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Chapter 12.

Effects of Fire and Fuels Management on 
Water Quality in Eastern North America

R.K. Kolka

Introduction
Fuels management, especially prescribed fire, can have direct impacts on aquatic 

resources through deposition of ash to surface waters. On the terrestrial side, fuels man-
agement leads to changes in vegetative structure and potentially soil properties that 
affect ecosystem cycling of water and inorganic and organic constituents. Because sur-
face water systems (streams, lakes and wetlands) are tightly linked to terrestrial sys-
tems, these changes in the terrestrial system can also impact surface waters. 

Notable reviews of fire effects on water have been conducted at the North American 
scale (Tiedemann and others 1979, Neary and others 2004), however, these reviews have 
been mainly focused on the western U.S. and Canada where research has historically 
been the most prolific (see Stednick 2006 for a Western Synthesis). Still, a number of 
studies have assessed the influence of fuels management or wildfire on various water 
quality parameters across Eastern North America (table 1). Because fuels management is 
an important component to pine management in the Southeast, more research has been 
conducted in the Southeast than the Midwest, Northeast, and Eastern Canada.

Prescribed fire and mechanical approaches to fuels management (such as precom-
mercial thinning) are used quite extensively in certain parts of the Eastern United States. 
Although some research has been conducted on the effects of fire on water quality (both 
prescribed fire and wildfire), little has been conducted on the effects of mechanical 
treatments. Other fuels management approaches such as herbicide and other chemical 
applications and biological treatments such as grazing are also practiced in the East, but 
again little relevant research has been conducted to assess impacts to surface waters. 

Although wildfires tend to burn more extensive areas, burn hotter, and consume 
more fuel than prescribed fires, the effects on surface waters can be analogous to pre-
scribed fire. Many prescribed fires, especially in the South, are intended for site prepa-
ration rather than fuels reduction. In this chapter, we review responses of surface water 
quality to all prescribed fire—independent of intent—and wildfire. 

Fire Effects on Hydrology
Either because of increased flows resulting from lower interception and transpiration 

or because of soil hydrophobicity, the potential exists for higher surface and subsurface 
runoff following fire. Increased surface runoff and higher instream flows increases the 
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potential for higher sediment production following fire. Flows are expected to increase, 
depending on the fire’s severity and the extent in the watershed (Baker 1988, Gresswell 
1999), but little about effects on water yield or sediment production, especially in the 
East.

Water Yield

Van Lear and others (1985) reported no increases in streamflow following low-inten-
sity prescribed fire in South Carolina, but increases in runoff were reported for other 
prescribed fire studies in South Carolina (Robichaud and Waldrop 1994), Louisiana 
(Ursic 1970), Georgia (Battle and Golliday 2003); Battle and Golliday (2003) reported 
higher water levels in wetlands; and several wildfire studies reported higher water levels 
of lakes in Minnesota (McColl and Grigal 1975, Wright 1976). The Minnesota study 
estimated a 60 percent increase in water yield following wildfire (Wright 1976), and a 
study in Ontario indicated similar increases of 60 to 80 percent (Schindler and others 
1980) with levels that remained above normal for up to 5 years following fire. 

Studies on hydrophobic soils are not common in the Eastern United States, although 
they have been assessed in Wisconsin (Richardson and Hole 1978), in the Upper 
Peninsula of Michigan (Reeder and Jurgensen 1979), and on the Georgia Piedmont 
(Shahlaee and others 1991). In the Michigan study, the authors concluded that water 
repellency following fire was not an important long-term management issue (Reeder 
and Jurgensen 1979) although studies in Georgia indicated slight hydrophobicity fol-
lowing prescribed fire.

In general, low-intensity prescribed fires appear to produce to little or no additional 
increases in flows. However, as prescribed fires intensify and consume more forest floor 
and vegetation layers, possibly including the canopy, effects would be comparable to 
wildfires or forest harvesting (Baker 1988).

Sediment Production

As noted above, little work has been done in the East on the effects of fire on sedi-
ment production or total suspended sediment. From the few studies that do exist, pre-
scribed fire—or wildfire as reported by Neary and Currier (1982)—in the East does not 
appear to alter infiltration or percolation rates or lead to significant increases in surface 
runoff; and, hence, will not lead to higher sediment transport or more suspended sedi-
ments in surface waters (Elliot and Vose 2005, Knighton 1977, Swift and others 1993, 
Van Lear and Danielovich 1988, Van Lear and others 1985). Studies in Louisiana that 
have prescribed burned on a biennial basis for 20 years indicate short-term increases in 
sediment produced through interrill erosion on irrigated runoff plots (Dobrowolski and 
others 1992). The caveat is that all of these studies are results from prescribed burns, 
which tend to be less destructive to upper soil layers, forest floor, and vegetation than 
wildfires. Studies of a wildfire in Ontario indicate that bedload sediment production 
increased 20-fold with those increases persisting for 5 to 6 years (Beaty 1994). A high 
severity prescribed fire (similar in impact to a wildfire) in South Carolina led to 40-fold 
increase in sediment production compared a low severity prescribed fire (Robichaud 
and Waldrop 1994). Similarly, a high severity prescribed fire on the Georgia Piedmont 
led to high losses of sediment the first year following fire (Van Lear and Kapeluck 
1989). Other studies in the West indicate that fire, especially severe fires, can have dra-
matic impacts on sediment production (Gresswell 1999).

Fire Effects on Water Chemistry
A number of studies in the Eastern United States have assessed the effect of fire on 

nitrogen, phosphorus, and cation concentrations in surface waters. Fewer have assessed 
the effect of fire on nutrient fluxes. 
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Nitrogen

Total nitrogen, organic nitrogen, nitrate and ammonium have been measured on a 
number of studies to assess the effects of fire on nitrogen cycling and fluxes to surface 
waters. In stream systems, studies in western South Carolina found no change in either 
nitrate or ammonium concentration or flux following prescribed burning (Douglass and 
Van Lear 1983). In other South Carolina prescribed fire studies, Lewis (1974) also found 
no difference in surface runoff nitrate between burned and control areas and Richter 
and others (1982) found no change in volume-weighted concentrations of total nitro-
gen, nitrate, and ammonium. Similarly, Elliot and Vose (2005) found no differences in 
stream nitrate and ammonium concentrations in southeastern Tennessee and northern 
Georgia. However, in another western South Carolina study, Neary and Currier (1982) 
found elevated nitrate (300 percent), but similar ammonium concentrations in streams 
the first year following wildfire. Vose and others (2005) found that following prescribed 
burning conducted in the autumn, two streams had increases in nitrate concentrations 
with increases persisting for <1 year, compared to no increases for two streams with 
spring burns. Similarly, Knoepp and Swank (1993) found that stream nitrate increased 
about 300 percent for some six months following prescribed burning in western North 
Carolina. After a wildfire in Minnesota, McColl and Grigal (1977) found no differences 
in surface-runoff total nitrogen or nitrate, but they did see increases in fluxes (about 
150 to 200 percent) of both in the first 2 years. In northwestern Ontario, Bayley and 
others (1992a) found increases in nitrate (about 300 to 800 percent), ammonium (about 
150 to 200 percent), suspended nitrogen (about 150 to 200 percent), total dissolved 
nitrogen (about 150 to 200 percent) and total nitrogen concentrations (about 150 to 
200 percent) after two wildfires in the same watershed (6 years apart); after the second 
fire levels remained elevated for 9 years. Fluxes followed similar patterns (Bayley and 
others 1992a). In southwestern Quebec, Lamontagne and others (2000) estimated that 
watershed export rates to lakes of total nitrogen and nitrate were elevated the first year 
following wildfire and were still elevated 3 years later. 

Nitrogen concentrations in northern Minnesota lakes gave no indication of elevated 
fluxes following prescribed fire (Tarapchak and Wright 1986, Wright 1976). In south-
western Quebec, Carignan and others (2000) found total organic nitrogen and ammo-
nium concentrations doubled, and nitrate concentrations were up to 6000 percent higher 
in lakes present in watersheds with wildfire compared to lakes in watersheds that were 
unburned. The increases persisted for up to 3 years. Studies in depressional wetlands 
in southwestern Georgia indicate increases in ammonium but not for nitrate the first 
2 years following prescribed fire (Battle and Golladay 2003).

The solubility of nitrogen species and volatilization of nitrogen from consumed 
plants and soils during fire could explain why nitrogen species generally do not respond 
or respond only shortly after fire. Although considerable nitrogen is lost to volatiliza-
tion during fire (McRae and others 2001), the ash left behind is also concentrated in 
nitrogen—which quickly succumbs to nitrification processes and becomes available to 
leaching through forest soils (Knighton 1977). Overall, the preponderance of data sug-
gests little influence of fire on nitrogen; and where differences exist, they usually do not 
persist more than 1 to 3 years, unless on shallow soils like those found on the Boreal 
Shield (Bayley and others 1992a). 

Phosphorus

Phosphorus is generally the limiting nutrient in surface waters, and excess phospho-
rus can lead to eutrophication of lakes, wetlands, and streams (Smith 2003). Following 
a disturbance such as fire, the largest fraction of phosphorus entering surface waters 
is typically associated with upland sediment sources (Prepas and others 2003). Total 
phosphorus is typically measured on unfiltered samples and comprises dissolved phos-
phorus and phosphorus suspended in sediment. Soluble reactive phosphorus, generally 
considered to be the same measure as ortho-phosphorus, is the inorganic phosphorus 
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that passes through a filter, usually 0.45 µm. Soluble reactive phosphorus and ortho-
phosphorus are considered the active form of phosphorus available for uptake.

Total phosphorus, ortho-phosphorus and soluble reactive phosphorus have been 
measured in streams, lakes, and wetlands following fire in the Eastern United States 
Because phosphorus is generally bound to particulates, similar results exist for the 
transport of total phosphorus and phosphorus suspended in sediment. Numerous studies 
have found no stream response of phosphorus to prescribed fire—or wildfire as reported 
by Neary and Currier (1982)—including those in southeastern Tennessee and north-
ern Georgia (Elliot and Vose 2005), western South Carolina (Douglass and Van Lear 
1983, Van Lear and others 1985), and eastern South Carolina (Richter and others 1982). 
Lewis (1974) also found no increases in phosphorus in surface runoff following pre-
scribed fire in South Carolina. McColl and Grigal (1975) found no increases in stream 
phosphorus following wildfire in Minnesota, but they did see a 300-percent increase 
in phosphorus in surface runoff the first year following fire. Total, suspended, and dis-
solved phosphorus concentrations and fluxes in streams increased 140 to 320 percent 
the first 2 years following wildfire in northwestern Ontario (Schindler and others 1980), 
but these increases did not persist even after a second wildfire in the same area (Bayley 
and others 1992a).

Although phosphorus concentration did not differ on burned watersheds in north-
ern Minnesota lakes when compared to a lake in an unburned watershed (McColl and 
Grigal 1975, Tarapchak and Wright 1986), estimated fluxes to burned lakes increased 
by 93 percent the first year following fire (Wright 1976). In Quebec, lakes in burned 
watersheds had 200 to 300-percent higher total phosphorus concentrations and 150 
to 200-percent higher flux rates than lakes that were in unburned watersheds, with 
increases persisting for at least 3 years (Carignan and others 2000, Lamontagne and 
others 2000). Studies in depressional wetlands in southwestern Georgia indicate no dif-
ferences in soluble reactive phosphorus concentration the first 2 years following pre-
scribed fire (Battle and Golladay 2003).

Similar to nitrogen, phosphorus does not appear to be a major water quality concern 
following fire (prescribed or wildfire) in the East, unless located on shallow soils such 
as those found on the Boreal Shield. Even where shallow soils exist, the bulk of the data 
suggests that impacts are relatively short term.

Cations

Because cations (calcium, magnesium, sodium, and potassium) are concentrated in 
ash, the potential exists for these nutrients to be transported via surface runoff or eas-
ily leached through soils following fire. Studies in the South indicate no differences in 
surface runoff or stream cation concentration following fire (Douglass and Van Lear 
1983, Elliot and Vose 2005, Lewis 1974, Neary and Currier 1982, Richter and others 
1982, Van Lear and others 1985). Wildfires in northern Minnesota, Ontario, and Quebec 
indicate short-term increases in cation concentrations and fluxes. 

In northern Minnesota, lake concentrations of calcium and potassium increased fol-
lowing wildfire (Tarapchak and Wright 1986). For the same fire, Wright (1976) showed 
≤265 percent increase for potassium in runoff; for the first 2 years, McColl and Grigial 
(1977) showed increased calcium, magnesium, and potassium in surface runoff but 
increases in streams were limited to potassium. Similarly, potassium fluxes in streams 
following wildfire in northwestern Ontario were 140 to 290 percent higher than those 
prior to fire (Schindler and others 1980), with calcium (190 percent), magnesium (190 
percent) and sodium (170 percent) increasing as well (Bayley and others 1992b). In 
Quebec, potassium concentrations increased ≤600 percent in lakes on burned water-
sheds, compared to 200 to 400 percent for calcium and magnesium (Carignan and 
others 2000); levels stayed elevated for 3 years following wildfire. In the same set of 
watersheds, exports rates estimated for potassium (300 to 700 percent), calcium (200 
to 300 percent) and magnesium (200 to 300 percent) were higher in burned watersheds 
than unburned watersheds the first 3 years following wildfire, steadily decreasing with 
time (Lamontagne and others 2000). 
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Similar to the effects on nitrogen and phosphorus, prescribed fires do not appear to 
have a dramatic influence on the concentration and transport of cations in the South. 
However, for wildfires in the North, some cation concentrations and fluxes (especially 
potassium) increase in streams and lakes following fire and those increases can persist 
for 3 years or more.

Carbon

Interest in effects on ecosystem carbon has increased over the past 15 to 20 years 
because of the implications for climate change. Fires have been shown to be large 
sources of carbon dioxide (Amiro and others 2001); for example vegetation is about 
50 percent carbon, leaf litter about 50 percent, surface mineral soils about 1 to 8 per-
cent, and organic soils about 20 to 95 percent. Little work has been done to assess 
the effects of fire on the concentration or transport of water-soluble carbon, otherwise 
known as dissolved organic carbon. Dissolved organic carbon is operationally defined 
as the carbon that passes through a filter, usually 0.45 or 0.7 µm, and is considered 
mobile in water. Research in Quebec showed no effect of wildfire on lake dissolved 
organic carbon concentrations (Carignan and others 2000) or export rates to those lakes 
(Lamontagne and others 2000) following fire. Similarly, Battle and Golladay (2003) 
found no difference in dissolved organic carbon the first month following prescribed 
fire in Georgia wetlands in 2000, but did find significantly higher dissolved organic 
carbon following prescribed fires conducted in 2001. They suggest that field conditions 
are very important in determining fire’s effect on the generation of dissolved organic 
carbon (Battle and Golladay 2003). No other studies from Eastern North America were 
found that assessed the effect of fire on dissolved organic carbon transport. The paucity 
of data makes generalizations difficult, but based on these few studies, fire does not 
appear to dramatically affect dissolved organic carbon concentration or transport.

Mercury

Mercury is of great concern in the environment because it biomagnifies up the food 
chain in aquatic ecosystems (U.S. Environmental Protection Agency, Office of Research 
and Development 2002). Although we are beginning to understand the cycling of total 
mercury and methylmercury (bioaccumulative form) in forested watersheds (Hintelmann 
and others 2002, Kolka and others 2001), little work has been done understanding the role 
of fire in mercury cycling. Nearly 100 percent of mercury stored in plant-derived fuels is 
emitted into the atmosphere, 85 percent of which is elemental mercury and 15 percent 
particulate mercury (Friedli and others 2003). Newly released elemental mercury enters 
the global cycle whereas particulate mercury has the potential to be redeposited locally 
during the fire event. Soils are also sources of mercury during fires. Studies indicate that 
upper soil layers experience significant decreases in mercury following fire (Amirbahman 
and others 2004, Dicosty and others 2006). Zooplankton and northern pike (Esox lucius) 
in lakes on burned Quebec watersheds showed no significant difference in mercury con-
centrations compared to lakes in undisturbed watersheds, although average fish concen-
trations were about 160 percent higher in burned lakes (Garcia and Carnignan 1999, 
Garcia and Carnignan 2000). Although somewhat outside the geographic scope of this 
chapter, a Canadian study of a wildfire in Alberta found elevated methylmercury in lake 
and stream water following fire (Kelly and others 2006). Although this study suggests 
that the dynamics that increase nutrients and affect on the food chain are complex, Kelly 
and others (2006) did find higher mercury (500 percent) in rainbow trout (Oncorhynchus 
mykiss) in burned watersheds than in unburned watersheds. In an Alberta study, few dif-
ferences were found in aquatic biota when comparing lakes in burned watersheds to ones 
in unburned watersheds, with even short-term (three month) decreases in mercury content 
of aquatic biota following fire (Allen and others 2005). Based on what little data we have, 
fire does not appear to affect mercury cycling and bioaccumulation in the aquatic food 
chain but further investigation is needed. 
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Other Water Constituents

Some of the studies discussed above have measured other various ions such as 
sulfate, chloride, dissolved inorganic carbon, acidity or basicity (pH), alkalinity, con-
ductivity, and chlorophyll-a. Richter and others (1982) found no differences in sul-
fate, chloride or alkalinity concentrations following prescribed fire in South Carolina. 
Similarly, no differences were found in acidity or sulfate concentrations in northern 
Georgia and southeastern Tennessee following prescribed fire (Elliot and Vose 2005). 
After a month, water in depressional wetlands in burned watersheds had higher pH 
(indicating less acidity) and alkalinity (ability to neutralize acids) that those in unburned 
Georgia watersheds (Battle and Golladay 2003). Studies in northern Minnesota indicate 
little to no differences in lake pH, alkalinity, and conductance following wildfire but 
did see an apparent decrease in chlorophyll-a (Tarapchak and Wright 1986). Studies 
in Ontario indicate decreases in stream pH and concomitant increases in concentra-
tions and fluxes of sulfate and chloride, leading to lower alkalinity for 2 years following 
wildfire (Bayley and others 1992b). Research on lakes in Quebec indicated no dif-
ference in lake alkalinity but considerably higher sulfate, chloride, and chlorophyll-a 
concentrations persisting 3 years after wildfire (Carignan and others 2000). Not surpris-
ingly, export rates from drainage areas for these lakes were also high for sulfate and 
chloride (Lamontagne and others 2000). 

Effects of Mechanical, Chemical,  
and Biological Treatments

Although mechanical, chemical, and biological fuels treatment are non uncommon 
in Eastern North America, we found no studies that have specifically addressed the 
effects of these treatments on water quality. However, numerous studies and a number 
of reviews have examined mechanical, chemical, and biological approaches for vegeta-
tion management.

Certainly mechanical fuels treatment is similar to other types of vegetation man-
agement or site preparation practices. A number of papers that evaluate water-quality 
responses to vegetation management or site preparation are available for those planning 
mechanical approaches to fuels treatment (Binkley and Brown 1993, Dissmeyer 2000, 
Grace 2005, Shepard 1994, Thornton and others 2000). 

Chemical treatments, predominantly herbicides for the purposes of this chapter, are 
typically used to control competing vegetation. Chemical approaches to fuels manage-
ment would likely have similarly impacts on water quality as those used for vegetation 
management. Several papers that review water-quality responses to chemical application 
are available for those planning chemical approaches to fuels management (Dissmeyer 
2000, Larson and others 1997, Micheal and Neary 1993, Neary and others 1993). 

Few studies have assessed biological approaches to forest vegetation management, 
especially in Eastern North America. The most common biological controls for plants 
are predation by insects or fungi or grazing by domesticated ungulates such as cows 
(Bos taurus) or goats (Capra app.). Although considerable research has been conducted 
on the biological control of invasive plant species, Markin and Gardner (1993) indi-
cate that only a small portion focused in forest systems for the purpose of vegetation 
management, and none were found that assessed biological control in the context of 
water quality. Numerous studies have assessed or summarized grazing impacts on water 
quality (Patric and Helvey 1986) but again, none in the context of fuels or vegetation 
management in forest systems.

Conclusions
In general, prescribed fire and other fuels management approaches appear to have 

little impact on water quality in Eastern North America. When soils are deep and fire 
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severity is low, few water quality changes have been observed, and those that have been 
reported are generally short lived (less than a year). The most dramatic impacts have 
occurred where soils are shallow and fires are severe; in these situations, some water 
quality parameters remained elevated for 3 or more years. 

Certainly, more research on the effects of fire and other approaches to fuels manage-
ment (mechanical, chemical, and biological) on surface water quality in Eastern North 
America is needed. Although considerable work has been accomplished on various for-
est types in the South, little has been done in the rest of Eastern North America, even 
in places where prescribed fire is being used as a tool for fuels management—such as 
red (P. resinosa) and jack pine (P. banksiana) management in the Lakes States. Also, 
considering the growing importance of carbon, carbon cycling, and the importance of 
carbon in aquatic food chains, more could be done to assess the influence of fire on 
dissolved organic carbon. Finally, mercury is the number one contaminant in surface 
waters (with more Environmental Protection Agency advisories than any other sub-
stance), and we know little about how fire affects mercury transport and accumulation 
in the food chain. 
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