magnitudes of the change
were attributable to the lack of disturbance to the soil surface during harvesting and low
road density resulting from preplanning (Swank and others 1982, 2001). The principal
changes to Coweeta watershed 7 hydrographs were to the recession limbs (Swank and
others 2001).

The largest percentage changes to peakflow and stormflow at Coweeta were on
watershed 28 (table 10), which was conventionally clearcut to remove 66 percent of
the basal area but had a high density of roads, to which these changes were attrib-
uted (Swank and others 1988). Clearcut Fernow watershed 1 also had a high density
of poorly located roads (Reinhart and others 1963), but only responses for the run-
off events that were in the top 23 percent of events were examined. For these high-
flow events, growing season peakflows increased 21 percent, and stormflows increased
24 percent; change was minimal annually and almost nonexistent during the dormant
season (table 10). Although changes to Fernow watershed 1 storm hydrographs were
not large, Reinhart (1964) observed sharp, short- duration peaks at the start of some
larger storm hydrographs. These first peaks were attributed to contributions of over-
land flow directly to the stream from the poor road layout and drainage from the road,
which was exacerbated by road interception of subsurface flows. Trimble and others
(1963) noted that the location and number of roads in a watershed can affect stormflow
responses, as roads can direct concentrated flow directly to stream channels. The higher
the road density and closer the roads are to streams, the more that hydrograph compo-
nents—including peakflow—can be expected to change. However, even with the pres-
ence of roads, total streamflow increases in Fernow watershed 1 primarily were caused
by decreased soil moisture deficiencies from harvesting, and road-induced changes
were small (Reinhart 1964).

The greatest absolute and percentage changes to stormflow occurred on Leading
Ridge watershed 2 (riparian clearcut) and on Fernow watersheds 3 (clearcut) and
6 (clearcut+herbicide). On each of these catchments, average peak discharge during
the growing season increased by >300 percent (table 10). Although the 300-percent

Table 9. Changes in depletion times during low flows following basal area reductions in the western North Carolina
highlands of the Appalachian Mountains (refer to table 6 for watershed and treatment descriptions)

Before clearcut After clearcut
Location Flow depletion Requirement for depletion to occur Resulting streamflow increase
L/second/km? —~  —eeemeeemeeeeeen number of days------=---=----- mm
Coweeta watershed 13 20to 6 65 82 10
Coweeta watershed 17 20t0 4.7 38 63 14
Coweeta watershed 19 14t09 12 27 3
Source: Johnson and Meginnis (1960).
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CHAPTER 11.

WATER YiELD AND HYDROLOGY

Table 11. Changes in hydrograph parameters following harvesting in the Appalachian Mountains (refer to table 10 for
information about changes to peakflow magnitudes and total stormflow volumes; refer to table 6 for watershed and treatment

descriptions)

Time Time to Recession  Stormflow  Stormflow  Stormflow
Location period peak time duration  before peak after peak Initial flow Reference
percent percent
Coweeta Years1 O 10 percent? 5b 60 11 14 percent? Swank and
Watershed 72 to 4 others
2001
Coweeta Years1 NS NS NS Hewlett and
Watershed to 4 Helvey
37 1970,
Swank
and others
1988
Leading Ridge Years1 —3during 4.2 hr (33 2.54 mm¢d Lynch and
Watershed 2 to 3.5¢  both percent)? (12 percent) others
growing growing annually; 1972
and season; 5.08 mm?
dormant no (128 percent)
seasons  change growing
dormant season;
season 1 percent?
dormant
season

NS = nonsignificant change indicated, but no value was given.

@ For precipitation =2 cm.

b Indicates a statistically significant change at the alpha level used by the original authors. Unless otherwise indicated, values without a © are

nonsignificant.

¢ April through November events with stormflow >0.0.25 cm; annual period extends from April through November; growing season includes
May through October; dormant season includes only April and November.
9 Significance/nonsignificance information was not provided for this result.
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increase on Fernow watershed 3 was significant, it represented only moderate peakflow
increases (Patric 1980). Growing season stormflow on Leading Ridge watershed 2 also
increased by 171 percent but the increases were associated with storms that produced
relatively low initial flow rates (Lynch and others 1972).

Activities applicable to fuels reduction in the Appalachian Mountains have pri-
marily involved mechanical actions, and few investigations have examined the hydro-
logic effects of controlled fires. This may be partially attributable to the fact that the
Appalachian Mountains are fairly moist (Swift and others 1993), supporting ground
conditions that make the severity of fires relatively light even when the burn is high
intensity (Van Lear and Kapeluck 1989). After commercial clearcutting—followed
by application of high-intensity burning of standing residuals on one plot and felled
residuals on another—in South Carolina, soil infiltration rate was not different from the
unburned clearcut plots (179 cm/hour): 183 cm/hour for the standing-residual plot and
157 cm/hour for the felled-residual plot (Van Lear and Danielovich 1988). Even though
the burn was intense, a substantial amount of organic matter remained on the surface,
and soil macropores in the deep soils were not changed by the burning; thus, soil infil-
tration rates remained high (Van Lear and Danielovich 1988) and soils hydrophobicity
did not develop (Van Lear and Kapeluck 1989).

Swift and others (1993) also found that soils did not become hydrophobic after a
low-intensity fire that followed felling (both overstory and understory) and burning on
a poor-quality site in western North Carolina. Humus as well as some charred litter was
present over much of the area after burning, so relatively little soil became exposed.
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Consequently, although infiltration rates were not measured, they apparently were not
changed much as overland flow showed no evidence of increasing. The lack of change
to soil infiltration allowed soil moisture levels to increase in late summer immediately
after harvesting in the top 60 cm of soil and even somewhat farther in autumn after
burning. Soil moisture increases were present consistently during the second growing
season in the top 30 cm of soil, but they were only about half what they had been the
previous summer and autumn. Most of the soil moisture increases were attributed to
reductions in transpiration from the combination of cutting and burning, and augmen-
tations were greatest in the headwaters of ephemeral channels, making it likely that
stormflow increased (Swift and others 1993).

Piedmont

The history of the Piedmont includes widespread agricultural activities that have
resulted in extensive and often severe erosion. The current expressions of this past ero-
sion are shallow soils, incised stream channels, and gullies that also serve as channels
for runoff (Hewlett 1979, Van Lear and others 1985). Shallow soils and denser and
incised channel networks reduce the potential for soil-moisture storage by increasing
the potential for soil moisture to reach channels, and allow channels to intersect water
tables at deeper levels (Hewlett 1979). These characteristics mean that streamflow in
Piedmont watersheds can be highly responsive to even moderate changes in the other
variables of the water balance equation (equation 1).

Hewlett (1979) found that clearcutting 32 ha of loblolly pine (Pinus taeda) in
the Georgia Piedmont followed by double roller chopping increased water yields by
254 mm the first year after harvest and site preparation, and 126 mm the second year
(table 12). Similarly, after harvesting and site preparation using a KG blade and disc-
ing in North Carolina, average runoff increased 345 mm the first year and >200 mm in
both the second and third years (table 12). Replanting with grass following those same
treatments apparently influenced infiltration and ET substantially, because runoff was
6 to 7.5 times less during those same 3 years on planted plots (Douglass and Goodwin
1980). Employing shearing without discing resulted in runoff values that were between
the other two treatments, but generally closer to the lower end values for planted grass.

For considerably less intensive, short-term treatments, annual water yields do not
change. In the upper Piedmont of South Carolina, water yields did not change when
one low-intensity controlled fire was applied annually for 3 years in each of three pine
stands before harvesting (Van Lear and others 1985). However, harvesting coupled with
a high-severity burn in Georgia is believed to have increased runoff, even though it
was not measured directly (Van Lear and Kapeluck 1989). After treatment the 0.35-ha
watershed developed a network of gullies, which acted as channels. These apparently
were intercepting and conveying significant amounts of soil water or local ground
water or both, because the gully sides were eroding—in part, because of flowing water.
The gullies were expected to continue to grow in length and width for several years.
Although infiltration also was not measured, the authors discounted the probability that
a hydrophobic layer had formed based on other fire/soil research results.

By contrast, very temporary hydrophobic conditions—only a few minutes in
duration—were observed during simulated rain applications to plots that were cut
and burned (Shahlaee and others 1991). The hydrophobicity was present only when
unburned organic material at the soil surface was dry. However, elevated runoff attribut-
able to hydrophobicity was observed only on the steepest plots (30 percent slope) and
for only the higher of the two rainfall application rates (~102 mm/hour). Plots with
10- and 20-percent slopes also displayed hydrophobicity, but the runoff from the same
rain intensity during the initial period of water repellency was much less. Average depth
of runoff across all slopes for a 30-minute period averaged 1.11 mm for high-intensity
applications and only 0.78 mm for low-intensity applications (71 mm/hour), and the
maximum runoff for any plot was 5.97 mm over 30 minutes. So even with initial hydro-
phobic conditions, actual runoff volumes were low because the forest floor was not
fully consumed by burning.
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Table 12. Changes to annual stream discharge following site preparation and harvesting in the Piedmont

Time Discharge
Location Area, aspect, soils Treatment description period change Reference
mm
North 0.25 10 0.75 ha, aspect  Site preparation using KG Year 1 345 Douglass and Goodwin
Carolina @ not given, sandy clay blade shearing, windrowing, Year 2 242 1980
loams, sandy clays, burning, and disking; Year 3 223
clay loams 4 replicated watersheds
0.43t0 0.62 ha, aspect Site preparation using KG Year 1 70
not given, sandy blade shearing, windrowing, Year 2 142
clays, sandy clay burning; 4 replicated Year 3 71
loams, clay loams, watersheds
sandy loams
0.33t0 0.53 ha, aspect Site preparation using KG Year 1 46
not given, clay, sandy  blade shearing, windrowing, Year 2 40
clay loams burning, discing, planting Year 3 35
to grass; 4 replicated
watersheds
Georgia @ 32.4 ha, southwest, Harvest, roller chop twice Year 1 254 Hewlett 1979, Hewlett
loam overlaying Year 2 126 and others 1984

sandy loam

2 Significance/nonsignificance information was not provided for these sites.

The degree of disturbance similarly influences the extent to which storm hydro-
graphs are affected by treatments. Clearcutting alone increased peakflow by 55 to
60 percent and increased stormflow significantly in South Carolina, but blading the
slash increased average peak discharge by 150 percent and doubled average storm-
flow (table 13). Stormflow volumes before and after the peak increased, but time to
peak and event length did not change. Clearcutting with road construction, roller chop-
ping, and machine planting increased stormflow by only 27 percent, but peakflows
<1.1 m3/second/km? increased by 100 percent (Hewlett 1979). Peakflow changes
were attributed largely to channel extension during storms by reactivation of old gul-
lies and rills (Hewlett and Doss 1984). Peakflows in wet antecedent conditions were
most susceptible to change, increasing as much as 35 to 50 percent during large events
(Hewlett 1979), whereas stormflows in moderate-to-dry antecedent conditions were

Table 13. Changes in stormflow volumes and peakflow magnitudes to harvesting treatments in the South Carolina Piedmont

(Douglass and others 1983)

Hydrologic change
Time Mean peak Mean

Area, aspect, soils Treatment description period discharge stormflow Other parameters

months percent:

0.65 and 1.25 ha, Two watersheds with 3 First 21 55to 60 2 Increased Nonsignificant
aspect not given, consecutive years of significantly change in time
sandy loam control burns, then clearcut to peakflow and
overlaying clay pine, slash left in place event length

1.1 ha, aspect not One watershed with 3 First 21 1502 100 @

given, sandy loam
overlaying clay

consecutive years of
control burns, then clearcut
pine, slash bladed off with
bulldozer

@ Indicates a statistically significant change at the alpha level used by the original authors.
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most commonly changed (Hewlett and Doss 1984). The percentage of precipitation that
became stormflow during the first year after clearcutting, roller chopping, and machine
planting was 31 percent, compared to 22 percent during pretreatment (Hewlett and Doss
1984). On four 1-ha watersheds in the upper Piedmont of northern Georgia, clearcutting
overstory vegetation after ground herbiciding approximately doubled average storm-
flow for 2.5 years (Neary and others 1986). Controlled fires applied in the absence of
other disturbances or treatments have had little effect on hydrograph responses in South
Carolina. Three consecutive years of controlled burning did not change average peak
discharges or stormflow (Douglass and others 1983).

Coastal Plain

The Coastal Plain covers a large area, with a fairly broad range of precipitation and
temperature regimes. The Southeastern States tend to have more rain in the growing sea-
son than in the dormant season, and the Midsouth States (Arkansas, Texas, Mississippi,
and Louisiana) generally are wetter in the dormant season and drier in the growing
season (Langdon and Trousdell 1978). Hydrology is expressed in terms of water-table
levels or surface flows or both. Water-table measurements are most common in the flat-
ter terrain of the lowlands (Grace and others 2003), although surface flows also can be
present—particularly in artificial structures, such as drainage ditches, dikes, and canals
with single outlets. Water is present and can be measured using weirs and other devices
in these ditches when water tables rise and intersect the bottoms of these structures
(Riekerk 1983a). In these situations, outflows are very strongly dependent on precipita-
tion events; so total annual water yields may be close approximations of total annual
stormflow. Streamflow, in its traditional sense, primarily occurs in some areas of the
Upper Coastal Plain in which more topographic relief exists.

Increases in water-table levels are the most common hydrologic responses reported
following harvesting of the forests growing on soils with shallow water tables (Aust and
Lea 1992, Bliss and Comerford 2002, Lockaby and others 1997a, Sun and others 2001,
Trousdell and Hoover 1955, Williams and Lipscomb 1981, Van Lear and Douglass
1982, Xu and others 2000). Although typically short lived (Lockaby and others 1997c;
Xu and others 2000, 2002), average annual water-table increases of at least 100 mm can
be expected during the first 2 to 3 years after harvesting or longer (table 14). They are
short lived (table 14) because revegetation is very rapid in these warm, long growing
seasons (Beasely and others 1986) and reductions in ET control water-table fluctuations
(Amatya and others 2006b, Aust and Lea 1992, Riekerk 1989, Xu and others 1999). ET
is the dominant output term in the hydrologic budget throughout most Coastal Plain for-
ests, making up 60 to 80 percent of the annual hydrologic budget (Amatya and others
2002, 1996, 1997; Chescheir and others 2003; Skaggs and others 1991; Sun and others
1998). As a result, water-table augmentation from harvesting most often is expressed
during the growing season when changes to ET would be most marked (Grace and oth-
ers 2006; Lockaby and others 1997c; Xu and others 1999, 2000).

Even though ET reductions are responsible for creating postharvest water-table
increases, antecedent water-table levels and precipitation characteristics are the most
important factors in determining the amount of change that ultimately occurs (Langdon
and Trousdell 1978, Williams and Lipscomb 1981). Water-table increases are highest and
most easily detectable during dry years or periods when they have space to rise in the soil
column (Amatya and others 2006b, Langdon and Trousdell 1978, Riekerk 1989). In four
studies in the Lower Coastal Plain of South Carolina in which longleaf (Pinus palustris)
or loblolly pine and mixed hardwoods were harvested, Williams and Lipscomb (1981)
reported that the longleaf and loblolly dominated plots had similar average first-year
water-table rises (table 14) after the lightest cuts (18 percent of basal area) and the heavi-
est cuts (67 percent of basal area). Not much water-table rise was detected because the
heavy cut was made when the water table was near the ground surface. Thus, only small
rises could occur before the water reached the soil surface and was no longer ground
water (Riekerk 1983a, Williams and Lipscomb 1981). The presence of more wet days in
winter and early spring of one year resulted in only half the water-table increase (61 mm),
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Table 14. Average changes to water table elevations following harvesting or harvesting plus site preparation in the Coastal

Plain
Average changes to
Area, aspect water tables
Location soils Treatment description Time period Annual Growing Reference
mm
Lower Coastal  Area not Dry weather harvest, First year after cut 140 Xu and others
Plain South given, flat no bedding, plant 1.75 years after cut 430 2000
Carolina? topography, 2.75 years aftercut 280
sandy 3.75 years aftercut 140
loams over et weather harvest, First year aftercut 210
sandy no bedding, plant 1.75 years after cut 450
clays 2.75 years aftercut 360
3.75 years aftercut 210
Dry weather harvest, After bedding 280
conventional bedding, Year 1 250
plant Year 2 130
Wet weather harvest, After bedding 270
conventional bedding, Year 1 280
plant Year 2 160
Wet weather After bedding 270
harvest, mole Year 1 300
plowing+conventional  Year 2 180
bedding, plant
Lower Coastal  Area not Seed tree cut in pine Year 1 100372 119+430 Williams and
Plain South given, flat stand Lipscomb
Carolina? topography, 67 percent basal area 1981
fine sands removed
Selection cut in pine Year 1 146700  155x116°
stand
18 percent basal area
removed
Selection cut in pine Year 1 226+46°  171x91b
stand
56.9 percent basal area
removed
Commercial clearcut Year 1 323+61°  219+88°
of pine and mixed
hardwoods
41 percent basal area
removed
Coastal Plain 25 ha, flat Clearcut pine, site Year 1 74 Amatya and
North topography, preparation, bedding  Year 2 107 others 2006b
Carolina2 fine sandy Year 3 146
loam Year 4 30
Year 5 22
Year 6 -8
Year 7 40
Year 8 -14
Year 9 -50
Year 10 —42

2 Significance/nonsignificance information was not provided for these sites.
b Plus one standard deviation.
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compared to drier conditions of the same time period a year earlier (133 cm) in a har-
vested and site-prepared watershed in North Carolina (Amatya and others 2006b).

Small-to-moderate water-table rises can result from soil damage, such as compac-
tion and/or rutting by skidder operation in wet conditions, although the changes are usu-
ally short lived (Aust and others 1993, 1995; Blanton and others 1998; Grace and others
2007; Perison and others 1997; Xu and others 1999). The average water-table increase
(table 14) during the year after harvesting in wet conditions was 210 mm, compared to
only 140 mm for dry weather harvesting; but most of the increase was confined to the
growing season (Xu and others 2000). The mechanism for water-table increases is typi-
cally an increase in bulk density, particularly through losses of larger soil pores, which
reduces saturated hydraulic conductivities and drainable porosities and disrupts lateral
or vertical subsurface drainage (Grace and others 2007, Skaggs and others 2006, Sun
and others 2004). Thinning alone reduced saturated hydraulic conductivities from 100
to 32 cm/hour in an organic soil in North Carolina (Grace and others 2007). Because
water drainage or movement is retarded, water-table levels remain elevated (Grace and
others 2007, Skaggs and others 2006, Sun and others 2004), at least within the local
area of soil damage (Aust and others 1993, 1995). Aust and others (1995) and Xu and
others (2000) suggested that better drained soils may be more vulnerable to soil damage
than poorly drained soils; so that changes to water-table levels may be much larger on
damaged, better drained soils than on damaged, poorly drained soils. However, better
drained soils typically have longer periods of drier conditions and shallower damage,
making any needed mitigation easier to accomplish (Aust and others 1995).

Some forest management practices have resulted in lowering water-table levels. Both
conventional bedding and mole-plow bedding site preparation in poorly drained soils in
South Carolina reduced water-table depths by nearly equal amounts (~150 to 180 mm) for
about 2 years following site preparation, compared to nonbedded harvested sites (Xu and
others 2000). There also was little difference in effects to water-table levels or duration
of effects whether the initial harvesting occurred during wet or dry conditions. Lockaby
and others (1994, 1997b) observed similar water-table reductions from clearcutting bot-
tomland hardwoods in the Upper Coastal Plain of Alabama using two types of systems—
helicopter and feller buncher-skidder. Water-table elevations were significantly lower (for
example, ~0.2 m) beneath harvest blocks than outside the harvest boundaries in July; but
data were not separated by harvest type, so it is impossible to determine if soil disturbance
from the feller buncher-skidder operation influenced the water-table response. In this
study, water-table lowering was attributed to increased evaporation caused by increased
wind speeds or higher temperatures (or both) in cut areas, even though only modest soil
temperature increases of 2 °C to 4 °C have been reported in clearcuts elsewhere in the
Coastal Plain (Aust and Lea 1991, Messina and others 1997).

Outflow and streamflow increases after harvesting in the Coastal Plain are related to
the amount of forest vegetation harvested (Beasley and others 2000), again because these
increases are largely controlled by reductions in ET (Amatya and others 2006b, Riekerk
1989, Sun and others 2000). Neary and others (1982) found that first-year water-yield
increases in the Coastal Plain typically were <0.4 mm for every 1 percent of basal area
removed. However, at least some of the sites included in that analysis also involved site
preparation, which may affect measured changes. It often is difficult to separate harvest-
ing and site preparation effects, especially in the Coastal Plain, because very few har-
vest-only studies have been conducted. Summer and others (2006) noted that streamflow
increased significantly after clearcutting and thinning of the streamside zone in two water-
sheds in southwestern Georgia, but the amount of increases were not specified. Studies in
which harvesting and site preparation are separated sufficiently in time provide evidence
that water-yield increases originate primarily from harvesting. For example, Swindel and
others (1981) did not observe a secondary increase in outflows after intensive site prepara-
tion following mechanized logging. But because harvest-only studies are lacking for the
Coastal Plain, it is probably more correct to state that changes in discharges are related to
the level of devegetation and site disturbance (Riekerk 1983b).

Clearcutting followed by intensive mechanical site preparation that included shear-
ing on three watersheds in southeastern Arkansas increased first-year water yields by
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122 mm (table 15)—a thirteenfold increase (Beasley and Granillo 1988, Grace 2005).
Outflow increases did not extend beyond that first year (Beasley and Granillo 1988).
Much less intensive selection harvests and deadening of the residual hardwoods on
three other watersheds increased average annual water yields fivefold, but the abso-
lute increase was only about 41 mm, which was not significant (Beasley and Granillo
1988, Grace and others 2003). Beasley and others (2000) reported similar first-year
increases (120 mm) from harvesting and shearing in eastern Texas; harvesting with
roller chopping at the same Texas site resulted in outflows, 57 mm, that were only
slightly larger than outflows from harvesting and deadening in Arkansas (41 mm) (table
15). In an analysis of harvesting followed by two levels of site preparation—minimum
disturbance (clearcutting pine, roller chopping, bedding, and planting) and maximum
disturbance (clearcutting pine, stump removal, burning, windrowing, harrowing, bed-
ding, and planting)—in Florida, the maximum intensity treatment resulted in significant

Table 15. Changes to annual outflow or stream discharge following harvesting and site preparation in the Coastal Plain

Area, aspect, Time Outflow or
Location soils Treatment description period discharge change Reference
mm

Lower Coastal 67 ha, flat 33-ha clearcut pine, chop, bed, Year 1 30 Riekerk 1989
Plain, topography, plant (low-disturbance level) Year 2 40
Florida sands Year 3 0

overlaying clay Year 4 -1002
Year 5 -1802
Year 6 30
Year 7 -1302
49 ha, flat 36-ha clearcut pine, stump Year 1 1502 (150 percent)
topography, removal, burn, windrow, Year 2 -60
sands harrow, bed, plant (high- Year 3 30
overlaying clay disturbance level) Year 4 -1302
Year 5 80
Year 6 1002
Year 7 1302

West Gulf 2.3t104.0 ha, flat  Three replicates, clearcut mixed Year 1 1222 Beasley and
Coastal topography, hardwoods and pine, shearing,  Year 2 137 Granillo
Plain, silt loams, and windrowing, burning, hand Year 3 153 1988
Arkansas clays plant (high-disturbance level) Year 4 120

Three replicates, selective Year 1 41
harvest of pine, harvest of Year 2 28
all commercial hardwoods, Year 3 -30
herbiciding all remaining Year 4 -36
hardwoods, plant (low-
disturbance level)

Coastal Plain, 25 ha, flat Clearcut pine, site preparation, Year 1 91 (99 percent) Amatya and
North topography, bedding Year 2 260 (38 percent) others
Carolina® fine sandy Year 3 207 (54 percent) 2006b

loam Year 4 98 (13 percent
Year 5 56 (10 percent)
Year 6 —31 (-4 percent)
Year 7 8 (18 percent)
Year 8 21 (5 percent)
Year 9 116 (9 percent)
Year 10 —2 (0.5 percent)

2 Indicates a statistically significant change at the alpha level used by the original authors. Unless otherwise indicated, values without an @

are nonsignificant.

b Significance/nonsignificance information was not provided for this site.
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first-year outflow increases of 150 mm (150 percent) compared to a nonsignificant
30-mm increase (23 percent) from the minimum intensity treatment (table 15). The
maximum treatment left almost no residual vegetation, but the minimum left some
intact vegetation and allowed sprouting (Riekerk 1983b). Overall, increases to first-year
outflows for the maximum-disturbance watershed were exhibited soon after treatment
was completed, and they were well distributed over all seasons and weather conditions.
Subsequent changes to outflows from the maximum-disturbance watershed diminished
in the second year (Riekerk 1983a, 1983b). By contrast, most of the first-year increase
in outflows from the minimum-disturbance watershed was primarily from precipitation
during one wet month; other increases that contributed to the first-year augmentation
were small, intermittent, and strongly dependent on precipitation and season (Swindel
and others 1981, 1982). Lebo and Herrmann (1998) reported that increases in outflows
in several drained watersheds in North Carolina lasted only about a year after site prep-
aration—shearing, burning, and bedding—applied within a year of clearcutting the pine
overstory. The outflow increases were seasonal—mostly during the summer. The larg-
est summer increases ranged from 70 to 110 mm (56 to 95 percent) but still repre-
sented only about 33 percent of precipitation totals for the same time period. Amatya
and others (2006b) reported longer lived outflow increases from harvesting followed by
site preparation and bedding activities in coastal North Carolina. Increased outflow in a
drained watershed was measurable for 4 to 5 years (table 15) until planted regeneration
sufficiently reestablished ET rates, which reduced soil moisture storage.

Prescribed burning, regardless of whether it is done before or after harvesting, is
the one site-preparation technique that generally has little or no effect on surface flows.
One reason may be that controlled burns may not completely combust the organic layer,
so soil infiltration rates are retained (Mohering and others 1966, Shahlaee and others
1991). Burning 20 percent of a watershed in the Santee Experimental Forest in South
Carolina did not increase streamflow (Amatya and others 2006a). Burning an additional
60 percent of the watershed over the next 3 years also did not increase streamflow. A
later prescribed fire covering 84 percent of the watershed was followed by an increase
in outflow of 64 percent in the first year and 70 percent in the second year after burn-
ing, suggesting a delayed increase in flow from the burn. However, this burn followed
salvage harvesting after Hurricane Hugo and understory mowing, so some of the effect
may have been caused by the combination of reduced ET from burning understory veg-
etation and those previous disturbances rather than just the fire (Amatya and others
2006a). Even long-term applications of burning have had limited effects on watershed
hydrology. Neither the time required for surface runoff to begin nor the soil infiltration
capacity was changed by 20 years of biennial burning on sandy loam plots, or by bien-
nial burning for 10 years, or annual burning for 10 years in silt loams plots supporting
longleaf pine (Dobrowolski and others 1992).

Augmentation of streamflow and outflow volumes that result from harvesting and
site preparation can increase the number of days in which flow is present in nonpe-
rennial systems. In a 23-ha hardwood-dominated clearcut in North Carolina, flow
began 2 weeks earlier than in an adjacent control, and the duration of surface flow was
extended (Grace and others 2003). Over the 16-month period after clearcutting, the
number of days during which streamflow occurred (190 days) was nearly double that
of the control (99 days). Little analysis of flow frequencies has been done in the South
because surface flows tend to be ephemeral or intermittent at best, and typically storm
driven. However, examination of flow frequencies from a study of harvesting plus max-
imum site preparation (Riekerk 1983b) showed that the resulting water-yield increases,
which were only 2.54 mm of daily flow, came primarily from intermediate-sized storms
that occurred about 2 percent of the time.

Like overall water yields, storm hydrograph components also are affected differentially
by various combinations of harvesting and site-preparation operations. In flatter portions
of the Coastal Plain, operations that involved clearcutting, shearing, and windrowing had
larger increases in stormflow and peakflow compared to other clearcutting and site-prep-
aration techniques (table 16). In eastern Texas, the first-year increase was 49 L/second
for peakflow and 146 mm for stormflow (Blackburn and others 1986), compared to
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14 L/second for peakflow and 125 mm for stormflow in southeastern Arkansas (Beasley
and Granillo 1983, 1988). Peakflows and stormflow volumes remained somewhat ele-
vated for several more years, but these later year increases typically were much less than
the first-year increases (table 16). Although the shearing component of site preparation
apparently was important to increasing annual yields, windrowing was the most impor-
tant variable related to the changes in peakflow when windrows were oriented toward the
stream (Swindel and others 1983). Presumably the windrows directed surface runoff to
the drainages (Riekerk 1989).

By contrast, in steep Coastal Plain terrain (30 to 50 percent slope) various site-
preparation techniques produced minimal differences in stormflow (Beasley 1979).
Regardless of whether the site preparation involved brush chopping, shearing and wind-
rowing, or bedding on the contour, first-year average increases in stormflow were well
over 400 mm, and even second-year values in steep terrain remained above first-year
increases in flat terrain (table 16). Topographic influences controlled storm runoff and
overrode any effects of site preparation (Beasley 1979).

Herbiciding to kill the overstory in the Upper Coastal Plain in Mississippi (Ursic
1970, 1982) had larger effects on peakflow the first 3 years than did harvests with inten-
sive site preparation (Beasley and Granillo 1983, 1988, Blackburn and others 1986;
table 16). However, the watersheds on which the herbicides were applied were very
small (each ~0.86 ha), and small watersheds have less moisture storage capacity, par-
ticularly if the soils are shallow; this can result in large responses to a given distur-
bance (Douglass and others 1983, Van Lear and others 1985). Where clearcutting was
followed by herbiciding on 7.9- and 8.5-ha watersheds, the peakflow and stormflow
responses were small or were (most often) less than predicted (Wynn and others 2000),
particularly from the combination of herbiciding and burning (table 16).

Regardless of location, increases in stormflow translate to increases in the percent-
age of precipitation that becomes stormflow. In flat Coastal Plain areas, 11 to 12 percent
of precipitation became stormflow after clearcutting plus shearing, compared to 5 to
6 percent after clearcutting with roller chopping and selective harvesting with herbicid-
ing (Beasley and Granillo 1983, Blackburn and others 1986). In steeper Coastal Plain
terrain, 33 to 37 percent of precipitation became stormflow during the first year after
harvesting with various mechanical site preparation techniques, and second-year val-
ues ranged from 19 to 28 percent (Beasley 1979). In the absence of treatment in all of
these Coastal Plain watersheds, only 1 to 3 percent of precipitation became stormflow
(Beasley 1979, Beasley and Granillo 1983, Blackburn and others 1986).

Comparisons among Physiographic Areas
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Forest hydrology research related to stream responses from harvesting has been
ongoing for at least a half century in parts of the Eastern United States (Ice and Stednick
2004). By contrast, investigations into how wetland water tables are affected by harvest-
ing or similar activities are relatively new, so much less information has been compiled
from wetland-dominated watersheds (Shepard and others 1993). One of the oldest wet-
land studies focusing on harvesting effects on water-table levels in the Eastern United
States is from the Marcell Experimental Forest in northern Minnesota (Verry 1981).
Studies of wet, flatlands in the South are much more recent—rarely present before the
1980s and increasing markedly beginning in the 1990s (Sun and others 2001).

Even with these vastly different amounts of available information, one character-
istic common to both wetland and stream systems is that augmentation of water-table
levels and water yields occurs primarily because ET losses from the watershed have
decreased. Because forest ET is greatest during the growing season, hydrologic changes
caused by reducing vegetation generally are expressed during the growing season.
However, changes to streamflow or water-table levels may not be measurable during
the growing season if soil moisture deficits are large due to dry antecedent conditions.
Most precipitation inputs will go toward fulfilling soil moisture storage needs before
water is released to aquifers or streamwater. Conversely, if soil moisture is very high in
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the growing season and precipitation remains above normal, water yields or water-table
levels on harvested and unharvested sites may not differ much, and treatment effects
may be undetectable.

Hydrologic changes from treating only a small percentage of the vegetation on a
watershed are more difficult to detect than from larger reductions. Overstory vegetation
treatments also typically result in larger hydrologic changes than understory removals,
probably because the higher leaf area indexes of overstory trees promote faster tran-
spiration and more interception of water. But when understory vegetation comprises a
substantial percentage of the basal area removed (Johnson and Kovner 1956, Meginnis
1959), hydrologic changes are observable, although they tend to be much smaller and
shorter lived than those occurring with heavy or complete reductions in overstory veg-
etation. Overall, literature on eastern landscapes most commonly is focused on more
intensive harvest and soil disturbance practices, which have the most potential for creat-
ing the most extreme hydrologic changes. The vastly larger number of hydrologic stud-
ies involving clearcutting or clearcutting+site preparation makes these the most useful
for comparing responses across landscapes.

Although data from the North Central States are limited (table 2), they suggest that
water-table elevations increase much less in response to harvesting than in the Coastal
Plain (table 14); although in the Coastal Plain, additional disturbances associated with
site preparation often accompany harvesting. The difference is attributable to the higher
ET rates in the Coastal Plain. Net radiation is low in northern latitudes because cold
soils act as sinks for heat. Because ET is dependent on net radiation, transpiration rates
are lower in the North (Verry 1997), which contributes to smaller water-table changes
from harvesting. ET from peatlands in the Marcell Experimental Forest averaged
63 percent (50.5 cm) of precipitation (Verry and Timmons 1982), compared to as much
as 60 to 80 percent in the Coastal Plain, and overall rainfall levels tended to be higher
in the Coastal Plain (Amatya and others 2002, 1996, 1997; Chescheir and others 2003;
Skaggs and others 1991; Sun and others 1998).

In the South, when water-table responses were measured, harvesting almost always
led to an increase in water-table elevations. Lockaby and others (1994, 1997b) and Xu
and others (2000) were the exceptions to this finding. They reported decreases in water-
table elevations in the Coastal Plain, which they attributed to increasing wind exposure
and ground temperatures after harvesting. In wetlands of the North Central States, Verry
(1981) reported similar decreases in water tables during dry years following harvesting,
which was attributed to higher evaporation from increased wind exposure and solar
radiation and elevated transpiration by understory vegetation. In wet years, water-table
levels could increase because higher precipitation inputs offset any changes in these
other losses.

Aspect played a major role in affecting runoff from harvesting only at the Coweeta
studies in the Southern Appalachian Mountains. In general, discharges from northern
aspects following clearcutting exceeded those found elsewhere in the Eastern United
States. However, despite the colder climate and lower ET rates (450 mm) in the
Northeastern States (Likens and Bormann 1995) compared to 704 mm in the Southern
Appalachian Mountains (Kovner 1957), runoff from whole-tree harvesting (table
3) rivaled some of the more moderate increases associated with northern aspects at
Coweeta (table 6). Annual discharges after clearcutting from south-facing watersheds
in the southern mountains were similar to those from clearcutting watersheds in the
central mountains and clearcutting uplands in the North Central States (tables 6 and 2).
Northeastern responses were similar to these levels (tables 2 and 6) only when partial
cutting was employed (table 3).

Annual discharges from clearcutting and site preparation in the Ozark Mountains
and Ouachita Plateau(which used stormflow totals because the monitored streams are
ephemeral) are comparable to those from the Central Appalachian Mountains, south-
facing slopes in the Southern Appalachian Mountains, and the North Central States
(tables 2, 5, and 6). However, because streamflow comes as stormflow in this area, the
increases are expressed during much shorter periods than in the Appalachian Mountains
and elsewhere, where the dominant expression of harvest effects is during growing
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season baseflow. That harvesting effects are expressed over vastly different time periods
and during different flow regimes is evident in the magnitude of stormflow responses
(table 5) compared to those for the Appalachian Mountains (table 10). Note that the
watersheds treated in Ozark and Ouachita studies tend to be much smaller than those
elsewhere in mountainous areas; thus, although depth (mm) is comparable across sites,
the total annual runoff volumes (L) from the Ozark Mountains and Ouachita Plateau are
much smaller.

In the few available Piedmont studies that involved site preparation following
clearcutting, annual discharge varied tremendously (table 12). Runoff ranged from val-
ues similar to high-end values in the Southern Appalachian Mountains to low-end val-
ues reported elsewhere in the Central Appalachian Mountains (table 6). By comparison,
the Piedmont is generally more susceptible to streamflow changes from disturbances
than the Coastal Plain, even if the disturbance is more extensive in the Coastal Plain.
For example, harvesting without site preparation in the Piedmont resulted in first-year
flow increases (table 12) that exceeded those with even the most intensive site prepara-
tion in the Coastal Plain (table 14). And even though roller chopping is considered less
disturbing to a site than shearing (Blackburn and others 1986), first-year increases in
water yield in the Piedmont (table 12) were substantially more than those associated
with clearcutting and shearing in the Coastal Plain (table 14). The more deeply incised/
gullied channels and thinner eroded soils of the Piedmont account for these differences
(Hewlett 1979) and probably explain much of the hydrologic variability observed after
harvesting across various sites. The contrasting responses between the Coastal Plain
and Piedmont provide good examples of how secondary factors—such as physical
channel characteristics and land management practices—interact with the primary driv-
ers of hydrologic responses (precipitation, antecedent soil moisture conditions, ET, land
cover, and topography) in the Eastern United States to influence outflow and streamflow
responses (Amatya and others 2006a, Douglass and others 1983, Grace 2005, Miwa
and others 2003, Riekerk 1983b, Young and Klawitter 1968).

Application to Fuel-Reduction Practices
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The vast majority of literature reviewed in this chapter involves activities in which
fuel sources were reduced for purposes other than reduction of hazardous fuels for
wildfire suppression. However, the results still are applicable to fuel reductions because
hydrologic responses are a result of on-the-ground activities, not the purpose of the
activities. As noted previously, the majority of available studies have involved harvest-
ing intensities that far exceed what would be done during typical fuel management in
forests, with the exception of large-scale salvage harvests. If harvesting follows soon
after the event that led to salvage logging, the total change in annual, seasonal, and/
or storm hydrology will be similar to what would be expected from clearcutting. If
salvage logging is done in stands where much of the overstory is already dead, most
of the hydrologic changes will be associated with the decline, not the removal of that
dead, standing fuel (Douglass and Van Lear 1983, Van Lear and others 1985). Overstory
removal will reduce only the interception component of ET, which has been reported to
range between 10 and 26 percent of annual precipitation in eastern landscapes, depend-
ing on species and stand age (Helvey 1967, Lull and Reinhart 1966, Swank and oth-
ers 1972). But because these data are for trees with leaves, the crown condition of the
overstory prior to removal (such as salvage logging) will determine the importance of
interception. Interception will not go to zero after harvesting, however, because slash on
the ground, residual vegetation, and litter all intercept precipitation (Helvey 1967, Lull
and Reinhart 1966).

Eastwide, a minimum of 20 to 30 percent of a watershed’s basal area must be removed
before removals produce measurable changes in annual water yields (Hornbeck and
Kochenderfer 2001, Hornbeck and others 1997). Fuel reductions for the sole purpose of
fire suppression (other than salvage logging) normally would affect a small percentage
of basal area in a watershed and be widely dispersed, thereby retaining a substantial
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proportion of antecedent interception and transpiration from adjacent vegetation (Lull
and Reinhart 1966). Therefore, little change in hydrologic response would be expected
in most situations, and changes that did occur should be short lived, particularly in for-
ests of the South, as changes there usually last only a year or two. This is fortuitous,
because the Coastal Plain and lower Piedmont are the areas where fuel-reduction activi-
ties most likely may be a regular part of land management activities because wildfire
regimes are more frequent there than in other eastern landscapes (Van Lear and Harlow
2002).

Overall, where hydrologic responses of prescribed fires have been studied in the
Eastern United States, they have resulted in little effect to hydrology. Low fire intensity
may be partially responsible for the lack of hydrologic response (Cushwa and others
1970, Mohering and others 1966, Shahlaee and others 1991), but fire also can stim-
ulate herbaceous growth and seed production (Lewis and Harshbarger 1976), which
can quickly restore litter to the soil surface and promote root growth. However, high
severity controlled burns can affect hydrology. Changes most commonly result from
reductions in soil infiltration and soil moisture storage when the litter and duff layer are
completely combusted and soil becomes exposed (Wells and others 1979). Reductions
in infiltration rates in the Eastern United States appear to be caused primarily by pore
clogging from fine soil particles once soil is exposed (Arend 1941, Wells and others
1979) rather than by physicochemical changes to soil that result in water repellency
(DeBano 1966); this is because hydrophobicity is rarely reported and very short lived in
the Eastern United States.

Particular care should be taken when burning in the Piedmont, as this area is perhaps
the most susceptible to major hydrologic changes from soil disturbance. Relatively dry
soils from warm temperatures, coupled with thin organic layers overlaying thin soils,
can make this area more susceptible to gullying and erosion than the steeper areas that
are typically thought to be highly erodible (Van Lear and Kapeluck 1989). Gullies can
change hydrologic responses and increase runoff in the long term. In both the Piedmont
and Coastal Plain, special care also should be undertaken when applying practices that
increase fuel loads on the soil surface before burning or that increase soil tempera-
tures during burning. Practices—such as felling and burning, or shearing and burning—
increase the fuel load in contact with the soil surface. Likewise, windrowing or piling
concentrates fuels, so that burning them produces much higher soil temperatures than
burning dispersed materials (Cromer and Vines 1966, Robert 1965, Well and others
1979). These activities increase the probability that soil will be negatively affected and
hydrology changed.

It is clear from the studies reviewed in this chapter that antecedent soil conditions
and the degree of soil disturbance or damage can play an important role in controlling
hydrologic responses. Therefore, fuel management plans should consider those fac-
tors when estimating potential hydrologic changes. Because fuel reduction activities
typically can be planned and applied during more appropriate conditions compared to
wildfire suppression, it should be possible to keep most soil disturbance at or below
acceptable levels.

Soil disturbance by new fire line construction may be one of the biggest long-term
impacts of fuel-reduction activities. Hand-constructed firebreaks will have little if any
effect because litter can quickly be restored to the surface from wind action or annual
leaf fall or both. Soil infiltration rates also should not be substantially affected by hand-
constructed fire lines. By contrast, mechanically constructed fire lines such as bull-
dozed lines are more like roads, or at least skidroads, and may have some of the same
potential effects—such as intercepting subsurface flows, increasing bulk densities and
reducing soil hydraulic conductivity, concentrating overland flow, and diverting over-
land flow to streams. Although fire lines lack the repeated trafficking that roads have
and tracked equipment that often is used to construct fire lines exerts lower pressure
compared to wheeled equipment, the largest proportion of soil compaction occurs after
just a few equipment passes (Jansson and Johansson 1998, McNabb and others 2001,
Wang and others 2005). As a result, significant compaction and other changes to soil
physical properties can occur during fire line construction. Fire lines often are subjected
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to all-terrain and other vehicle use during prescribed fires, which can result in further
compaction. Therefore, the same care needed for planning and constructing and closing
roads should be used for fire line construction. Appropriate best management practices
also should be applied, particularly those that focus on proper location, water control,
and soil protection and coverage.

From the perspective of cumulative watershed effects, the influence of fuel-reduc-
tion activities on hydrology probably will be small if the landscape is reforested and
not converted to another use. The primary hydrologic cumulative effect from harvesting
that has been raised as a possible concern is downstream flooding, which results from
simultaneous accumulation of large volumes of water from upstream sources (Hewlett
1982). But even in watersheds where vegetation removal has been substantial, storm-
flow volumes from each subwatershed are desynchronized, thereby reducing the risk of
downstream flooding (Hewlett and Doss 1984). Furthermore, most of the hydrologic
change from harvesting anywhere in the Eastern United States occurs during growing
seasons or low flows (or both), when flooding is least likely to occur. Consequently,
the overwhelming consensus within the scientific literature is that contemporary for-
est management practices do not increase the risk of downstream flooding (Hewlett
1982, Hewlett and Doss 1984, Hornbeck and others 1997, Rogerson 1976, Verry 1972,
Woodruff and Hewlett 1970).

In this chapter, studies involving harvesting or other types of vegetation reductions
have been used as a proxy for understanding how hydrology might change from fuels
reduction practices in the Eastern United States. This approach was needed because
information specifically pertaining to fuels reduction is largely missing from the litera-
ture. Most of the available investigations have involved much larger reductions of ET
than would occur for controlling fuels, so we predominantly have information about
upper end or “worst case” effects. However, from the standpoint of being able to accu-
rately describe and disclose expected effects in environmental documents required by
the National Environmental Policy Act and other legislation, studies are needed that spe-
cifically focus on fuel-reduction activities and their effects on soil and water resources.
The public would be better served if the data used in these environmental documents
directly applied to the proposed activities, so that direct and cumulative effects could be
more accurately evaluated.

Furthermore, our knowledge about the effects of controlled burns is extremely lim-
ited, despite the fact that burning is becoming an increasingly used management tool.
Controlled burns in forests usually are applied to reduce dead, downed fuels and pos-
sibly to reduce the density of understory brush, while limiting the damage to standing
trees (Biswell 1975). The intensities and severities of burning to control only under-
story fuels may be quite different from those associated with fell-and-burn activities
or postharvesting site preparation; if so, the effects would likely be different. However,
until a body of scientific evidence shows that the effects from understory burning are
small, it is not appropriate simply to make that assumption based on current limited
data; the effects or lack thereof should be determined in replicated studies. It is now
particularly important to perform these types of studies for several reasons: there is new
interest in employing controlled burns during the growing season (Outcalt and others
2006) when soil moisture is lower and potential effects on soil condition and hydrol-
ogy may be greater than the traditional application of fires during the dormant season;
repeated burning is being used or considered for a variety of uses (Bowles and others
2007); and burning is being considered for application where it has long been excluded,
which can result in severe initial burns (Knapp and others 2007). These new applica-
tions may have effects that are measurably different from what one might expect based
only on currently available, sparse datasets.
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Conclusions

The initial foundation of what we know about forest management effects on water
balance and overall hydrologic expression in the Eastern United States comes primar-
ily from studies at Coweeta Hydrologic Laboratory and Fernow Experimental Forest.
These sites have the most comprehensive sets of long-term hydrologic studies related
to vegetation management, including a variety of low-intensity vegetation removals
that have not been performed elsewhere but are applicable to fuel-reduction activities.
However, substantial data also have been collected from other sites and provide addi-
tional, valuable information to further complete the current base of knowledge.

Although biological, physical, and climate conditions are quite varied throughout
the Eastern United States, the similarity of results among study sites is striking. In gen-
eral, water-yield increases from reducing vegetation do occur when the level is >20 to
25 (approximately) percent of the watershed basal area. Larger percentages of basal
area removal result in proportional increases in annual water yield, but they primarily
augment low and moderate flows. Water-yield changes from reducing vegetation typi-
cally are short lived, although retarding vegetative regrowth mechanically or chemically
prolongs the time during which yields are elevated. Storm hydrograph components also
can change, but these are primarily associated with small and moderate-sized runoff
events. Aspect is important in controlling total annual yields only in mountainous areas
that are steep and have great relief. Aspect becomes unimportant in mountains that are
less steep or forests with lower topographic relief. The timing of the spring snowmelt
hydrograph can be changed by varying the size of harvested sites and the character
of the opening and associated regeneration. Wetland soil characteristics in both the
most northern or southern landscapes play a large role in controlling how hydrologic
responses will be expressed in flatlands: whether hydraulic conductivities are rapid or
slow largely determines the degree of influence of ET on water-table levels. On steep
hillsides, the extent of water delivery to channels is at least partially dependent on the
characteristics of the channel network, such as density, length, and degree of incision.
These and other commonalities among vastly different physiographic areas illustrate
the broad transferability and application of findings, particularly once one adjusts for
differences in precipitation, climate, topography/relief, soils, and species composition.
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