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Abstract

The 626 million acres of forests in the conterminous United States represent 
significant reserves of biodiversity and terrestrial carbon and provide substantial 
flows of highly valued ecosystem services, including timber products, watershed 
protection benefits, and recreation. This report describes forecasts of forest 
conditions for the conterminous United States in response to multiple scenarios 
evaluated by the 2010 Resources Planning Act Assessment. The results are based 
on the U.S. Forest Assessment System, a modeling system designed to forecast 
alternative futures for U.S. forests, and provide a forward-looking adjunct to the 
Forest Inventory and Analysis Program of the Forest Service U.S. Department of 
Agriculture. Scenarios address a range of future conditions regarding population 
growth, economic change, global forest product markets, and climate change. 
Forest forecasts are described for each of four Resources Planning Act regions 
(South, North, Rocky Mountain, and Pacific Coast) across the Resources Planning 
Act scenarios. In the Eastern United States, the range of socioeconomic futures 
leads to greater variation in future forest conditions than does the range of climate 
projections. Because of the dominance of public forests in the Western United 
States, socioeconomic changes hold less sway over forest futures there. Built 
directly from and as a forecasting adjunct to the monitoring system of the Forest 
Inventory and Analysis Program, the modeling components will be enhanced by 
additional forest inventory data as they become available. 

Keywords: Forecasts, forest inventory, integrated assessment.





Forests develop in response to their physical environment, 
biological dynamics, and decisions regarding their uses. Acting 
on different timeframes, these forest dynamics ultimately 
determine the services that flow from the Nation’s forests. The 
Forest and Rangeland Renewable Resources Planning Act 
(RPA) of 1974 mandates a careful analysis of forest conditions 
as part of a periodic assessment of the condition and trends 
of the Nation’s renewable resources. The RPA Assessment 
provides a snapshot of current U.S. forest and rangeland 
conditions and trends on all ownerships, identifies drivers 
of change, and projects 50 years into the future. Analyses of 
the status and trends for forest conditions, recreation, water, 
timber, wildlife and fish, biodiversity, and range resources as 
well as land-use change, climate change, and urban forestry are 
included (USDA Forest Service 2001).

This report describes forecasts of forest conditions for the 
conterminous United States in response to multiple scenarios 
evaluated by the 2010 RPA Assessment (fig. 1).1 The results 

1 Trends and current forest conditions in the United States are examined in 
Smith and others (2009).

are based on the U.S. Forest Assessment System, a modeling 
system designed to forecast alternative futures for U.S. forests 
(Wear 2010). Developed by the RPA Assessment program, this 
system is a forward-looking adjunct to the ongoing inventories 
of forest conditions conducted by the Forest Inventory and 
Analysis (FIA) Program of the Forest Service, U.S. Department 
of Agriculture (fig. 1). The FIA system provides nationwide 
monitoring through repeated inventories that measure forest 
conditions, while the Forest Assessment System addresses how 
biological, physical, and human factors could alter these forest 
inventories in the future and generates forecasts of detailed 
forest inventories along with forecasts of land use changes and 
forest product markets.

The Forest Assessment System represents a new technical 
approach and a shift in focus for the 2010 RPA. For previous 
RPA Assessments (Haynes 1990, Haynes and Adams 1985, 
Haynes and others 1995, Haynes and others 2007, USDA 
Forest Service 1982) and for Forest Service timber market 
assessments that predate the RPA (USDA Forest Service 
1920, 1933, 1958, 1965, 1974), analysis focused primarily on 
forecasts of timber production levels and prices. Forecasts 

INTRoDUCTIoN

Figure 1—General schematic of the U.S. Forest Assessment System. The first (left) column describes the data sets and projections that initiate analysis and define 
scenarios. The second column describes the three modeling components of the system. The third and fourth columns describe primary outputs generated and 
secondary analysis that can be supported respectively.
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of timber supply required predictions of timber growth, 
mortality, and harvests for the various regions of the country 
and this gave rise to forest/timber inventory projection 
models based on aggregated forest inventory data (Mills 
and Kincaid 1992, Mills and Zhou 2007). Timber inventory/
supply modeling, conducted at regional scales, provides a 
useful tool for projecting timber market activities through 
time and also provided some insights into the future of forest 
conditions and potential effects on other resource values. 
While continuing to incorporate the analysis of timber 
markets, the Forest Assessment System puts the projection 
of forest conditions at the center of the RPA Assessment, 
addressing the effects of timber markets but also the effects 
of other factors such as climate change, natural disturbance, 
and land use dynamics in the evolution of future forest 
conditions. The resulting forecasts can support more detailed 
analysis of ecosystem conditions and services derived from 
forests in the United States in response to the RPA scenarios. 

Overall, the design of the Forest Assessment System aims to 
allow for integrated assessment of multiple resource issues 
across common scenarios.

The Forest Assessment System forecasts forest conditions by 
modeling the effects of changing climate, market-driven timber 
harvesting/management, and land use changes along with 
changes driven by disturbance and successional transitions in 
forest conditions. For the 2010 RPA Assessment, the future 
of these driving forces is defined through a set of scenarios 
that contain alternative projections of economic, climate, and 
population futures. The next sections of this report describe 
the structure of these scenarios, the modeling approach, and 
datasets. Subsequent sections describe the forecasts and 
implications for the future of forests in the four RPA regions of 
the United States: South, North, Rocky Mountain, and Pacific 
Coast (fig. 2). A technical appendix provides additional detail 
on the modeling approach.

Figure 2—Resources Planning Act (RPA) Assessment regions: South, North, Rocky Mountain, and Pacific Coast.
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Future renewable resource conditions are influenced by a 
number of driving forces such as population change, economic 
growth, and land use change. Three scenarios in the Resources 
Planning Act (RPA) Assessment are used to characterize 
the global demographic, socioeconomic, and technological 
driving forces underlying changes in resource conditions 
and to evaluate the sensitivity of resource trends to a feasible 
future range of these driving forces. The use of scenarios 
links the underlying assumptions of the analyses of various 
resource conditions and uses and frames uncertainty in these 
driving forces within the integrated modeling and analysis 
framework of the 2010 RPA Assessment (see U.S. Department 
of Agriculture Forest Service, in press, for details on scenario 
development). RPA scenarios address change over 50 years, 
from 2010 to 2060.

Three RPA scenarios are linked to global storylines used 
in the Intergovernmental Panel on Climate Change (IPCC) 
Third and Fourth Assessments (TAR and AR4, respectively; 
Intergovernmental Panel on Climate Change 2007a, 2007b). 
The storylines are potential future states of the world that 
are largely qualitative, but also include assumptions about 
global population and economic growth. The storylines were 
transformed by the IPCC into quantitative scenarios through 
six integrated assessment models that had varying assumptions 
about technology change, energy use, and land use change. Of 
the 40 scenarios produced through this process, seven marker 
scenarios were subjected to more intensive review and tests of 
reproducibility by IPCC (Nakicenovic and others 2000).

The RPA selected marker scenarios for storylines A1B, A2, 
and B2 as the basis for the three RPA scenarios. The IPCC 
TAR and AR4 storyline labels (A1B, A2, and B2) have been 
maintained in the 2010 RPA Assessment documentation for 
continuity (hereafter referred to as RPA A1B, RPA A2, and 
RPA B2). The global data were scaled to the U.S. national level 
and sub-national levels for the 2010 RPA Assessment. U.S. 
gross domestic product and population projections used in the 
TAR and AR4 analyses were updated, and U.S. population and 
disposable personal income data were downscaled to the U.S. 
county level (Zarnoch and others 2010). Climate projections 
generated from three general circulation models (GCMs) for 
each of the three IPCC scenarios were also downscaled to the 
county scale (Joyce and others, in press). 

Population and personal income projections for the three RPA 
scenarios drive forecasts of urbanization and change in the 
area of forests using the All Land Use Model, as shown in 
figure 1 (Wear 2011). The RPA A1B population projections are 

based on 2004 Census projections for the entire United States, 
while RPA A2 and RPA B2 depart from these projections as 
described below. Zarnoch and others (2010) developed county 
scale projections for each scenario based on forecasts from 
Woods and Poole’s (2007) spatial econometric/demographic 
model—the Woods and Poole (2007) forecasts are generally 
consistent with the RPA A1B projection for 2000–30. County-
level projections between 2030 and 2060 were disaggregated 
by extending historical patterns of growth from the Woods and 
Poole (2007) projections (Zarnoch and others 2010). Projections 
for RPA A2 and RPA B2 applied the same spatial pattern of 
population change, but were adjusted to yield county-level 
projections that add up to the national totals for the respective 
RPA scenarios.

As shown in figures 3 and 4, RPA A1B corresponds to mid-
range population growth and the highest per capita disposable 
personal income level of the three RPA scenarios. Under 
RPA A1B, by 2060, the projected population of the United 
States will be about 446 million, with real per capita personal 
income around $80,000. Scenario RPA A2 projects the highest 
population growth, more than 500 million people by 2060, 
and the lowest projected per capita personal income, around 
$56,000. Scenario RPA B2 projects the lowest population 
growth, with the population predicted around  
397 million people, and mid-level personal income, with  
per capita personal income predicted around $60,000.

Population is not forecast to grow across the entire United 
States. Rather, most projected growth occurs around a 
number of existing urban centers (fig. 5), e.g., around southern 
California and between Portland and Seattle in the West, 
around Minneapolis and Chicago in the Midwest, between 
Boston and Washington, DC, in the East, and along the 
Piedmont between Raleigh, NC, and Atlanta in the South. 
In addition, a large number of rural counties are expected to 
experience population declines (figure 5 shows these counties 
in green for RPA A1B). Population loss is forecasted to be 
especially high through much of the Great Plains and Corn 
Belt, in the southern Mississippi Alluvial Valley, and in a band 
from northern Indiana to upstate New York.

For the RPA Assessment, a consistent national database of 
downscaled climate data were critical to ensure consistency 
across RPA Assessment resource analyses, as well as 
consistency with the economic and demographic drivers from 
the RPA A1B, A2, and B2 scenarios (Joyce and others, in 
press). For the 2010 RPA analyses, downscaled climate datasets 
were developed using output from the GCMs used in the 
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Figure 4—Projected per capita personal income (2006 = 100) for the United States to 2060 for the three Resources Planning Act (RPA) scenarios (A1B, A2, and 
B2).

Figure 3—Total projected population in the United States to 2060 for the three Resources Planning Act (RPA) scenarios (A1B, A2, and B2).
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IPCC AR4 for the A1B and A2 scenarios and for GCMs used 
in the IPCC TAR for the B2 emission scenario (table 1). The 
downscaling approach follows Price and others (2004). Data 
were downloaded from GCM data archival websites, extracted 
for the regions of the conterminous United States and Alaska 
(i.e., not including Hawaii) and “downscaled” using the “delta-
method” and a well-tested statistical interpolation technique 
(ANUSPLIN) (Joyce and others 2011). All scenario data were 
interpolated to a standard 5 arc-minute spatial resolution 
(0.0833 degree ≈ 10 km at mid-latitudes), using latitude and 
longitude as independent variables. These data were also re-
aggregated to generate records for each county (used for the 
forest forecasts). Details are described in Coulson and others 
(2010a) for the historical data, Coulson and others (2010b) for 
the A1B and A2 projections, and Coulson and Joyce (2010) for 
the B2 projections.

The simulated climate variables include monthly mean daily 
surface temperature, monthly mean daily maximum surface 
temperature, monthly mean daily minimum surface 

temperature, and monthly total precipitation. Potential 
evapotranspiration was computed from the downscaled 
temperature variables. These data were converted to “change 
factors.” In the case of temperature (monthly mean daily 
minimum and maximum, or monthly mean), the change factor 
is computed as the arithmetic difference between the monthly 
value and the mean for that month computed for 1961–90. For 
all other variables, the change factor is the ratio of the monthly 
value to the 1961–90 mean for that month.

The change factors were referenced to the 30-year monthly 
means for the simulated 1961–90 period and combined with 
gridded climate normals based on the Parameter-elevation 
Regression on Independent Slopes (PRISM) dataset for the 
same 30-year period to create the scenario data needed for 
the RPA 2010 Assessment (Coulson and Joyce 2010). The 
PRISM data over the 1961–90 period were used to develop 
the projections for the 2010 RPA Assessment based on these 
change factors from the downscaled GCM projections (Joyce 
and others, in press).

Figure 5—Projected change in population density (people per square mile), 1997–2060, for the Resources Planning Act (RPA) A1B scenario. Areas in blue would 
experience population increases under this scenario. Areas in green are forecasted to experience population declines over this period.
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Table 1 describes the nine futures defined by three RPA 
scenarios linked to three sets of climate projections. Beyond 
the socioeconomic projections associated with the scenarios 
and the climate projections from the GCMs, forest futures are 
also influenced by forest management and timber harvesting 
driven by forest products markets. In the Forest Assessment 
System, the U.S. Forest Products Model simulates the future 
of domestic forest products markets in concert with global 
markets for each RPA scenario (Ince and others 2011). Initial 
analysis indicated that timber supply over the next 50 years did 
not vary substantially among the climate projections for a given 
RPA scenario. The market futures are driven by alternative 
projections of wood product demands linked to the RPA/
IPCC global economic outlook and projected socioeconomic 
conditions for the United States and are most strongly 
influenced by demands for biomass for bioenergy production—
overall, RPA A1B has the highest demand for bioenergy, 
RPA B2 has the least, and RPA A2 is intermediate. These 
futures are also influenced by demands for traditional products 
governed by population growth and levels of economic activity 

associated with the scenarios. The linkage between forest 
forecasts and market forecasts differs across the three Forest 
Products Model supply regions (South, North, and West, where 
West is defined by the combination of the Pacific Coast and 
Rocky Mountain RPA regions). 

This report describes forest forecasts for a large number of 
futures. In all regions, we simulate the future under the nine 
RPA scenario-climate combinations. In the South we also 
intersect these nine with market and management assumptions 
to define a total of 20 futures (table 2). In the other regions, we 
simulate the nine RPA combinations assuming a continuation 
of historical (~1995–2005) harvest patterns. We then link 
forest futures to the market forecasts for RPA scenarios 
from the Forest Products Model to provide estimates of how 
market futures would reshape forest conditions. In the South, 
we selected one future from among the twenty to represent 
each RPA scenario. In the North and Pacific Coast regions, 
we generated three separate futures by adjusting inventory 
removals to match the Forest Products Model outputs (table 3).

Table 1—Intergovernmental Panel on Climate Change scenarios and general circulation 
model climate models used for the 2010 Resources Planning Act Assessmenta 

Scenario Integrated Assessment Model (IAM) General circulation model Model vintage

A1B AIM CGCM3.1(T47) MIROC3.2 
CSIRO-Mk3.5 AR4

A2 ASF CGCM3.1(T47) MIROC3.2 
CSIRO-Mk3.5 AR4

B2 MESSAGE
CGCM2 
CSIRO-Mk2 
UKMO-HadCM3

TAR

a The general circulation models are defined as follows: CGCM3.1 - Canadian Centre for Climate Modeling 
and Analysis Coupled Global Climate Model (CGCM3), Medium Resolution (T47). (Source: http://www.
cccma.bc.ec.gc.ca/models/cgcm3.shtml); CSIRO-Mk3.5 – Commonwealth Scientific and Industrial 
Research Organization (CSIRO) (Australia), CSIRO Mk3 Climate System Model. (Source:  http://www.
cmar.csiro.au/e-print/open/gordon_2002a.pdf); MIROC3.2MR – Center for Climate System Research, 
University of Tokyo; National Institute for Environmental Studies and Frontier Research Center for Global 
Change (Japan), Model for Interdisciplinary Research on Climate (MIROC) Version 3.2 Medium Resolution. 
(Source: http://www.ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf); CGCM2 - Coupled Global 
Climate Model, Medium Resolution (T47). Canadian Centre for Climate Modeling and Analysis. (Source: 
http://www.cccma.bc.ec.gc.ca/models/cgcm2.shtml); CSIRO-Mk2 - Australia’s Commonwealth Scientific 
and Industrial Research Organisation Australia (CSIRO). (Source: http://www.cmar.csiro.au/e-print/open/
hennessy_1998a.html#ccm); UKMO-HadCM3 - Hadley Centre for Climate Prediction and Research U.K. 
(Source: http://cera-www.dkrz.de/IPCC_DDC/IS92a/HadleyCM3/hadcm3.html).
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Table 3—Labels for 12 futures evaluated in this report for the North, Rocky Mountain, and Pacific Coast 
regions defined by a combination of  Resources Planning Act scenarios (A1B, A2, B2), general circulation 
models (MIROC, CSIRO, CGCM, and Hadley), and forest harvesting assumptions

Scenarios
General circulation 
model Forest harvesting A1B A2 B2

MIROC3.2  Historical A1_MI A2_MI

CGCMa  Historical
 Market simulation

A1_CG
A1_CG_MKT

A2_CG
A2_CG_MKT

B2_CG
B2_CG_MKT

CSIROb  Historical A1_CS A2_CS B2_CS

HadCM3  Historical B2_HA

a CGCM refers to CGCM3.1 for A1B and A2 and CGCM2 for B2.
b CSIRO refers to CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2. 

Table 2—Labels for 20 futures evaluated in this report for the South Region defined by 
a combination of Resources Planning Act scenarios (A1B, A2, B2), general circulation 
models (MIROC, CSIRO, CGCM, and Hadley), timber prices (high for increasing 
prices, low for decreasing prices), and alternative tree planting rates

Scenarios
General circulation 
model Timber prices A1B A2 B2

MIROC3.2
High

A1_MI_H

A1_MI_H_HPa

A2_MI_H

Low A1_MI_L A2_MI_L

CGCMb
High A1_CG_H A2_CG_H B2_CG_H
Low A1_CG_L A2_CG_L B2_CG_L

CSIROc
High A1_CS_H A2_CS_H B2_CS_H
Low A1_CS_L A2_CS_L B2_CS_L

HadCM3
High B2_HA_H

Low
B2_HA_L

B2_HA_L_LPd

a Scenario with elevated planting rates.
b CGCM refers to CGCM3.1 for A1B and A2 and CGCM2 for B2.
c CSIRO refers to  CSIRO-Mk3.5  for A1B and A2 and CSIRO-Mk2 for B2.
d Scenario with reduced planting rates.
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Forest Dynamics Model

This report focuses on inputs to and forecasts from the Forest 
Dynamics Model, and the discussion of methods concentrates 
on this component of the U.S. Forest Assessment System (fig. 
1). Other components are described in separate reports [the 
U.S. Forest Products Model is described in Ince and others 
(2011), and the All Land Use Model is described in Wear 
(2011)]. The overview of methods that follows is augmented by 
a detailed description in the appendix to this report.

The primary objective of the Forest Dynamics Model is to 
forecast change in the forest inventories measured by the 
Forest Inventory and Analysis (FIA) Program of the Forest 
Service, U.S. Department of Agriculture. Thousands of plots 
comprise the FIA inventories, and the Forest Dynamics 
Model forecasts development of each observed forest plot 
in the inventories.1 Forecasting at this scale allows for 
re-aggregation of findings according to different schema 
(for example, by States, by survey units, or by ecological 
sections). For example, forecasts described in this report have 
been used to explore natural resource issues for the Southern 
Forest Futures Project (Wear and Greis, in press) and the 
Northern Forest Futures Project (http://nrs.fs.fed.us/futures/). 
Historical FIA plot data provide the information foundation 
for building forecast models, and results are expanded to 
broader scales using the area frame design of the forest 
survey. These methods generate full inventory datasets for 
each time step of the forecast.

To model and forecast changes in forest conditions, the Forest 
Assessment System forecasts the condition of each plot in the 
forest inventory in response to multiple vectors of change. Each 
plot record contains a set of measured and associated variables 
combined with an expansion factor that describes the area 
(portion of the sampled population of forests) that each plot 
represents. Expansion factors are reconciled at the county level 
within the FIA system. We define the information set for each 
plot I(p) as:

I(p) = {S, Z, C, E} (1)

1 The use of the term “plot” in this report refers to what is technically called a 
“condition” within a plot in the FIA system. Where plots can have more than 
one forest condition—e.g., they occur on a boundary between forest types—
then multiple conditions are recorded for each plot. Use of the word “plot” 
simplifies the language in this report without loss of precision.

where

S represents a vector of state variables
Z is a vector of condition variables
C is a vector of climate variables
E is a vector of expansion factors for the plot

S and Z together comprise the measured variables for each 
plot from phase II (field measurements) of the forest inventory 
while climate variables are derived from PRISM datasets 
(Coulson and Joyce 2010), and E is derived from phase I (aerial 
measurements) of the FIA inventory. We distinguish between 
state and condition variables to facilitate description of the 
modeling approach.

Forecasting plot conditions starts with projecting changes 
in the state variables (S) using transition models and climate 
variables (C) from downscaled climate projections for the 
Resources Planning Act (RPA) scenarios (Joyce and others, 
in press). For example, the future age of a forest plot is a state 
variable and is defined either by adding the time step of the 
simulation to the current age or resetting the age to zero due to 
a disturbance. Forest type may be forecasted based on current 
forest type and projected climate (C). Once the forecasted state 
and climate variables have been defined, then a historical plot 
record with comparable state and climate variable values is 
used to describe the future condition (including the Z variables). 
This historical plot record is randomly selected from a database 
of historical data according to an imputation or resampling 
algorithm. Changes in the expansion factors (E) for each plot are 
determined by the land use model that forecasts change in forest 
area as a function of urbanization and other land use choices that 
depend on the population and economic variables associated 
with the RPA scenarios (Wear 2011). Proportional changes in 
expansion factors were constructed at the county level.

Key decisions in developing the projection models include 
choosing which variables are state variables, how to project 
changes in state variables, and how to structure the imputation 
algorithm. These choices are based in part on the frequency 
of FIA inventories which varies between the regions of the 
country. In all regions however, the basic structure of the 
modeling approach is defined by three modules. The modeling 
starts with an algorithm that clusters similar plots according 
to a set of independent variables (the partitioning module). 
These partitions of plots define the groupings of plots for the 
imputation module and also define which variables are the 
state variables that need to be forecasted within the transition 
module. Changes in key state variables for each forest plot 
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are forecasted in response to projected forest aging, climate 
conditions, and human use choices (the transition module). 
After forecasting the state variables, a historical plot record 
with comparable conditions is selected to represent the 
simulated plot in the future inventory (the imputation module) 
based on clusters chosen in the partitioning module. 

In most cases models were developed for individual States 
because of disparities in inventory dates. In some cases, multiple 
adjacent States or portions of adjacent States (defined by FIA 
survey units) are modeled together either because a concurrence 
of inventory dates allowed for pooling of data—thereby 
enhancing the information content of the resulting models—or 
because a State was too small to support model estimation. 
For example, we pooled southeastern States (Virginia, North 
Carolina, South Carolina, and Georgia) to allow for more 
variation in climate conditions across latitudes and a deeper plot 
donor pool, and we aggregated the Delaware data with adjacent 
survey units from Pennsylvania due to its small sample size.

The transition and imputation modules define a probabilistic 
or Monte Carlo modeling framework that was run several 
times to simulate the variance associated with various model 
components. Simulation experiments indicated a convergence 
of variance estimates after about 20 simulations, and we chose 
to run the model for 26 iterations for each scenario (limits of 
computing time kept us from constructing more simulations). 
For the display of forecast results, we chose to use one complete 
simulated inventory rather than averages for variables because 
the latter would not be representative of the joint distribution 
of forest attributes. The iteration with the greatest “central 
tendency,” defined as minimum proportional distance of six 
variables from their means over the 50-year simulation period, 
was selected. These six variables were total growing stock 
volume (cubic feet), trees per acre, and sawtimber volume for 
hardwoods and softwoods.

Models were implemented for individual States, aggregates of 
States, or adjacent Survey Units across States, and results were 
summed up to display results for the RPA regions. The time 
step for each model in the East was defined by the time interval 
of the paired inventories used to build its transition module 
and in the West was defined as a fixed 10-year step because 
inventories could not be paired. Projections commenced from 
the date of the latest inventory available, so the years for 
which forecasts were generated varied across States. Regional 
aggregates for the reporting years (2020, 2030, 2040, 2050, 
and 2060) were constructed by assigning State inventories 
with most proximal dates to the reporting year, consistent with 
methods used to generate historical multi-State aggregates with 
FIA data (Smith and others 2009). See the appendix for details 
on all elements of the Forest Dynamics Model.

Data Analysis

Climate affects forest forecasts through its influence on 
transition and plot imputation modules. That is, changes in 
climate associated with a plot can yield changes in the plot 
partition from which future conditions are sampled. The 
specific variables affecting future forest conditions vary by 
State and by forest type across the RPA regions (table A1). 
However, average temperature and total precipitation are 
frequently influential in the resampling. To help interpret 
forecast results, we analyzed average temperatures and 
total precipitation from the climate projections using two 
approaches. For each region, we constructed the cumulative 
distribution of monthly values for all counties for decadal 
periods and examined the changes over time and between 
scenarios. This provides an aggregate measure of shifts in 
temperature and precipitation for the region. 

In addition, for each county, we constructed and 
compared distributions of monthly values of mean daily 
surface temperature and total annual precipitation using 
Kolmogorov-Smirnov (KS) tests, e.g., Press and others 
(1987), to test the null of no significant difference between 
decades. Tests were constructed for forecasted decades  
(2001–10, 2011–20, …, 2051–60) versus the historical 
decade (1991–2000). The Kolmogorov-Smirnov test is a 
nonparametric test based on the distance between the two 
empirical distributions, where the null hypothesis is that 
the two samples are generated by the same distribution. We 
consider the KS test in this application to be a conservative 
test, in that it is nonparametric (makes no assumptions about 
the underlying distributions) and is most sensitive to changes 
at the center of the distribution (NIST/SEMATEC 2012) and 
not at the tails. Rejection of the null is therefore a strong signal 
of differences in the distributions and highlights especially 
strong climate change in these areas. Failure to reject the null 
should not be viewed as a rejection of change per se, especially 
given the conservative nature of the test (i.e., higher type II 
errors; failure to reject false nulls) and the stochastic nature of 
the climate projections. 

These tests define emphatic changes and support general 
discussion of climate projections as they influence our results. 
However, other variables are also potentially relevant to our 
analysis, including seasonal temperature averages, maximum 
and minimum temperature and precipitation values, or 
frequency of extreme events that can affect change in biological 
processes. Joyce and others (in press) indicate important shifts 
in several seasonal measures with these climate projections 
even where annual values are less variable. 
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For each State, we required plot records from the Forest 
Inventory and Analysis (FIA) Program of the Forest Service, 
U.S. Department of Agriculture, to construct the partitioning 
model, conduct the imputation, and build transition models. 
Analysis for the Eastern United States required two panels of 
matched plots to estimate transition models. The ideal case 
was where we had two panels from the national continuous 
inventory design. However, in many cases we faced a situation 
where only one continuous inventory was available and we 
used two older inventories (periodic inventories) to construct 
transition models for key variables. Because of changes in 
the plot measurement approach, we determined that it was 
important to use two inventories of comparable design to 
construct transition models. 

For each inventory that we used, we extracted raw data from 
publicly available plot records available at the FIA Web site. 
We were granted access to confidential plot location data 
which allowed us to conduct the plot matching for evaluating 
the transitions over time. FIA data are stored in tables, three 
of which are primary for our analysis (Miles and others 2001). 
The plot, condition, and tree tables provide information on 
the overall plot characteristics, discrete landscape features, 
and measures associated with individual trees larger than an 
inch in diameter, respectively. As a validation step we used the 
area frame to generate total values for States and survey units 
which could then be compared with online report generators 
and published reports to confirm the accuracy of the algorithms 
employed in this analysis.

Several other variables were summarized for the plots using 
plot, condition, and tree tables in the FIA database. In the 
South, forest type and stand origin were combined to create a 
broad forest type/management class variable coinciding with 
the definition in published FIA reports. The six broad classes; 
natural pine, planted pine, mixed pine-hardwood (further 
referred to as mixed pine), upland hardwood, lowland hardwood, 
and non-forest were recoded as binary variables (i.e., x=0 or 
x=1). In other regions, forest types were aggregated using 
standard forest type groups. The dynamics of a forest type group 
were modeled if the group comprised at least 2 percent of plots 
in the State’s inventory. Minor forest type groups were held 
constant throughout the forecast period (see the appendix for a 
list of forest type groupings used in each region).

Estimates of the carbon sequestered on a forest plot were 
attached to each historical plot using models developed and 
applied by FIA using the U.S. Forest Carbon Calculation Tool 
(Smith and others 2007). This tool incorporates estimates 
derived from field measures and uses the FORCARB2 model 
to provide carbon inventories that are consistent with standards 
developed by the Intergovernmental Panel on Climate Change 
(Penman and others 2003). Carbon estimates for historical plot 
records contained in the FIA database were attached to future 
plots through the imputation algorithm and this provided plot-
level forecasts of carbon stored for each of eight forest pools 
under each of the evaluated scenarios. 

Climate data records were attached to each forested plot in 
the inventory as described in the section on future scenarios. 
Historical data were derived from the PRISM dataset and 
provided monthly values spanning a 55-year period (1950-
2005) at the county level [see Coulson and others (2010a) for 
details on aggregation of 2.5 arc-minute grid data to define 
county aggregates]. Using three general circulation models 
associated with each of the three Resources Planning Act 
(RPA) scenarios, the nine downscaled climate projections were 
also attached to each forest plot record based on the county 
location of the plot. For the analysis of forest conditions in 
the East, we averaged the climate variables for the life of the 
forest plot, e.g., if the plot was assigned an age of 25 years, we 
applied 25-year averages for each of the climate variables used 
in the partitioning module. In the West, we used a fixed-length 
average (20 years) to link climate conditions to forest plots.

Fitting the timber harvest models for the South required esti-
mates of potential revenues from alternative treatments of each 
plot (full harvest, partial harvest, or deferred harvest) based on 
volume measures derived from the FIA records coupled with 
timber product prices. Product prices were defined as the aver-
age of stumpage prices recorded during the State’s inventory 
period by Timber Mart South, a region-wide price reporting 
service. Prices for hardwood sawtimber, hardwood pulpwood, 
softwood sawtimber, and softwood pulpwood were recorded 
for the Timber Mart South’s sub-State regions and assigned 
to plots on a county basis. Potential revenues further required 
forecasted volumes, which we estimated using a series of re-
gression equations for each major forest type based on unhar-
vested plots as explained in Polyakov and others (2010).

CHAPTeR 3

DATA
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For the South, forest forecasts were constructed for each of the 
three Resources Planning Act (RPA) scenarios linked to the 
general circulation models (GCMs) described in table 2. To 
explore a range of potential futures for forest conditions we also 
considered a range of market conditions defined by alternative 
price paths for timber products: real prices increasing at a 
compounded 1 percent per year and real prices decreasing at a 
compounded 1 percent per year from a base year of 2006. 

Another key element in the development of forests in the 
South over the past 50 years and likely for the future is the 
rate of tree planting. Tree planting is forecasted based on the 
observed rates of tree planting following a harvest by forest 
type in the South based on historical inventories by the Forest 
Inventory and Analysis (FIA) Program of the Forest Service, 
U.S. Department of Agriculture. Future planting rates could be 
altered by various changes in landowner preferences including 
the effects of an increasingly dynamic forest ownership 
base (Butler and Wear, in press). We therefore consider two 
additional forecasts, one which increased the base planting 
rates by 50 percent for an RPA A1B storyline (strong economic 
growth) with high prices and one which reduced the planting 
rate by 50 percent for the RPA B2 storyline (low economic 
growth) with low prices.1

Table 2 provides a summary of the resulting 20 alternative futures 
(three RPA scenarios by three climate projections, by two price 
alternatives plus two alternative planting scenarios) evaluated 
for the South. After considering the range of forest forecasts for 
these 20 futures, we examine the potential implications of the 
timber market simulations simulated by the U.S Forest Products 
Model (Ince and others 2011), by linking one of these 20 futures 
to represent associated changes in forest conditions. 

Climate

To frame the discussion of the forest forecasts, we compare 
climate projections from the nine RPA scenario-climate 
combinations with historical conditions for the South. 
Distributions of monthly values for a projected decade (2010 
refers to the monthly values between 2001 and 2010, 2020 

1 A more ideal model would allow planting decisions to be tied to current and 
anticipated timber market conditions, i.e., allowing planting and other forest 
investments to be determined as endogenous variables. These relationships 
proved elusive to our modeling efforts as recent tree planting patterns have 
proved counterintuitive to economic logic—tree planting expanded by 
about 30 percent between the late 1990s and 2010, when prices for softwood 
products declined and remained suppressed.

refers to monthly values between 2011 and 2020, and so on) are 
compared with a historical decade (2000 for the monthly values 
between 1991 and 2000). We start by plotting the cumulative 
distributions of temperatures/precipitation for a graphical view 
of regional change over time. We then map where significant 
differences arise between projected and historical distributions 
for counties in the region.

Figure 6 shows a comparison of cumulative temperature 
distributions in the 2060 decade for the nine RPA scenario-
climate scenarios and for the historical decade (2000). 
Projected regional temperature distributions shift to the right 
of the historical distribution reflecting increasing temperatures. 
RPA A1B-MIROC3.2 and RPA A2-MIROC3.2 scenarios show 
the greatest increase in temperatures in 2060, with a 3 °C 
increase in temperature at the 50th percentile of the distribution 
and a 4 °C increase at the 90th percentile. The other RPA 
scenario-climate combinations all show temperature increases 
that are somewhat less than for the RPA A1B-MIROC3.2 
combination (about a 2 °C increase at the 50th percentile and a 
2.5 °C increase at the 90th percentile).

A graph of temperature distributions for each of the six decades 
for the RPA A1B-MIROC3.2 combination, shows temperatures 
increasing in every decade, with the largest increase between 
the final two decades compared (2050 and 2060; fig. 7A). A 
similar pattern holds for the RPA B2-CSIRO-Mk2 scenario 
(fig. 7B) and for all other RPA scenario-climate combinations 
(not shown here).

Spatial patterns of change vary across the RPA scenario-
climate combinations. Figure 8 shows spatial patterns of 
change based on the Kolmogorov-Smirnov test (p=0.05) at the 
county level applied to the RPA A1B-MIROC3.2 combination 
(the scenario-climate combination with the greatest overall 
increase in temperature by 2060). The black areas indicate 
counties where there is significant distributional disagreement 
between historical and projected data for the specified decade. 
Figure 9 provides the same set of maps for the RPA A1B-
CSIRO-Mk3.5 scenario. For the RPA A1B-MIROC3.2 scenario 
(fig. 8), temperature differences are discernible in the Florida 
Peninsula in 2020, spreading north into Georgia and Alabama 
and emerging in Oklahoma and northern Arkansas in 2030. 
By 2040, most other States, except Tennessee, North Carolina, 
Kentucky, and Virginia, exhibit significantly different 
temperatures. By 2060, the entire map is black, indicating a 
significant outward shift in temperature distributions for all 
counties under this RPA scenario-climate combination. 

CHAPTeR 4
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Figure 6—Empirical distributions of monthly temperatures for the South Region for a historical decade (1991–2000) and projections of the nine Resources 
Planning Act (RPA) scenario-climate combinations in the 2060 decade (2051–60).
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Figure 7—Empirical distributions of monthly temperatures for the South Region for a historical decade (1991–2000) and for 6 successive decades of climate 
projections (A) for the Resources Planning Act (RPA) A1B-MIROC3.2 combination and (B) for the RPA B2-CSIRO-Mk2 combination.
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Figure 8—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000) and  
6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-MIROC3.2 combination. Black areas indicate distributional  
disagreement between historical and projected temperature distributions (p value <0.05).

fail to reject null: p > 0.05
reject null: p ≤ 0.05

The change pattern is quite different for RPA A1B-CSIRO-
Mk3.5 (fig. 9). As with RPA A1B-MIROC3.2, temperature 
increases are first detected in the peninsula of Florida, but 
“spread” at a slower rate. In 2040, the entire Florida peninsula 
has significantly higher temperatures. In 2060, significant 
shifts in temperature distributions are found in Florida, the 
remainder of the Gulf Coast region and through southern and 
western Texas.

Figure 10 maps the proportion of the nine RPA scenario-
climate combinations that lead to rejection of equivalent 
temperature distributions between the 2000 and 2060 decades 
(KS test, p=0.05). Temperature distributions are significantly 
warmer in at least four scenario-climate combinations for a 
majority of counties. Counties in roughly the southern third of 
the region have significantly different temperatures in seven or 
more of the nine climate realizations. Two small sub-regions 
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have less than four significantly different temperature 
outcomes: the Piedmont and Coastal Plain areas of North 
Carolina and Virginia and an area that spans north-central 
Texas and most of Oklahoma.

Projections of precipitation are more variable than temperature 
projections across the RPA scenario-climate combinations 
and across the region (Joyce and others, in press). Under some 
combinations, total regional precipitation declines; under 
others, total regional precipitation increases. Cumulative 
distributions of monthly precipitation values show an inward 
shifting of precipitation (drying) for the RPA A1B-MIROC3.2 

and RPA A2 -MIROC3.2 scenarios (fig. 11). For the other 
scenario-climate combinations, the distributions pivot, 
indicating that some areas become wetter while others become 
drier than the historical decade. For the RPA A1B-MIROC3.2 
and RPA A2-MIROC3.2 scenarios, the precipitation 
distribution shifts inward (becomes drier) at every time step, 
with the biggest shift occurring between 2050 and 2060 (fig. 
12).

The spatial pattern of precipitation change is also variable. 
For RPA A1B-MIROC3.2 (fig. 13), significant declines in 
precipitation occur across a large area of the South including 

Figure 9—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000) and  
6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) scenario A1B-CSIRO-Mk2 combination. Black areas indicate distributional 
disagreement between historical and projected temperature distributions (p value <0.05).

fail to reject null: p > 0.05
reject null: p ≤ 0.05
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Figure 10—Proportion of the nine Resources Planning Act (RPA) scenario-climate combinations yielding significant differences in decadal temperature 
distributions between the historical decade (1991–2000) and the 2060 decade (2051–60) for counties in the South Region.

up to 0.3333
0.3334 – 0.6666
0.6667 –  1

the Coastal Plain and much of Texas by 2030. The area of 
significant drying increases through 2060 to include Oklahoma, 
Arkansas, and Louisiana. Change in precipitation is different 
and more sporadic under RPA A1B-CSIRO-Mk3.5 (fig. 14), 
shifting between drier and wetter conditions between decades 
in some areas. In contrast, under RPA B2-HadCM3 (fig. 15), 
little difference in precipitation distributions can be detected 
across most of the South. Figure 16 maps the proportion of the 
nine RPA scenario-climate combinations leading to rejection 
of equivalent monthly precipitation distributions between the 
1991–2000 decade and the 2051–60 decade (KS test, p=0.05). 
A large majority of the region shows significant differences in 
precipitation distributions for one to three of the scenario-climate 
combinations. Four to six scenario-climate combinations yield 
significant change in precipitation distributions for counties in 
the peninsula of Florida, southern and eastern Texas, and central 

Tennessee. These models generally show drying in the Florida 
sub-region and wetter conditions in the Tennessee sub-region, 
but either drier or wetter conditions are predicted for eastern 
Texas depending on the model.

In sum, the RPA scenario-climate combinations project 
significant warming for the South across most models but 
yield projections of precipitation that vary between models 
and across time and space within models. However, even in 
the case of constant precipitation, water availability for plant 
metabolism would be reduced by rising temperatures. Maps 
of significant changes highlight areas with emphatic change in 
these two variables (i.e., these are conservative tests) and other 
climate variables may also have important influence on future 
forest conditions but are not examined here.



16

Forest Forecasts for the South

Figure 11—Empirical distributions of monthly precipitation values for the South Region for a historical decade (1991–2000) and projections of the nine Resources 
Planning Act (RPA) scenario-climate combinations in the 2060 decade (2051–60).
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Figure 12—Empirical distributions of monthly precipitation for the South Region for a historical decade (1991–2000) and for 6 successive decades (2010–60)  
of climate projections for the Resources Planning Act (RPA) A1B-MIROC3.2 combination.
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Forest Area

Forecasts of forest area change derive from the land use 
analysis contained in Wear (2011).2 All 20 alternative futures 
predict declines in forest area, with losses ranging from 4–21 
million acres (2–10 percent) between 2010 and 2060, the result 
of population- and income-driven urbanization and of changes 
in the relative price of timber products (fig. 17). The smallest 
loss of forest area is forecasted for scenario RPA B2, with high 
timber prices, which has the lowest population growth and the 
lowest income growth resulting in the lowest urbanization, and 
increasing timber prices resulting in shifts of some rural land 
toward forest uses. The largest loss of forest area is forecasted 

2 The total forest area changes reported in this report differ from those in Wear 
(2011) because (1) the analysis in Wear (2011) is based on National Resource 
Inventory (NRI) data benchmarked in 1997, while this chapter translates 
those projections into FIA data benchmarked in 2010; and, (2) while the NRI 
measures only non-Federal land uses, the FIA data address all ownerships.

for RPA A1B and low timber prices, where population growth 
is moderate but income growth is strong (resulting in high 
urbanization), and timber prices are falling (resulting in shifts 
of forest land to agricultural uses). Figure 17 also shows that 
price effects dominate the projection of forest area, with 
the highest forest loss associated with scenarios that have 
decreasing prices; the three scenarios with the lowest forest loss 
have increasing prices.

Forest losses are especially high in a few areas of the South  
(fig. 18). For all alternative futures, forest losses are 
concentrated in the Southern Appalachian Piedmont region 
from northern Georgia through North Carolina and parts of 
Virginia, the Atlantic and Gulf of Mexico coastal areas, and  
the area surrounding Houston, TX. The population and 
income-fueled urbanization in RPA A1B spreads low intensity 
forest losses across a broader area of the South (Wear 2011). For 
all alternative futures, the number of acres lost is largest in the 
Coastal Plain and smallest in the Mississippi Alluvial Valley 

Figure 13—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000) and  
6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-MIROC3.2 combination. Grey and black areas on the maps indicate 
distributional disagreement between historical and forecasted distributions (p value <0.05) and indicate drier and wetter conditions, respectively. 

fail to reject null
reject null: drier
reject null: wetter
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and the Mid-South. The percent of acres lost is largest in the 
Piedmont followed by the Appalachian-Cumberland highlands 
and the Coastal Plain.

Forest Types

Forest area change also differs among the five forest 
management types: planted pine, natural pine, mixed pine-
hardwood, upland hardwood, and lowland hardwood. The 
upland and lowland hardwood types are forecasted to comprise 
between 51 and 53 percent of all forests in 2060, a decline 
from about 54 percent in 2010. The greatest changes however 
are found among the softwood types — as planted pine area 
increases while natural pine and mixed pine-hardwood area 
declines. These forest dynamics are heavily influenced by the 
interaction of land use changes and management for forest 
products, which in turn is driven by timber market conditions, 
and by the rate of forest planting.

Planted pine—The area of planted pine forests in the South, 
currently at about 39 million acres or 19 percent of forest area, 

is forecasted to increase by 2060 (fig. 19A). Forecasts that apply 
the historical rate of tree planting for harvested area by forest 
type and State yield a range of 53.8 million to 59.9 million 
acres of planted pine by 2060 or an increase of 38–54 percent. 
Among this group of alternative futures, high prices (lines with 
triangles in fig. 19A) yield more acres of planted pine than do low 
prices (lines with circles in fig. 19A). The high and low planting 
scenarios expand this range to 46.8 million to 67.2 million acres 
or an increase of 20–72 percent. Even with the high planting 
rates, planted pine area would grow at rates much lower than 
those observed between the 1980s and 2010 (e.g., planted pine 
area expanded by about 30 percent between 1999 and 2010).

Natural pine—Forecasted losses in the area of naturally 
regenerated pine forest types mirror the gains in planted pine 
forests and are therefore inversely related to the condition of 
forest products markets (fig. 19B). The largest decrease in 
natural pines—a loss of 58 percent from 31.5 million acres 
in 2010 to 13.5 million acres in 2060—is associated with 
the highest planting rates. The smallest decline occurs with 
lower timber prices and planting rates, but losses are still 

Figure 14—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000) and  
6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-CSIRO-Mk3.5 combination. Grey and black areas on the maps indicate 
distributional disagreement between historical and forecasted distributions (p value <0.05) and indicate drier and wetter conditions, respectively.

fail to reject null
reject null: drier
reject null: wetter
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substantial—7.6 million acres or 25 percent from 2010 to 2060. 
Regardless of the future evaluated, naturally regenerated pine 
types are forecasted to decline, continuing a trend that has 
dominated forest type dynamics since the 1960s. A strong 
propensity to harvest mature natural pine forests combined 
with a strong propensity to use planting as a regeneration 
technique following harvests in this type of forest drives the 
changes shown in figure 19B.

Mixed pine-hardwood—The area of the mixed pine-
hardwood forest management type also declines for all futures, 
with a similar pattern of change but smaller acreage and 
percent changes than is forecasted for natural pines (fig. 19C). 
As with natural pine, mixed pine-hardwood is more heavily 
influenced by timber market conditions than by urbanization 
rates. Mixed pine-hardwood declines range from 8.5 million 
acres (38 percent) to 3.9 million acres (17 percent) by 2060. 

Upland hardwood—At more than 80 million acres in 2010, 
upland hardwoods are the predominant forest type in the 

South, more than double the area of the next largest forest type. 
Upland hardwoods are forecasted to decline for all futures  
(fig. 19D), and variations in forecasts are associated more with 
the rate of urbanization than with timber market futures. The 
three futures with the lowest upland forest loss are associated 
with lower urbanization (RPA B2 scenario) and high timber 
prices, and the three futures with the highest loss are associated 
with the higher urbanization forecasts (RPA A1B scenario) 
and low timber prices. Loss of upland hardwood forests ranges 
from 5.9 million acres (about 8 percent) for RPA B2 with high 
prices to 11.2 million acres (14 percent) for RPA A1B with low 
prices. Figure 19D shows little to no separation of forecasts for 
different GCMs applied to the same future. The set of forecasts 
demonstrates therefore that prices interact with urbanization 
forecasts to determine future upland hardwood forest area. 

Lowland hardwood—The area of lowland hardwood forests 
is also more sensitive to the rate of urbanization and less 
sensitive to forest products markets than the softwood types. 
For this forest management type (fig. 19E), forecasts indicate 

Figure 15—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000) and 
6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) B2-HadCM3 combination. Grey and black areas on the maps indicate 
distributional disagreement between historical and forecasted distributions (p value <0.05) and indicate drier and wetter conditions, respectively.

fail to reject null
reject null: drier
reject null: wetter



20

Forest Forecasts for the South

Figure 17—Total forest area for six Resources Planning Act (RPA) scenario-timber price combinations for the South Region. Forest area varies only by RPA 
scenario and by timber price futures but not by climate projections.

Figure 16—Proportion of the nine scenario-climate combinations yielding significant differences in decadal precipitation distributions between the historical 
decade (1991–2000) and the 2060 decade (2051–60) for counties in the South Region.
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Figure 19—Forecasts of the area of forest types in the South Region for 20 
Resources Planning Act (RPA) scenario-climate-timber price combinations, 
2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; 
RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented 
by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO 
(CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 
by black. Lines marked by triangles indicate scenarios with increasing prices; 
circles indicate scenarios with decreasing prices.
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losses ranging from 1.7 million acres (5 percent) to 4 million 
acres (12 percent) by 2060 from a base of 32 million acres in 
2010. The relative ranking of change across futures is broadly 
similar to the forecasts for upland hardwood types. Lowland 
forests lose proportionally less area than the other forest types 
that experience losses.

Standing Biomass

Of the various metrics available for measuring biomass 
changes for a site in a forest inventory, we opted to focus on the 
volume of growing stock because it is a useful index both for 
timber analysis and for measuring other ecosystem services. 
Total growing stock volumes are forecasted to change in 
response to both land use changes and timber harvesting levels 
(fig. 20). From a base of about 292 billion cubic feet in 2010, 
inventories increase at most by about 11 percent in 2060 under 
the low-urbanization (RPA B2)/low-timber-price future. The 
smallest increase in total growing stock inventories is found 
with the high-urbanization (RPA A1B)/high-timber-price 
future, with an increase in volume to 2030 and then a decline 
over the remainder of the forecast period. For these futures, the 
volume in 2060 is about 1 percent higher than values observed 
in 2010. While at no time during the forecast period does 
inventory fall below 2010 levels, 16 of 20 futures are trending 
downward by the end of the forecast period. Growing stock 
forecasts are more strongly affected by timber price futures 
than by RPA scenario (population and income), with some 
separation between GCM projections appearing toward the end 
of the forecast period.

Patterns of change differ between hardwood and softwood 
components of the inventory and generate generally 
countervailing changes. Under all futures, softwood growing 
stock inventories increase (fig. 21). For the low-urbanization 
(RPA B2)/low-timber-price future, softwood inventories 
increase from a base of about 121 billion cubic feet in 2010 to 
as much as 148 billion cubic feet (37 billion cubic feet or  
22 percent). The smallest increase is 15 percent (18 billion cubic 
feet) for the high-urbanization (RPA A1B)/high-timber-prices 
future. With the exception of one future, all forecasts indicate 
at least a slight upward trend in volumes of softwood growing 
stock between 2050 and 2060.

Hardwood growing stock inventories reveal different patterns 
of change. Starting from about 171 billion cubic feet in 2010, 
hardwood growing stock volumes peak somewhere between 
2020 and 2040 for all futures and then decline to 2060 (fig. 22). 
The most pronounced declines are for futures with high rates of 
urbanization (RPA A1B) and high timber prices. Declines for 

these futures are in the range of 15 billion cubic feet (9 percent) 
from 2010 to 2060. Futures with low urbanization (RPA B2) and 
low timber prices result in increases of about 3 billion cubic feet 
(2 percent) for the same period. All forecasts show downward 
trends in the volume of hardwood growing stock for 2050–60.

These changes in growing stock volume depart from historical 
patterns of volume accumulation in the South. Between 1963 
and 2010 southern forests accumulated about 2.5 billion 
cubic feet per year or roughly 70 percent. Hardwood forests 
accounted for most of this biomass accumulation (61 percent). 
Although growth is projected to continue over at least the next 
10 years, growing stock volume reaches a maximum and then 
declines somewhat over the following 40 years (fig. 23), with 
hardwood growing stocks declining, especially in response to 
urbanization, while softwood volumes increase only slightly.

Forest Carbon

Carbon contained in the forests of the South amounts to about 
12.4 billion tons at the beginning of forecasts with a majority 
of the carbon in soil organic matter and living trees (fig. 24). 
Accordingly, forecasts of forest carbon would be affected by 
changes in the area of forests and in the amount of biomass 
as described earlier. Figure 24 shows forecasts of future 
forest carbon in the South and generally shows a peaking of 
forest carbon in either 2020 or 2030 followed by a downward 
trajectory. Figure 24 reveals three clusters of futures. The 
greatest loss of forest carbon is recorded for high urbanization 
(RPA A1B)/low price scenarios, with the least area of forest 
land in the future (see fig. 24). The least loss of forest carbon 
is recorded for the seven futures with the least urbanization 
(RPA B2). The middle cluster of futures is occupied by middle 
urbanization (RPA A2) and high urbanization (RPA A1B) 
futures with high timber prices. In all cases, within a future, 
higher prices yield somewhat higher levels of carbon stored in 
forests when compared to the low price futures.

With only two exceptions, these futures predict carbon stocks in 
2060 that are reduced from 2010 values. The two exceptions are 
for low urbanization (RPA B2) futures with high timber prices. 
However, the magnitude of overall change is relatively small. For 
example, the maximum loss of forest carbon between 2010 and 
2060 is roughly 5 percent or a loss of 0.6 billion tons.

Estimates of the total carbon stored in forests derive from 
summing estimates of the carbon stored in eight different 
compartments or pools in forested ecosystems. Aboveground 
pools include live trees, understory plants, down and standing 
dead trees, and litter. Belowground pools include root material 
for live trees, understory plants, and soil organic matter. 
The sum of soil organic matter, aboveground live trees, and 



24

Forest Forecasts for the South

Figure 20—Total biomass measured as growing stock inventory of forests in the South Region for 20 Resources Planning Act (RPA) scenario-climate-timber price 
combinations (see table 2 for labels), 2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation 
model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by 
yellow; HadCM3 by black. Lines marked by triangles indicate scenarios with increasing prices; circles indicate scenarios with decreasing prices.

Figure 21—Total softwood growing stock inventory in the South Region for 20 Resources Planning Act (RPA) scenario-climate-timber price combinations, 
2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; 
CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines 
marked by triangles indicate scenarios with increasing prices; circles indicate scenarios with decreasing prices.
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Figure 22—Total hardwood growing stock inventory in the South Region for 20 RPA scenario-climate-timber price combinations, 2010–60. RPA A1B scenarios 
are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 
and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines marked by triangles indicate 
scenarios with increasing prices; circles indicate scenarios with decreasing prices.

Figure 23—Softwood and hardwood growing stock inventories for the Southern United States, 1962–2060. Forecasts (2010–60) bracket the range of future 
softwood and hardwood inventories shown in figures 21 and 22, respectively.
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belowground live trees comprises nearly 80 percent of the 
total, and forecasts of these three pools are shown in fig. 
25. The pattern of change for soil organic carbon (fig. 25A) 
mirrors forest area changes shown in fig. 17. The forecasts are 
dominated by price futures, with high (low) prices yielding 
more forest land and higher (lower) soil organic carbon. The 
forecasts are then organized by future with low urbanization 
(RPA B2) futures having higher carbon than high urbanization 
futures (RPA A1B). Live tree above- and belowground carbon 
pools (figs. 25B and 25C, respectively) have very similar 
patterns of change. As with soil carbon pools, prices dominate 
the differences among scenarios except that carbon in these 
pools is highest with low prices and lowest with high prices.

Removals 

Harvest choice models used in the Forest Dynamics Model 
generate a set of predicted removals associated with each of the 
20 futures evaluated here. Total harvest removals displayed in 
figure 26 are charted for each period of the simulation. Note 
that the time step associated with the removals is different from 
that associated with measures of the inventory; removals are 
labeled with midpoint values (2015, 2025, etc.) because these 
values represent the average annual removals for the decade, 
rather than an accumulated value. Figure 26 shows that price 
futures dominate future harvesting with increasing prices 

(lines with triangles in fig. 26) leading to increases in total 
removals (average increase of about 36 percent). Declining 
prices are not, however, associated with declines in harvests. 
Rather, these futures (lines with circles in fig. 26) show a slight 
increase to 2025, and then harvest levels stabilize.

Additional information can be derived from examining 
removals forecasts for softwoods and hardwoods separately. 
Figure 27A shows that softwood harvests are more variable 
than total harvests. Increased prices yield as much as a  
45 percent increase in harvest output with the high planting 
future yielding the most timber. For declining prices, harvests 
also increase by as much as 15 percent—the lowest removals 
occur with the lower planting rates. This strong harvest 
response reflects the strong growth in planted pine area 
experienced in the 1990s and 2000s and forecasts of additional 
growth in planted pine area. In addition, it reflects a financial 
maturation of naturally regenerated pine and mixed forests.

The story for hardwoods is quite different (fig. 27B). Increases 
in prices yield expanded removals (generally about an 18 
percent increase). Decreases in prices yield a decline in 
harvests of roughly the same magnitude. This suggests that 
supply is relatively stable over time for hardwoods, likely 
reflecting an offsetting of the losses of hardwood forest area 
with the financial maturation of the remaining forests.

Figure 24—Forecasts of total carbon stored in forests in the South Region, 2010–60, for 20 Resources Planning Act (RPA) scenario-climate-timber price 
combinations. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented 
by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. 
Lines marked by triangles indicate scenarios with increasing prices; circles indicate scenarios with decreasing prices.
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Figure 25—Forecasts of carbon stored in the carbon within forests in the South 
Region, 2010–60, for 20 Resources Planning Act (RPA) scenario-climate-
timber price combinations. RPA A1B scenarios are represented by solid 
lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model 
(GCM) is represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) 
by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by 
yellow; HadCM3 by black. Lines marked by triangles indicate scenarios with 
increasing prices; circles indicate scenarios with decreasing prices.

Removal forecasts can be further examined in light of a 
longer historical record. Figure 28 shows estimates of timber 
removals for the South between 1962 and 2060 and indicates 
that softwood and hardwood removals were roughly equivalent 
in 1962 at about 2.8 billion cubic feet. Softwood removals 
expanded by more than 132 percent between 1962 and 1998, 
and hardwood removals expanded by about 37 percent. As 
a result, softwood output was about 75 percent higher than 
hardwood output in 1996. Harvest outputs declined after 1996 
and have not recovered to date (the data labeled as 2010 may 
actually overstate most recent removal levels). Forecasts of 
timber removals are based on price projections that start with 
prices in 2006 and then move upward or downward by about 1 
percent per year (high and low price scenarios, respectively). 
All of these forecasts show an increase in harvests and a return 
to output growth. These increases are driven by two factors: 
(1) a strong accumulation of biomass over the past 15 years, 
partially explained by the decline in harvests, i.e., wood has 
been accumulating on the stump in lieu of harvests, and (2) a 
strong growth in timber investments through the planting of 

pine, i.e., reflecting the 30 percent expansion between the late 
1990s and 2010. Forecasts of softwood removals span a range 
between a return to 1980s levels of growth and a leveling of 
output about 38 percent above current prices.

The forest forecasts described for the South are driven by futures 
defined with exogenous price paths and this range of price paths, 
along with climate, population, and income projections, show a 
range of plausible futures for forests in the region. The removals 
forecasts from these and other runs of the Forest Dynamics 
Models were used to generate the supply functions for four 
specific products incorporated in the U.S. Forest Products Model 
as described by Ince and others (2011). Set within a model of 
global forest products markets called the Global Forest Products 
Model (Buongiorno and others 2003, 2012), the Forest Products 
Model provides detailed forecasts of market outcomes to 
simulate the effects of the global economic forecasts and energy 
forecasts (notably, forest biomass used to generate energy) 
associated with each of the three RPA scenarios. The latter 
involves downscaling continental-scale demands for wood in 
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Figure 26—Total harvest removals from inventory in the South Region for 20 Resources Planning Act (RPA) scenario-climate-timber price combinations, 
2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; 
CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines 
marked by triangles indicate scenarios with increasing prices; circles indicate scenarios with decreasing prices.

Figure 27—Total removals by broad forest type in the South Region for 20 Resources Planning Act (RPA) scenario-climate-timber price combinations, 2010–60. 
RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM 
(CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines marked by 
triangles indicate scenarios with increasing prices; circles indicate scenarios with decreasing prices.
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bioenergy applications to individual countries and simulating the 
effects on fiber markets and trade. In the United States, the RPA 
A1B scenario is associated with high bioenergy demands, RPA 
B2 is associated with much lower bioenergy demands, and RPA 
A2 is intermediate to RPA A1B and B2. 

Within the Forest Products Model then, timber supply from 
the South is derived from the land use and forest dynamics 
components of the U.S. Forest Assessment System, and so is 
consistent with each RPA scenario’s projections of population 
growth and income growth (at a county scale) and with shifts 
in forest conditions affected by harvesting, successional 
dynamics, climate change, and land use changes. However, 
differences in removal forecasts are not readily discernable 
between GCMs (figs. 26 and 27). 

To examine the resource implications of the market outcomes 
associated with each of the three RPA scenarios, we assign a 
forest simulation to each RPA scenario defined by the Forest 
Products Model projections. Due to the stochastic nature of 
the models and the inherent variability of removals estimates 
in the FIA inventory, we did not expect to find an exact match 
for harvests; instead we sought a simulation with a close 
approximation of the harvest pattern and harvest totals for the 

model run.3 Figure 29 compares the South’s timber harvest 
forecasts from the Forest Products Model with the implied 
harvests from the selected runs of the Forest Dynamics Model, 
and shows that total harvest forecasts are largely consistent 
between the models for the specific futures. This includes 
the productivity enhancement for pine plantations under the 
RPA A1B-high price future. Forest Dynamics Model harvest 
removals are within 10 percent of harvest removals from the 
Forest Products Model for all periods and scenarios, with 
one exception. For the last 2 decades, the RPA A1B Forest 
Products Model projection is roughly 20 percent higher than 
the Forest Dynamics Model projections. For 2055, RPA A2 

3 As with any sampling scheme, FIA inventories are designed to provide 
estimates with a certain level of precision. Forest area projections require 
a sampling error of 3 percent per 1 million acres of timberland, and FIA 
guidelines target an error rate of 5 percent in the East and 10 percent in the 
West for volume, removals, and net annual growth (Woudenberg and others 
2010). Removals forecasts across the 26 runs for each FDM simulation 
reflect this level of variability, and the translation of removals into harvest 
estimates introduces another source of error. Overall, we sought to produce 
Forest Dynamics Model simulations that were within 10 percent of the Forest 
Products Model simulations as representative of forest conditions under a 
particular scenario. An evaluation of total harvest levels over the length of the 
simulation provided a means for evaluating bias, i.e., whether the differences 
between the two models were consistently greater or lesser.

Figure 28—Softwood and hardwood growing stock removals for the South Region, 1962–2060. Forecasts (2010–2060) bracket the range of future inventories 
shown in figure 27.

M
ill

io
n 

cu
bi

c 
fe

et



30

Forest Forecasts for the South

Figure 29—Comparison of harvests predicted by U.S. Forest Products Model and the Forest Dynamics Model scenario associated with the U.S. Forest Products 
Model scenario for the South Region.

Forest Products Model projections are about 11 percent lower 
than the Forest Dynamics Model projections. Total removals 
match fairly closely for the entire simulation period for the 
RPA B2 scenario. The Forest Dynamics Model projects 93, 
103, and 95 percent of removals forecast across all decades by 
RPA A1B, A2, and B2 scenarios, respectively. Based on these 
comparisons, we use RPA A1B-MIROC3.2 with high prices, 
RPA A2-CSIRO-Mk3.5 with high prices and RPA B2-CGCM2 
with low prices to represent futures under these RPA scenarios 
consistent with the market analysis conducted by the Forest 
Products Model.

Age Structure/Habitat

Simulated inventories can be used to evaluate various aspects 
of future forest conditions. One aspect of significance to 
wildlife habitat conditions in the South is the distribution of 
forests by age class, and the implications for the provision 
of early, middle, and late age forest conditions. We evaluate 
changes in the age class distributions of forests of various type 
using two charts. One displays the aerial age class distribution 
by decade for the most recent inventories of the 13 Southern 
States. We then summarize changes in age class resulting 
from the 20 futures between 2010 and 2060 using box plots. 
Figure 30 shows the current age class distribution for planted 
pine forests in the South by 10-year age classes. Each box plot 
describes the distributions of changes in age classes. 

The bottom of the box represents the 25th percentile of the 
predicted changes, the top of the box represents the 75th percentile 
of the predicted changes, the line in the box indicates the median 
forecast, and the plus in the box indicates the mean forecast. The 
“whiskers” of the box show the extreme values of the forecasts.

Not surprisingly, a large majority of planted pine forests are 
between the ages of 0 and 30, with the largest share between 
the ages of 11 and 20 (fig. 30). By 2060, all age classes are 
forecasted to gain area except the 11–20 class, which would 
decline but still be comparable in area to the 0–10 and 21–30 
age classes. Increases in older planted pine forests indicate that, 
while the probabilities of harvest are high, forecasted planting 
is higher than that demanded for additional harvesting over the 
next 50 years. However, only a tiny proportion of planted pine 
forests is expected to exceed 60 years of age by 2060.

Age dynamics differ strongly for natural pine (fig. 31). 
Recalling that this forest type is forecasted to lose substantial 
area by 2060 irrespective of future, forecasted declines in 
nearly every age class are consistent with overall trends  
(fig. 31). For this forest type, the area of forest in the 0–10 age 
class remains relatively constant—harvests not followed by 
planting essentially “recharge” this age class. However the area 
of forests in age classes between 11 and 70 years are forecast 
to decline substantially. The only age class forecasted to gain 
substantial area is the 81-plus age class. Early age habitats 
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Figure 30—(A) Age class distribution for planted pine forests in the South Region, 2010, and (B) the range of forecasted changes in age classes for planted pine 
forests, 2010–60, using forest forecasts for the 20 Resources Planning Act (RPA) scenario-climate-price combinations. RPA A1B scenarios are represented by 
solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for 
B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines marked by triangles indicate scenarios with 
increasing prices; circles indicate scenarios with decreasing prices.
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Figure 31—(A) Age class distribution for natural pine forests in the South Region, 2010 and (B) the range of forecasted changes in age classes for natural pine 
forests, 2010–60, using forest forecasts for the 20 Resources Planning Act (RPA) scenario-climate-price combinations. RPA A1B scenarios are represented by 
solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for 
B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines marked by triangles indicate scenarios with 
increasing prices; circles indicate scenarios with decreasing prices.
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are relatively constant, while middle age classes decline 
substantially and old age classes increase somewhat.

Mixed pine-hardwood forests are forecast to experience 
declines in the earliest age classes, smaller declines in the 
middle age classes, and slight gains in the oldest age classes 
(not shown). The current age class distribution of upland 
hardwoods shows a U-shape with a large area in the 0–10 age 
class, much lower area in the 11–40 age classes, and majority of 
area in the 41–70 age classes (fig. 32). Forecasts show a strong 
downward shift in early and middle age classes, with a strong 
growth in the older age classes (>70 years). The early age class 
grouping would decline by about 50 percent, and the middle 
age classes would decline by about 30 percent from a currently 
low value. While the area of upland hardwood forests may 
decline only slightly, their age class composition is forecasted 
to be substantially different by 2060 (fig. 32).

The pattern of the current age class distribution of lowland 
hardwoods is similar to the pattern for upland hardwoods (not 
shown). Patterns of change are also comparable, but with a 
lower magnitude. Early and middle age classes decline in area 
while the area in the oldest age class increases substantially by 
2060 (from about 2.7 million acres to about 7 million acres). 

Discussion 

The 20 futures considered for the South Region provide a range 
of future forest conditions that reflects uncertainty inherent in 
projecting the future as well as the state of knowledge regarding 
the response of forests and land uses to future conditions. In 
many cases, consistent trends are revealed but perhaps more 
importantly, variation across futures suggests which variables 
are most important in determining future conditions.

Climate futures reveal a gradual change in climate conditions 
across the South between 2010 and 2060 with the greatest 
changes associated with the RPA A1B-MIROC3.2 and  
A2-MIROC3.2 combinations. Significant changes in temperature 
and precipitation values begin to arise over substantial areas 
beginning in 2030. Given the ways in which climate factors into 
the forest forecasts, the biggest impacts of climate are realized 
in regenerated forests. For unharvested forests, these types of 
gradual changes are unlikely to generate substantial changes in 
forest conditions in the 50 years of the forecasts. This is reflected 
in the clustering of biomass and removals forecasts around price 
and scenario forecasts and with little separation in forecasts 
across GCMs for most variables at the regional level.

Future forest area is most strongly determined by the future 
price of timber products but also almost as strongly influenced 
by the population and income forecasts associated with the 
RPA scenarios. Urbanization, driven by the latter, would shift 

away from forests and toward agricultural lands as timber 
prices increase. For example, RPA A1B has the highest level of 
urbanization with a forest loss of about 21 million acres between 
2010 and 2060 under the low timber price scenario. With the 
high timber price scenario, forest loss is reduced to about  
11 million acres.

Timber prices also influence the condition of forests, especially 
through forest planting. Across the 20 futures, the middle 
forecast is for about 56 million acres of planted pine in 2060 from 
a base of about 39 million acres in 2010. With high prices, the 
future area of planted pine area would range from 58 to as much 
as 67 million acres. Higher timber prices therefore suppress 
overall forest losses but shift the condition of forests toward more 
planted pine—at least 50 percent of the urbanization offset (and 
as much as 100 percent) described earlier is accounted for by 
increased planted pine area. Currently, planted pine represents 
about 19 percent of forest area in the South. By 2060, planted 
pine could represent between 24 and 34 percent of the region’s 
forests, depending on market conditions.

Biomass accumulated substantially in the South over the past 
50 years: total growing stock inventory expanded by 67 percent 
between 1962 and 2010. However, forecasts for the next  
50 years suggest a change in this pattern. Due largely to the aging 
of forests, but also because of land use and forest type changes, 
the accumulation of biomass would slow substantially, with net 
increases in total biomass amounting to 1–10 percent between 
2010 and 2060. This trend in total inventory volume is based 
on forecasted increases in softwood volume with simultaneous 
decreases in hardwood volume. As a result the share of softwood 
in the inventory shifts from about 41 percent in 2010 to about 46 
percent in 2060, with little variation across the futures.

Forest carbon pools are determined by the area of forests 
and the distribution of forest conditions. The net impact on 
forest carbon pools of land use changes, forest type changes, 
and forecasted removals is essentially a stasis. Forest growth 
largely offsets losses accruing to forest area losses so that in 
2060 the forest carbon pool ranges from 99–105 percent of its 
value in 2010. This is not a complete accounting for all land-
based carbon pools—forests converted to agricultural or urban 
uses will retain some amount of stored carbon—nor does it 
account for the amount of carbon stored for long periods in 
solid wood products. These findings do suggest that there is 
little opportunity to expand standing forest carbon pools except 
where land use conversions can be prevented. It should also be 
emphasized that these scenarios include no policy incentive to 
retain or sequester additional carbon on forest lands.

Forecasts of removals based on disaggregate harvest choice 
models indicates the potential for a substantial expansion 
in the harvest of timber products from the South. Even with 
steadily declining prices, removals are forecast to increase, 
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reflecting the substantial expansion in supply from the area of 
planted pine forests in the region over the past 20 years as well 
as a “backlog” of unharvested forests stored “on the stump.” 
These forecasts also reveal that forecasted forest losses do 
not suppress removals due largely to the location and types 
of forests affected by urbanization. Supply expansion can be 
viewed as an ongoing transition to agricultural-style forestry 
in the South. This also indicates changes in the removals to 
inventory ratio, which increases substantially between 2010 
and 2060 as harvests increase by as much as 90 percent while 
inventories of standing biomass grow by only 1–10 percent.

Actual harvests will be determined, not only by the supply 
relationships simulated here, but also by forecasted demand 
for various forest products. The market future associated 
with each of the three RPA scenarios has been taken up by 
Ince and others (2011) for the 2010 RPA Assessment. Their 
analysis, using supply estimates derived from the analysis 
described here, indicates widely varying market futures for the 
three RPA scenarios. RPA B2, with its low economic growth, 
lower population growth, and low demands for wood-based 
bioenergy yields market futures that are most similar to the 
RPA B2-low price futures explored in this report. Under these 
futures, we would expect a moderate loss of forest land (about 
12 million acres), forecasts of planted pine area at the lower 
end (47–55 million acres in 2060), expanding standing biomass 
inventories through 2050 followed by a leveling, and very 
moderate long run growth in removals.

RPA A2 yields a price future that is quite comparable to RPA 
B2 through 2040, after which, timber prices rise somewhat. 
Through 2040 then the RPA A2 low price future would hold, 
but with price levels reaching the area of RPA A2 high price 
future by 2060. For RPA A2 then, forest area losses would be 
somewhat higher than for the RPA B2 case, and inventories 
would level off about 20 years earlier (but would be at 2010 
levels in 2060). For both the RPA B2 and A2 scenarios, 
changes between 2010 and 2060 would be orderly, with paths 
of change quite comparable to the paths of change experienced 
over the past 50 years.

The RPA A1B scenario suggests structural changes in timber 
markets and forest conditions by the end of the forecast 
period. Prices for harvested products are projected to increase 
substantially beginning in 2025 and reach beyond the price 
forecasts of the 20 futures by 2040. These price signals would 
provide strong incentives for forest landowners to intensify 
investment in planted forests suggesting that the RPA A1B- 
high price and high planting scenario would provide a start 
for examining the effects of this future. Under this future, the 
area of planted pine forests would increase to about 67 million 
acres and planted pine would represent about 34 percent of 
forest area in the region. Harvests would begin to expand 
substantially, and inventories would begin to trend downward 
in about 2030. Forest carbon stocks under this future would 
trend down slightly but would remain at 97 percent of 2010 
values in 2060.

Figure 32—(A) Age class distribution for upland hardwood forests in the South Region, 2010, and (B) the range of forecasted changes in age classes for upland 
hardwood forests, 2010–60, using forest forecasts for the 20 Resources Planning Act (RPA) scenario-climate-price combinations. RPA A1B scenarios are 
represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and 
CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines marked by triangles indicate 
scenarios with increasing prices; circles indicate scenarios with decreasing prices.
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The future captured by the RPA A1B scenario involves price 
increases beyond 2040 that are far outside the historical data 
upon which this analysis is based, implying structural changes 
that would not be captured by the models. Such price changes 
would encourage changes within the forest sector including 
more planting and more intense management on planted 
forests. Recent research in the South (McKeand and others 
2003) suggest that a doubling of the fiber production from 
planted pine forests is plausible given new methods of genetic 
selection, fertilization, and other intensive silvicuture. Beyond 
the forest sector, other changes are possible including price-
induced switching to non-wood feedstocks for bioenergy or 
movement toward other energy technologies such as wind or 
solar. While the RPA B2 and RPA A2 scenarios are consistent 
with orderly changes given the condition and management of 
southern forests, demands at the level anticipated by RPA A1B 
would involve substantial structural changes.
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For the North, forest forecasts were generated for each of 
the nine Resources Planning Act (RPA) scenario-climate 
combinations. For these nine combinations, we apply timber 
harvest models that reflect historical harvest relationships—
that is, probabilities of harvest are functions of plot attributes 
based on observed harvesting over the previous inventory 
interval. In addition, we generate separate forest forecasts 
that simulate timber market projections generated by the U.S. 
Forest Products Model for the economic futures attached 
to the three RPA scenarios. These three forecasts use the 
climate projections from the CGCM3.1 GCM for RPA A1B 
and A2 and the CGCM2 GCM for RPA B2. To match the 
harvests from the Forest Products Model, we adjust a scaling 
parameter on the set of harvest probability models (see 
appendix, equation 4) to reflect Forest Products Model runs 
for the respective scenario. Harvest outcomes in the Forest 
Products Model are partially determined by an aggregate 
model of timber supply for the region. Table 3 defines labels 
for the 12 futures evaluated in this section.

Climate

To frame a discussion of the forest forecasts, we compare climate 
projections from the nine RPA scenario-climate combinations 
with historical conditions for the North. Distributions of monthly 
values for a projected decade (2010 refers to the monthly values 
between 2001 and 2010, 2020 refers to monthly values between 
2011 and 2020, and so on) are compared with a historical decade 
(2000 for the monthly values between 1991 and 2000). We 
start by plotting the cumulative distributions of temperatures/
precipitation for a graphical view of change across time. We then 
map where significant differences arise between projected and 
historical data for counties in the region.

Figure 33 shows a comparison of empirical temperature 
distributions for the 2060 decade for the nine RPA scenario-
climate combinations with the historical period (2000). For all 
forecasts, the distributions shift outward over time indicating 
temperature increases. The RPA A1B-MIROC3.2 combination 
shows the greatest increase in temperatures between the 2010 
and 2060 decades, with a 4 °C increase in temperature at the 
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Figure 33—Empirical distributions of monthly temperatures for the North Region for a historical decade (1991–2000) and projections of the nine Resources 
Planning Act (RPA) scenario-climate combinations in the 2060 decade (2051–60).
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50th percentile of the distribution and a 4.5 °C increase at the 
90th percentile. The other combinations yield roughly half the 
temperature increase shown for RPA A1B-MIROC3.2 (about a 
2 °C increase at the 50th percentile and a 2.5 °C increase at the 
90th percentile). 

Comparing forecasts by decade shows that under RPA A1B-
MIROC3.2 (the warmest scenario in the North), temperatures 
increase in every decade, with the greatest increase between 
the final 2 decades compared (2050 and 2060; fig. 34A). For 
the RPA CSIRO-Mk2 combination (fig. 34B) temperature 
distributions also shift outward between decades, but greater 
increases are shown for the earlier decades. The other seven 
RPA scenario-climate combinations (not shown here) also show 
outward temperature shifts in every decade. 

Spatial patterns of change vary across the scenario-climate 
combinations. Figure 35 shows spatial patterns of change based 
on the Kolmogorov-Smirnov test for monthly temperatures at the 
county level applied to RPA A1B-MIROC3.2 (the combination 
with the greatest overall increase in temperature by 2060). 
The black areas indicate counties where there is distributional 
disagreement between historical and forecasted temperatures for 
the specified decade. Figure 36 provides the same set of maps 
for RPA A1B CSIRO-Mk3.5. For RPA A1B-MIROC3.2 (fig. 
35), discernible temperature differences appear beginning in 
2030 in small portions of Iowa, Missouri, and Illinois. By 2040 
temperature increases consolidate across these three States and 
in peripheral States. By 2050, significant temperature increases 
are indicated for much of the Corn Belt, the lower peninsula of 
Michigan, and parts of the mid-Atlantic States of Pennsylvania, 
West Virginia, and Maryland. By 2060, the entire map is 
black for this scenario, indicating a significant outward shift in 
temperature distributions for all but two counties in the North. 

The change pattern is quite different for RPA A1B-CSIRO-
Mk3.5 (fig. 36). Unlike with MIROC3.2, significant 
temperature increases do not appear throughout the region until 
2060. In 2060, the northwestern corner of the region, including 
Minnesota, Wisconsin, Iowa, northern Missouri, and much of 
Michigan has significantly higher temperature distributions. 

Figure 37 maps the proportion of the nine RPA scenario-climate 
combinations leading to rejection of equivalent temperature 
distributions in the 2000 and 2060 decades (KS test, p=0.05). 
Four or more of the nine climate realizations have significantly 
different temperatures across roughly the western half of the 
region. Seven or more of the nine climate realizations have 
significantly different temperatures in counties in a sub-region to 
the west of Lake Michigan in Illinois, Iowa, and Wisconsin, and 
in some counties in the upper peninsula and the upper part of the 
lower peninsula of Michigan. 

Projections of precipitation are much more variable than 
temperature projections across the nine RPA scenario-climate 
combinations and across the region. Under some scenario-
climate combinations, overall precipitation declines by 2060; 
under others precipitation increases by 2060. Cumulative 
distributions of monthly precipitation for the nine climate 
projections for the 2060 decade compared with the historical 
decade (2000) show an inward shifting of precipitation 
(drying) for RPA A1B-MIROC3.2 and RPA A2-MIROC3.2 
combinations and a strong outward shift (increase) in 
precipitation for RPA A2-CSIRO-Mk3.5 and RPA A1B-
CGCM combinations (fig. 38). For the other scenario-climate 
ombinations, the distributions pivot, indicating that some areas 
are wetter while others are drier in 2060 than in 2000. For the 
various combinations (including RPA A1B-MIROC3.2 which 
is drier in 2060), the precipitation distribution shifts vary 
between time steps, in some cases alternating between wetter 
and drier decades (fig. 39).

The spatial pattern of precipitation change also varies between 
scenario-climate combinations and across the region. For 
RPA A1B-MIROC3.2 (fig. 40) significant differences in the 
precipitation distribution arise largely in the northeast, with a 
drying trend between Massachusetts and Maine in the 2010 and 
2020 decades. While these effects shrink or expand over the 
remaining decades, the northeast is generally drier under this 
scenario-climate combination. Additional drying is evident by 
2060 in parts of Missouri, Illinois, and Michigan. Precipitation 
change follows a different pattern and is more sporadic under 
RPA A1B-CSIRO-Mk3.5 (fig. 41) and under RPA B2-HadCM3 
(not shown). 

Figure 42 maps the proportion of the nine climate realizations 
leading to rejection of equivalent monthly precipitation 
distributions between the historical (2000) decade and the 
2060 decade (KS test, p=0.05). Very few counties show no 
significant difference across all models, with northwestern 
Minnesota being an exception. For much of New England, 
at least four model runs show significantly different 
precipitation between 2000 and 2060, with the highest degree 
of concurrence along the coast. Models generally show a 
drying trend for the New England States.

Maps of significant shifts in mean temperature and total 
precipitation highlight areas with emphatic change in these 
two variables, i.e., these are conservative tests. Other climate 
variables may also have important influence on future forest 
conditions but are not examined here.
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Figure 35—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000)  
and 6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-MIROC3.2 combination. Black areas indicate distributional 
disagreement between historical and projected temperature distributions (p value <0.05).

fail to reject null: p > 0.05
reject null: p ≤ 0.05

Figure 34—Empirical distributions of monthly temperatures for the North Region for a historical decade (1991–2000) and for 6 successive decades of climate 
projections for the (A) Resources Planning Act (RPA) A1B-MIROC3.2 combination and (B) RPA B2-CSIRO-Mk2 combination.
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Figure 36—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000)  
and 6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-CSIRO-Mk3.5 combination. Black areas indicate distributional 
disagreement between historical and projected temperature distributions (p value <0.05).

fail to reject null: p > 0.05
reject null: p ≤ 0.05

Figure 37—Proportion of the nine scenario-climate combinations yielding significant differences in decadal temperature distributions between the historical 
decade (1991–2000) and the 2060 decade (2051–60) for counties in the North Region.
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Figure 38—Empirical distributions of monthly precipitation values for the North Region for a historical decade (1991–2000) and projections of the nine Resources 
Planning Act (RPA) scenario-climate combinations in the 2060 decade (2051–60).
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Figure 39—Empirical distributions of monthly precipitation for the North Region for a historical decade (1991–2000) and for 6 successive decades (2010–60)  
of climate projections for the Resources Planning Act (RPA) A1B-MIROC3.2 combination.
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Forest Area

Forecasts of forest area change derive from the land use 
analysis contained in Wear (2011).1 All RPA scenarios predict 
declines in forest area with losses ranging from 6 million to  
11 million acres (3–6 percent) between 2010 and 2060, the 
result of population- and income-driven urbanization  
(fig. 43). The smallest loss of forest area is forecasted for 
scenario RPA B2 (6 million acres), which has the lowest 

1 The total forest area changes reported in this report differ from those in Wear 
(2011) because (1) the analysis in Wear (2011) is based on National Resource 
Inventory (NRI) data benchmarked in 1997, while this chapter translates 
those projections into FIA data benchmarked in 2010; and, (2) while the NRI 
measures only non-Federal land uses, the FIA data address all ownerships.

population growth and the lowest income growth resulting 
in the lowest urbanization. The largest loss of forest area is 
forecasted for RPA A1B (11 million acres), where population 
growth is moderate but income growth is strong—this 
combination results in higher rates of urbanization. Under 
scenario RPA A2, where population growth is highest but 
income growth is lowest, forest loss is intermediate between 
RPA A1B and B2 (9 million acres).

Forest losses are especially high in a few areas of the North 
(fig. 44). Under the RPA A1B scenario (with the highest 
rate of urbanization), the largest contiguous area of forest 
losses is along the eastern seaboard stretching from Boston 
to Washington, DC, and extending inland to include all of 

Figure 40—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000)  
and 6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-MIROC3.2 combination. Grey and black areas on the maps indicate 
distributional disagreement between historical and forecasted distributions (p value <0.05) and indicate drier and wetter conditions, respectively.

fail to reject null
reject null: drier
reject null: wetter
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Figure 42—Proportion of the nine scenario-climate combinations yielding significant differences in decadal precipitation distributions between the historical 
decade (1991–2000) and the 2060 decade (2051–60) for counties in the North Region.

Figure 41—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000)  
and 6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-CSIRO-Mk3.5 combination. Grey and black areas on the maps indicate 
distributional disagreement between historical and forecasted distributions (p value <0.05) and indicate drier and wetter conditions, respectively.

fail to reject null
reject null: drier
reject null: wetter
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Maryland, parts of West Virginia, and much of southeastern 
Pennsylvania. In addition, parts of New Hampshire-Maine 
and northern Michigan have areas of high forest losses. Areas 
with lesser but still substantial losses are found in central 
Missouri and in an area stretching northwest and southeast of 
Minneapolis. In contrast to the population and income-fueled 
urbanization in RPA A1B, scenario RPA B2 has less forest 
losses, and losses are more concentrated around the metro areas 
that anchor growth under RPA A1B.

Forest Types

Hardwoods dominate forest types in the North, accounting for 
about 83 percent of forest area. Among hardwood forest types, 
maple-beech-birch and oak-hickory groups are the largest, 
accounting for 26 and 36 percent of total forest area in 2010. 
Among softwood types, spruce-fir (9 percent) and white-red-
jack pine (5 percent) account for the largest shares of total 
forest area, and these forest types are concentrated in northern 
parts of the region. For the all forecasts, there is little change 
in the overall shares represented by hardwoods and softwoods. 
However, different shifts among forest types arise within the 
hardwood and softwood groups (fig. 45).

The area of oak-hickory, the largest forest type in the North, 
declines between 2010 and 2060 for all scenario-climate 
combinations (fig. 46A). Declines range between 3 million and 
6 million acres (5–10 percent) over this period with the highest 
losses for the RPA A1B scenario-climate combinations and 
the least losses for the RPA B2 scenarios. The clumping of 
projections around scenarios indicates that land use changes 
(driven by the socioeconomic components of the scenarios) 
dominate forecasts of change for oak-hickory forests. There is 
little variation among projections of this forest type based on 
different GCMs for a given scenario; even the market-based 
scenarios do not significantly alter the area of oak-hickory.

In contrast, the area of maple-beech-birch increases between 
2010 and 2060 for all scenario-climate combinations, with 
increases ranging between 1 million and 3 million acres  
(3–7 percent) (fig. 46B). Results are similar across all of the 
RPA scenario-climate combinations, with no clear separation 
between the scenarios. Among the hardwood types, elm-ash-
cottonwood forests decline by the greatest percentage across all 
RPA scenario-climate combinations, falling by 13–20 percent  
(1–2 million acres) (fig. 46C) between 2010 and 2060. Aspen-
birch forecasts are the most variable among hardwood types 
and all scenario-climate combinations lead to losses in  
aspen-birch area. Minimum losses are 1.4 million acres  

Figure 43—Total forest area for three Resources Planning Act (RPA) scenarios for the North Region. By model construction, forest area in the North varies only 
by RPA scenario and not by climate projection.
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Scenario A1
Forest < -0.12

-0.12 to -0.07
-0.07 to -0.02
-0.02 to 0.02
0.02 to 0.7
0.07 to 0.12
> 0.12

0.7 or 0.07

< -0.12
-0.12 to -0.07
-0.07 to -0.02
-0.02 to 0.02
0.02 to 0.07
0.07 to 0.12
> 0.12

Scenario B2
Forest

< -0.12
-0.12 to -0.07
-0.07 to -0.02
-0.02 to 0.02
0.02 to 0.07
0.07 to 0.12
> 0.12

Scenario B2
Forest

Scenario B2

Figure 44—Forecasted change in the proportion of county in forest land, 1997–2060, for Resources Planning Act (RPA) A1B and B2 scenarios.

Scenario A1B
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(7.7 percent) and maximum losses are 3.0 million acres (16.9 
percent) (fig.46D). For aspen-birch, the three market forecasts 
lead to the lowest amount of loss.

The two dominant softwood types show very different patterns 
of change across the scenario-climate combinations. Spruce-
fir area decreases for all scenarios. While forecasts for the 
nine RPA scenario-climate combinations clump together and 
amount to 8–10 percent of area, the three market scenarios 
result in losses of 12–17 percent (fig. 46F). In contrast, the area 
of white-red-jackpine increases by 5–10 percent for the nine 
combinations but declines by between 3 and 16 percent for the 
three market forecasts (fig. 46E).

Standing Biomass

Of the various metrics available for measuring biomass changes 
for a site in a forest inventory, we opted to focus on the volume 
of growing stock because it is a useful index both for timber 
analysis and for measuring other ecosystem services. Total 
growing stock volumes are forecasted to change in response 
to both land use changes and timber harvesting levels. Total 
growing stock volumes increase from a base of 263 billion cubic 
feet to between 277 billion cubic feet and 290 billion cubic feet in 
2060 for the nine RPA scenario-climate combinations (fig. 47). 
These nine combinations reflect a continuation of harvest activity 
observed over the past decade. In contrast, the three market 
forecasts show a peaking of inventory between 2020 (for RPA 
A1B-CGCM3.1-BIO) to 2030 (for RPA A2-CGCM3.1-BIO and 
RPA B2-CGCM2-BIO) and then declines in total inventories. In 
2060, total growing stock inventories would be 1 percent lower 
than 2010 levels for RPA B2, 8 percent lower for RPA A2, and 
20 percent lower for RPA A1B. Because hardwoods account 
for about 80 percent of total growing stock volumes, the pattern 

of change for hardwoods is nearly identical to the pattern for 
the total (fig. 48). The pattern for softwoods is similar though 
the percentage declines for the market scenarios are somewhat 
higher: softwood inventories would be 2 percent lower than 2010 
levels for RPA B2, 13 percent lower for RPA A2, and 24 percent 
lower for RPA A1B (fig. 49).

All these changes in growing stock volumes depart from 
historical patterns of volume accumulation in the North. Over 
the past 50 years, total growing stock volumes roughly doubled 
from 128 billion cubic feet in 1962 to 263 billion cubic feet in 
2010 (fig. 50). Between 2010 and 2060, growing stock volume 
would either level off at around 285 billion cubic feet under 
the nine RPA scenario-climate combinations or peak and then 
decline somewhat under the three market scenarios. Under 
the RPA A1B scenario, the scenario with the highest rate of 
timber harvests, growing stock volumes would decline to levels 
observed in the 1990s by 2060.

Forest Carbon

Carbon contained in the forests of the North amounts to about 
14.3 billion tons at the beginning of forecasts (fig. 51) with a 
majority of the carbon in soil organic matter and living trees 
(fig. 52). Accordingly, forecasts of forest carbon would be 
affected by changes in the area of forests and in the amount 
of biomass as described above. Figure 51 shows forecasts 
of future forest carbon in the North and generally shows a 
peaking of forest carbon in either 2020 or 2040 followed by 
a downward trajectory and reveals three clusters of the nine 
RPA scenario-climate combinations. The greatest loss of forest 
carbon is recorded for high urbanization (RPA A1B) scenarios 
with the least area of forest land in the future. The least loss 
of forest carbon is recorded for the scenarios with the least 

Figure 45—Current and forecasts of forest type distributions for A) Resources Planning Act (RPA) A1B-MIROC3.2 and B) RPA B2-HadCM3 scenario-climate 
combinations.
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Figure 46—Forecasts of the area of forest type groups in the North Region for nine Resources Planning Act (RPA) scenario-climate combinations, with harvesting 
based on historical behavior and three RPA scenario-climate combinations, with harvesting based on the U.S. Forest Products Model, 2010–60. RPA A1B scenarios 
are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and 
CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines with blocks indicate the market 
scenario for the respective RPA scenario (all using the CGCM GCM).
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Figure 48—Forecasted hardwood biomass measured as growing stock inventory of forests in the North Region for nine Resources Planning Act (RPA) scenario-
climate combinations with harvesting based on historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest 
Products Model, 2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is 
represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 
by black. Lines with blocks indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).

Figure 47—Forecasted total biomass measured as growing stock inventory of forests in the North Region for nine Resources Planning Act (RPA) scenario-climate 
combinations with harvesting based on historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest Products 
Model, 2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented 
by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. 
Lines with blocks indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).
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Figure 49—Forecasted softwood biomass measured as growing stock inventory of forests in the North Region for nine Resources Planning Act (RPA) scenario-
climate combinations with harvesting based on historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest 
Products Model, 2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is 
represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 
by black. Lines with blocks indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).

Figure 50—Softwood and hardwood growing stock inventories for the North Region, 1962–2060. Forecasts (2010–60) bracket the range of future inventories 
shown in figures 48 and 49.
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urbanization (RPA B2). The middle cluster of scenarios is 
occupied by middle urbanization (RPA A2) scenarios. 

The three market scenarios generate higher levels of carbon 
losses from the forests of the North (fig. 51). Under the RPA 
B2 market scenario, with the lowest increase in harvesting, 
carbon trajectories are similar to those forecast for the high 
urbanization (RPA A1B) scenarios with a loss of 3 percent of 
the stored carbon by 2060. For the RPA A2 market scenario 
(intermediate forest harvesting), stored carbon in 2060 would 
be about 7 percent lower than 2010 values and for the RPA 
A1B market scenario (highest levels of forest harvesting), 
carbon stocks in 2060 would be 11 percent lower than  
2010 values.

Estimates of the total carbon stored in forests derive from 
summing estimates of the carbon stored in eight different 
compartments or pools in forested ecosystems. Aboveground 
pools include live trees, understory plants, down and standing 
dead trees, and litter. Belowground pools include root material 
for live trees, understory plants, and soil organic matter. 
The sum of soil organic matter, aboveground live trees, and 
belowground live trees comprises nearly 80 percent of the 
total, and forecasts of these three pools are shown in fig. 
52. The pattern of change for soil organic carbon (fig. 52A) 
mirrors forest area changes shown in figure 43. The forecasts 
are organized by scenario with low urbanization (RPA B2) 
combinations having higher carbon than high urbanization 
combinations (RPA A1B). Live tree above- and belowground 
carbon pools (figs. 52B and 52C respectively) have patterns 
of change that are very similar to forecasts for growing stock 
inventories. 

Removals

Removals from growing stock show very little variation across 
the nine RPA scenario-climate combinations reflecting the 
structure of the harvest choice model. Recalling that harvest 
probability estimates are associated with forest conditions on 
each plot (i.e., growth, site attributes, and diversity), and are 
not directly connected to market scenarios, these forecasts 
show harvest responses resulting only from the evolution of the 
inventory and assuming an unchanged market condition. For 
these nine combinations, removals move upward slightly for both 
hardwoods and softwoods between 2010 and 2060 (figs. 53 and 
55). Hardwood removals grow by about 2 percent and softwood 
removals grow by about 10 percent between 2010 and 2060.

The three market scenarios generate removal patterns that are 
substantially different from the nine RPA scenario-climate 
combinations. Implemented by adjusting harvest probabilities 
to reflect the harvests predicted by the U.S. Forest Products 
Model, these scenarios show substantial growth in harvesting 
reflecting the expansion in demands for forest biomass in 

bioenergy production associated with each scenario. For RPA 
B2 (lowest harvest increases) harvests depart from the nine 
combinations beginning in 2030 and are nearly double their 
2010 levels in 2060. For RPA A2 (intermediate harvests) 
harvests expand beginning in 2020, double by 2050, and are 
roughly 2.5 times 2010 harvest levels by 2060. For RPA A1B 
(highest harvest growth) total harvest also begins to grow 
substantially after 2020, but doubles by 2040 and is roughly 
three times 2010 levels by 2060. The percentage changes in 
removals are comparable for softwoods and hardwoods; rates 
of growth in hardwood removals are only slightly higher than 
those for hardwoods.

Figure 54 compares the North’s timber harvest forecasts from 
the Forest Products Model with the implied harvests from 
the Forest Dynamics Model, and shows that harvest forecasts 
are largely consistent between the models for the specific 
scenarios. Forest Dynamics Model harvest removals are within 
10 percent of harvest removals from the Forest Products Model 
for all periods and scenarios with two exceptions. For the last 
two decades, the RPA A1B Forest Products Model projection 
is roughly 28 percent higher than the Forest Dynamics Model 
projections. As discussed previously, this scenario generates 
harvest demands unlikely to be met by traditional forest 
production techniques, implying structural changes beyond 
the scope of the model. The other exception is the last decade 
for RPA A2, where Forest Dynamics Model harvests fall 18 
percent below Forest Products Model forecasts. Overall, the 
Forest Dynamics Model generates total harvests that are 79, 93, 
and 100 percent of Forest Products Model forecasts for A1B, 
A2, and B2 scenarios, respectively. 

Age Structure/Habitat

Age class distributions are affected by the starting 
distributions and by disturbance regimes forecast for forests 
in the future. Simulated inventories can be used to evaluate 
various aspects of future forest conditions. One aspect of 
significance to wildlife habitat conditions in the North is the 
distribution of forests by age class, and the implications for 
the provision of early, middle, and late age forest conditions. 
We evaluate changes in the age class distributions of 
softwood and hardwood forest types using two charts. One 
displays the aerial age class distribution by decade for the 
most recent inventories of the northern States. We then 
summarize changes in age class resulting from the nine RPA 
scenario-climate combinations between 2010 and 2060 using 
box plots. Figure 56 shows the current age class distribution 
for hardwood forests in the North by 10-year age classes. 
Each box plot describes the distributions of changes in age 
classes. The bottom of the box represents the 25th percentile 
of the predicted changes, the top of the box represents the 
75th percentile of the predicted changes, the line in the 
box indicates the median forecast, and the plus in the box 
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Figure 52—Forecasts of carbon stored in the various pools within forests in 
the North Region, 2010–60, for nine Resources Planning Act (RPA) scenario-
climate combinations with harvesting based on historical behavior and three 
RPA scenario-climate combinations with harvesting based on the U.S. Forest 
Products Model, 2010–60. RPA A1B scenarios are represented by solid 
lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model 
(GCM) is represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) 
by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by 
yellow; HadCM3 by black. Lines with blocks indicate the market scenario for 
the respective RPA scenario (all using the CGCM GCM).

Figure 51—Forecasts of total carbon stored in forests in the North Region, 2010–60, for nine Resources Planning Act (RPA) scenario-climate combinations 
with harvesting based on historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest Products Model, 2010–60. 
RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM 
(CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines with blocks 
indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).
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indicates the mean forecast. The “whiskers” of the box show 
the extreme values of the forecasts. Figure 57 contains the 
same results for softwood forest types in the North.

Figure 56 implies two overall results for hardwood forests 
in the North. The pattern of disturbances causes an overall 
flattening of the age classes between ages of 0 and 70. The 
area of the youngest ages (0–10, 11–20, and 21–30 years old) 
remains relatively constant at 5–7 million acres each from 2010 
to 2060, while the area of the middle age classes (31–40, 41–50, 
and 51–60 years old) declines substantially and approaches the 
same level by 2060. In contrast, the area of older forests  
(> 80 years old) more than doubles by 2060. A similar pattern, 
relatively stable disturbance patterns leading to a flattening 
of the age distribution and a strong increase in older forest 
conditions, applies to softwood forests as well (fig. 57).

Discussion

The 12 futures modeled for the North provide a range of 
plausible futures for forests. The nine RPA scenario-climate 
combinations define an evolution of forest inventory with 
harvests at levels observed over the present past but also 
affected by projected changes in climate and changes in land 
use driven by population and income changes. The three 

market scenarios examine how these futures might be altered 
by increased demands for woody biomass to provide various 
forms of bioenergy.

Climate projections affect changes in forest conditions 
through the imputation module which determines the 
subpopulation of forest plots that represent future inventories. 
The nine climate realizations used here project increasing 
temperatures throughout the region. As measured here, 
widespread significant changes in temperature distributions 
do not arise until late in the projection period (2050–60). The 
exception is the RPA A1B-MIROC3.2 combination where 
significant changes arise in 2040. Precipitation projections vary 
substantially—in some cases wetter, in others drier. In general, 
models suggest drier conditions in the New England States.

In the nine combinations, land use plays a dominant role in 
determining future forest area. Driven by a strong urbanization 
dynamic along the eastern seaboard and around some cities 
in the North Central States, forest losses amount to between 6 
million and 11 million acres. While the pattern of forest losses 
remains constant, the amount varies across the three RPA 
scenarios based on both forecasted population and forecasted 
personal income. Urbanization affects dominate climate effects 
across the nine combinations. 

Figure 53—Total removals from inventory in the North Region for nine Resources Planning Act (RPA) scenario-climate combinations with harvesting based on 
historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest Products Model, 2010–60. RPA A1B scenarios are 
represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and 
CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines with blocks indicate the market 
scenario for the respective RPA scenario (all using the CGCM GCM).
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Figure 55—Removals from inventory by forest type in the North Region for nine Resources Planning Act (RPA) scenario-climate combinations with harvesting 
based on historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest Products Model, 2010–60. RPA A1B 
scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 
for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines with blocks indicate 
the market scenario for the respective RPA scenario (all using the CGCM GCM).

Figure 54—Comparison of harvests predicted by the U.S. Forest Products Model and the Forest Dynamics Model scenario associated with the U.S. Forest 
Products Model scenario for the North Region.
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Figure 57—(A) Age class distribution for softwood forest types in the North Region, in 2010 and (B) the range of forecasted changes in age classes, 2010–60, for 
nine Resources Planning Act (RPA) scenario-climate combinations with harvesting based on historical behavior and three RPA scenario-climate combinations 
with harvesting based on the U.S. Forest Products Model, 2010–60.
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Figure 56—(A) Age class distribution for hardwood forest types in the North Region in 2010 and (B) the range of forecasted changes in age classes, 2010–60,for 
nine Resources Planning Act (RPA) scenario-climate combinations with harvesting based on historical behavior and three RPA scenario-climate combinations 
with harvesting based on the U.S. Forest Products Model, 2010–60. 
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The areas of forest types change in response to land use 
changes but also in response to timber market futures. Forest 
type changes reflect a successional dynamic revealed by recent 
forest inventories and are not directly affected by climate 
changes. Within forest types, species compositions can shift 
in response to shifts in the donor pools used to populate future 
inventories. While the distribution between hardwood and 
softwood types holds relatively constant over the forecast 
period, changes within these large groups arise. For hardwoods, 
oak-hickory and elm-ash-cottonwood areas decline while 
maple-beech-birch area increases. For softwoods, spruce-fir 
area declines while white-red-jack pine area increases. As 
harvesting increases across the three market scenarios, so does 
the area of maple-beech-birch and aspen-birch while the area of 
softwood types declines.

The area of the elm-ash-cottonwood forest type declines by the 
greatest percentage across scenarios (13–20 percent) between 
2010 and 2060. While these scenarios do not explicitly address 
the spread of emerald ash borer and resulting mortality of ash 
in northern forests, the forest type observations used to forecast 
changes in types may reflect the early impacts of this epidemic, 
i.e., a retyping of forest plots influenced by ash mortality. 
While capturing some of this “signal” in the inventory data, the 
forecasts do not explicitly account for any anticipated changes 
in pest or epidemic dynamics.

The nine RPA scenario-climate combinations show a leveling 
of standing biomass volumes in the North. This approach 

to an asymptotic biomass reflects the aging of forests in the 
region coupled with a fairly constant amount of future timber 
harvests for these scenarios. With the three market scenarios 
which reflect substantial expansion in harvests, growing stock 
inventories reach a peak between 2020 and 2030 and then 
decline. By 2060, these scenarios show a net drop from 2010 
inventory levels (3 percent for RPA B2, 7 percent for RPA 
A2, and 11 percent for RPA A1B), reflecting the persistence of 
carbon in forest soils as aboveground biomass is removed.

The forecasted declines of standing biomass and carbon 
stocks in the North for the three market scenarios need to 
be considered in light of some modeling assumptions. Most 
importantly, the model takes no account of the potential for 
shifts in management strategies associated with increased 
market demands in the North. Because these scenarios 
represent what could be viewed as unprecedented market 
conditions, they could also affect structural changes in 
forest management practices, including increased planting, 
shifts in tree species, and even land use changes out of 
agriculture and into actively managed forests. We should 
expect some type of management response under these 
conditions, but our data are limited for incorporating 
these types of impacts within the inventory forecasts. The 
forecasts do provide insights into the circumstances under 
which management changes should be anticipated, namely 
under production scenarios comparable to RPA A1B and 
RPA A2.
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For the Rocky Mountains Region, forest forecasts were 
generated for each of the nine Resources Planning Act (RPA) 
scenario-climate combinations. For these nine combinations, 
we apply disturbance models that reflect historical harvest 
and other disturbance relationships—that is, we model the 
probability of mortality forest-replacing disturbance as a 
function of plot attributes recorded for each plot. Forest 
replacing disturbance includes timber harvesting but harvest 
records are so infrequent for inventory plots in the Rocky 
Mountain States as to preclude direct modeling of timber 
harvests. Because paired inventories were not available, future 
forest types could not be modeled using transition models and 
so instead were addressed using a forest type classification 
algorithm linked to climate projections and site attributes. This 
region spans a great variety of conditions between the northern 
and southern Rocky Mountains and also includes the Great 
Plain States of North and South Dakota, Nebraska, and Kansas. 
Table 3 defines labels used to describe the futures evaluated in 
this section.

Climate

To frame a discussion of the forest forecasts, we compare 
climate projections from the nine RPA scenario-climate 
combinations with historical conditions for the Rocky 
Mountains Region. Distributions of monthly values for a 
projected decade (2010 refers to the monthly values between 
2001 and 2010, 2020 refers to monthly values between 2011 
and 2020, and so on) are compared with a historical decade 
(2000 for the monthly values between 1991 and 2000). We 
start by plotting the cumulative distributions of temperatures/
precipitation for a graphical view of change across time. We 
then map where significant differences arise between projected 
and historical distributions for counties in the region.

Figure 58 compares cumulative temperature distributions 
between the historical decade and the 2060 decade for the nine 
RPA scenario-climate combinations. For all projections, the 
distributions shift outward over time as temperature increases. 

CHAPTeR 6

FoReST FoReCASTS FoR THe RoCky MoUNTAINS ReGIoN

Figure 58—Empirical distributions of monthly temperatures for the Rocky Mountains Region for a historical decade (1991–2000) and projections of the nine 
Resources Planning Act (RPA) scenario-climate combinations in the 2060 decade (2051–60).
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The RPA A1B-MIROC3.2 combination shows the greatest 
overall increase in temperatures between 2010 and 2060; with 
a 4 °C increase in temperature at the 50th percentile of the 
distribution and a 5 °C increase at the 90th percentile (the RPA 
A2-MIROC3.2 combination has the second largest increases). 
The other scenario-climate combinations also show outward 
shifts in temperature distributions between 2000 and 2060 but 
with roughly half the temperature increase shown for RPA 
A1B-MIROC3.2 (about a 2 °C increase at the 50th percentile). 

Comparing projections by decade shows that under RPA A1B-
MIROC3.2 (the warmest combination), temperatures increase 
in every decade (fig. 59A).1 A similar pattern holds for RPA B2-
CSIRO-Mk2 (fig. 59B) and for the other seven combinations 
not shown here. 

Spatial patterns of change vary across the scenario-climate 
combinations and across time and space. Figure 60 shows 
spatial patterns of change based on the Kolmogorov-Smirnov 
comparison of 2060 and 2000 distributions (p=0.05) for the 
temperature distributions for RPA A1B-MIROC3.2. The 
black areas indicate counties where there is distributional 
disagreement between historical and projected data for the 
specified decade. Figure 61 provides the same set of maps for 
RPA A1B-CSIRO-Mk3.5. For RPA A1B-MIROC3.2 (fig. 60), 
discernible temperature differences appear beginning in 2030 
in eastern and southern Colorado, southwestern Arizona, and 
central and western Montana. By 2040, temperature increases 
consolidate across much of Arizona, Nevada, New Mexico, 
and Colorado. By 2050, nearly all of the Rocky Mountains 
Region shows significant shifts in temperature (the exception is 

1 In contrast, for the A1B-MIROC scenario in the North and South, 
temperatures increase more in the second half of the forecast.

eastern Montana). By 2060, the entire map is black indicating 
a significant increase in temperature distributions beyond 2000 
levels for all counties for RPA A1B-MIROC3.2. 

The change pattern is different for RPA A1B-CSIRO-Mk3.5 
(fig. 61) where significant temperature increases arise only after 
2040. In 2050, a small number of counties show significant 
differences, especially in southern Arizona and New Mexico. 
In 2060, temperature increases are found west of the Rocky 
Mountain front from New Mexico to Montana and throughout 
southern Arizona and New Mexico. 

Figure 62 maps the proportion of the nine climate realizations 
leading to rejection of equivalent temperature distributions in 
2000 and 2060 (KS test, p=0.05). By 2060, four or more of the 
nine RPA scenario-climate combinations show significantly 
different temperature distributions across nearly the entire 
Rocky Mountains Region. Counties in most of New Mexico 
and a majority of Arizona, along with counties in the Colorado 
Rocky Mountains region, western Wyoming, western Montana, 
and northern Idaho demonstrate the greatest degree of model 
concurrence with significantly different temperatures in seven 
or more of the nine climate scenarios. A large part of the Great 
Plains sub-region, including all of Kansas, and portions of 
Nebraska and South Dakota, shows less convergence across the 
temperature forecasts. 

Projections of precipitation are more variable than temperature 
projections across the RPA scenario-climate combinations 
and across the region (Joyce and others, in press). Under some 
projections, the precipitation distribution shifts inward between 
2000 and 2060; under others precipitation increases by 2060. 
Cumulative distributions of monthly precipitation values for the 
historical decade (2000) and for the nine climate projections 

Figure 59—Empirical distributions of monthly temperatures for the Rocky Mountains Region for a historical decade (1991–2000) and for 6 successive decades of 
climate projections (A) for the Resources Planning Act (RPA) A1B-MIROC3.2 combination and (B) for the RPA B2-CSIRO-Mk2 combination.
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in 2060 show an inward shifting of precipitation (drying) for 
RPA A1B-MIROC3.2 and RPA A2 MIROC3.2-A1B and a 
strong outward shift (increase) in precipitation for RPA A2-
CSIRO-Mk3.5 (fig. 63). For the other climate projections, the 
distributions pivot, indicating that some areas become wetter 
while others become drier. For the various combinations 
(including RPA A1B-MIROC3.2, which is drier in 2060), the 
precipitation projections vary across time steps, in some cases 
alternating between wetter and drier decades (fig. 64).

The spatial pattern of precipitation change is highly variable. 
For RPA A1B-MIROC3.2 (fig. 65) the greatest number of 
significant differences in precipitation distributions are shown 
for the 2010 decade. In subsequent decades, the effects shrink 
and shift around the region, and only northern Montana shows 
a consistent drying across the decades. A similar pattern of 
change is shown for RPA B2-HadCM3 (not shown)—drying 
generally focused on north central Montana. RPA A1B-
CSIRO-Mk3.5 (fig. 66) gives rise to much less significant 
change in precipitation patterns across the decades. 

Figure 67 maps the proportion of the nine climate 
realizations leading to rejection of equivalent monthly 
precipitation distributions between the 1991–2000 decade 
and the 2051–60 decade (KS test, p=0.05). The nine climate 
projections generate no significantly different precipitation 
projections between 2000 and 2060 for much of the plains 
(most of the Dakotas, much of Nebraska and nearly all of 
Wyoming). For most of Nevada, Utah, and Arizona, one to 
three of the nine climate projections generate significantly 
different precipitation forecasts. North central Montana is 
the only large area with seven to nine significantly different 
precipitation projections reflecting the projections of drying 
for this area in figures 65 and 66.

Maps of significant shifts in mean temperature and total 
precipitation highlight areas with emphatic change in these 
two variables (i.e., these are conservative tests). Other climate 
variables may also have important influence on future forest 
conditions but are not examined here.

Figure 60—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000)  
and 6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-MIROC3.2 combination. Black areas indicate distributional 
disagreement between historical and projected temperature distributions (p value <0.05).

fail to reject null: p > 0.05
reject null: p ≤ 0.05
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Figure 61—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000) 
and 6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-CSIRO-Mk3.5 combination. Black areas indicate distributional 
disagreement between historical and projected temperature distributions (p value <0.05).

fail to reject null: p > 0.05
reject null: p ≤ 0.05

Figure 62—Proportion of the nine scenario-climate combinations yielding significant differences in decadal temperature distributions between the historical 
decade (1991–2000) and the 2060 decade (2051–60) for counties in the Rocky Mountains Region.

up to 0.3333
0.3334 – 0.6666
0.6667 –  1
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Figure 63—Empirical distributions of monthly precipitation values for the Rocky Mountains Region for a historical decade (1991–2000) and projections of the 
nine Resources Planning Act (RPA) scenario-climate combinations in the 2060 decade (2051–2060).
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Figure 64—Empirical distributions of monthly precipitation for the Rocky Mountains Region for a historical decade (1991–2000) and 6 successive decades 
(2010–60) of climate projections for the Resources Planning Act (RPA) A1B- MIROC3.2 combination.
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Forest Area

Forecasts of forest area change derive from the land use 
analysis contained in Wear (2011).2 Unlike forecasts for the 
North, South, and the Pacific Coast regions, forecasts of forest 
losses are very small in absolute and percentage terms for 
the Rocky Mountains Region. The preponderance of public 
forests and the concentration of forests in a small portion of 
the region largely explain this result. All three RPA scenarios, 
driven by population and income forecasts, predict increased 
developed area on the private lands of the region. However, 
because a large portion of forests are held in public ownership 
[approximately 75 percent, according to Smith and others 
(2007)], development is generally concentrated on other types 

2 The total forest area changes reported in this report differ from those in Wear 
(2011) because: (1) the analysis in Wear (2011) is based on National Resource 
Inventory (NRI) data benchmarked in 1997, while this chapter translates 
those projections into FIA data benchmarked in 2010; and, (2) while the NRI 
measures only non-Federal land uses the FIA data address all ownerships.

of lands. Of the 7–10 million acres forecast to be developed 
between 1997 and 2060 in the Rocky Mountains Region, most 
involve conversion from an agricultural or rangeland use. 
About 1–1.5 million acres of forest is forecast to be developed 
in this region between 2010 and 2060 (fig. 68).

Forest losses are concentrated in only a few counties in the 
Rocky Mountains Region (fig. 69). The largest areas of loss are 
found in Colorado, along the Interstate 25 corridor between 
Fort Collins and Colorado Springs, and extending west of 
Denver along Interstate 70. Losses of forest land are also 
concentrated in a few counties in southwestern Colorado and 
around Albuquerque and Santa Fe, NM, and St. George and 
Salt Lake City, UT. Northwestern Montana and northern Idaho 
also show some losses of non-Federal forests. 

Figure 65—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000)  
and 6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-MIROC3.2 combination. Grey and black areas on the maps indicate 
distributional disagreement between historical and forecasted distributions (p value <0.05) and indicate drier and wetter conditions, respectively.

fail to reject null
reject null: drier
reject null: wetter
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Figure 66—Results of county-level Kolmogorov-Smirnov tests comparing distributions of monthly temperatures for a historical decade (1991–2000)  
and 6 successive forecasted decades (2010–60) for the Resources Planning Act (RPA) A1B-CSIRO-Mk3.5 combination. Grey and black areas on the maps indicate 
distributional disagreement between historical and forecasted distributions (p value <0.05) and indicate drier and wetter conditions respectively.

fail to reject null
reject null: drier
reject null: wetter

Figure 67—Proportion of the nine scenario-climate combinations yielding significant differences in decadal precipitation distributions between the historical 
decade (1991–2000) and the 2060 decade (2051–60) for counties in the Rocky Mountains Region.

up to 0.3333
0.3334 – 0.6666
0.6667 –  1
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Forest Types

While the total area of forests varies little across the 50-year 
forecasts by scenarios, the areas of individual forest types do 
change in response to shifts in projected climates associated 
with the scenarios. Recall that western models of forest type 
transitions derive from a single cross-sectional dataset and focus 
on predicting forest type probabilities as functions of site and 
climate variables. General circulation model (GCM) projections 
for a given time period and scenario defines the set of forest type 
probabilities and random draws are used to select forest type for 
each plot in the inventory. In this way, shifts in climate give rise 
to predicted changes in forest type distributions.

The Rocky Mountains Region contains numerous forest 
type groupings, but six types comprise about 85 percent of 
total forest area in 2010 (fig. 70): pinyon juniper (34 percent), 
fir-spruce-hemlock (15 percent), Douglas fir (13 percent), 
lodgepole pine (8 percent), ponderosa pine (9 percent), and 
aspen-birch (5 percent). Pinyon juniper is a woodland type that 
occupies arid sites. The remaining six forest types occupy a 
wide range of conditions and generally contain overlapping 
mixes of tree species, e.g., fir-spruce-hemlock types may 
contain Douglas fir trees and Douglas fir types may contain 
grand fir trees. The classification algorithm therefore projects 

a shift in the dominance of certain tree species in response to 
climate and other variables.

Forecasts show changes in forest type distributions over time. 
The largest forest type group in the Rocky Mountains Region is 
pinyon juniper (combined here with other western softwoods). 
Starting at a little more than 50 million acres in 2010, across 
the nine RPA scenario-climate combinations, forecasts range 
from a loss of about 4 million acres (8 percent) for RPA B2-
HadCM to a very slight gain in acreage (about 1 million acres 
or 2 percent) for RPA A1B-CGCM3.1 (fig. 71A). There is no 
clear separation of pinyon juniper forecasts across the scenarios 
or climate projections.

At 23 million acres, the fir-spruce-hemlock forest type group 
is the second largest in the region. The area of this forest type 
is forecasted to increase across all nine combinations, though 
it dips for the first 2 decades under RPA B2-CSIRO-Mk2 (fig. 
71B). Area expands between 2010 and 2060 by half a million 
acres to 3 million acres (up to about 15 percent of 2010 area). The 
greatest increase occurs for RPA A1B MIROC3.2 and RPA A2-
MIROC3.2; the smallest increase is for RPA B2 CSIRO-Mk2.

In contrast, the area of the Douglas fir forest type group falls the 
most in percentage terms between the nine combinations  

Figure 68—Total forest area for three scenarios for the Rocky Mountains Region. By model construction, forest area in the Rocky Mountains Region  
varies only by storyline (not by general circulation model).
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Figure 69—Forecasted changes in the proportion of non-Federal land within a county in forest, 1997–2060, for the A1B and B2 storylines.
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(fig. 71C). Declines range from 3 million to 6 million acres  
(16–33 percent), with unclear separation among forecasts for 
the three scenarios, but clearly evident separation between the 
GCMs applied to the scenarios. Scenarios paired with MIROC3.2 
and HadCM3 GCMs yield the greatest declines while scenarios 
paired with the CGCM3.1 and CGCM2 GCMs yield the lowest 
declines. Scenarios paired with the CSIRO-Mk3.5 and CSIRO-
Mk2 GCMs yield intermediate results. The area of the lodgepole 
pine forest type group also declines across all RPA scenario-
climate combinations with the ranking of forecasts across the 
combinations similar to that for the Douglas fir group (fig. 71E). 
Declines in the area of this forest type group are also large and 
range from 1 million to 3.5 million acres (8–32 percent).

All combinations yield increases in the area of ponderosa 
pine forest type group—between 0.5 million and 4 million 
acres. Increases in the Ponderosa pine type group mirror the 
decline in the Douglas fir and lodgepole pine type groups 
across scenarios (fig. 71D). The greatest increases in ponderosa 
pine occur with the MIROC3.2 and HadCM3 GCMs and the 
smallest increases occur with the CGCM3.1 and CGCM2 
GCMs. The dominant net shifts in forest types for the Rocky 
Mountains Region are from Douglas fir and lodgepole forest 
type groups to ponderosa pine and fir-spruce-hemlock forest 
type groups. In contrast, the area of aspen-birch forests changes 
relatively little between 2010 and 2060, ranging from slight 
increase to a slight decrease over the forecast period (fig. 71F). 

Standing Biomass

Projections of growing stock inventories (figs. 72A and 72B) 
show that future biomass varies little over current levels 
across the nine RPA scenario-climate combinations. Softwood 
growing stock inventory (roughly 90 percent of biomass) 
stands at about 125 billion cubic feet in 2010 and is forecasted 
to be between 123 billion cubic feet and 128 billion cubic feet 
in 2060—maximum growth of 3 percent over this 50-year 

period. Hardwood inventory (about 10 percent of biomass) 
stands at about 12 billion cubic feet in 2010 and would remain 
at this level through 2060. These forecasts suggest that 
mortality and removals from inventory would be just offset 
by inventory growth. This type of balance occurred during 
the 1960s and 1970s followed by strong increases in growing 
stock inventories in the 1980s and 1990s (fig. 73). Inventory 
data since the 1990s have indicated a slowing of inventory 
expansion and the forecasts show a continuation of these 
trends, i.e., further slowing.

Forest Carbon

Carbon contained in the forests of the Rocky Mountains Region 
amounts to about 7.2 billion metric tons at the beginning of 
forecasts (fig. 74) with a majority of the carbon in soil organic 
matter and living trees (fig. 75). Accordingly, forecasts of forest 
carbon would be affected by changes in the area of forests and 
in the amount of biomass as described above. Figure 74 shows 
forecasts of future forest carbon totals for the Rocky Mountains 
Region and shows an essentially constant level of carbon in 
forest pools between 2010 and 2060. 

Estimates of the total carbon stored in forests derive from 
summing estimates of the carbon stored in eight different 
compartments or pools within forested ecosystems. 
Aboveground pools include live trees, understory plants, down 
and standing dead trees, and litter. Belowground pools include 
root material for live trees, understory plants, and soil organic 
matter. The sum of soil organic matter, aboveground live trees, 
and belowground live trees comprises nearly 80 percent of the 
total and forecasts of these three pools are shown in figure 74. 
The pattern of change for soil organic carbon (fig. 75A) mirrors 
forest area changes shown in figure 68. The forecasts reflect the 
slight downward trend in total forest area in the region. Live 
tree above- and belowground carbon pools (figs. 75B and 75C, 
respectively) have patterns of change that are very similar to 
forecasts for growing stock inventories and reflect a very slight 

Figure 70—Current and forecasts of forest type distributions for A) A1B-MIROC and B) B2-Hadley scenarios (this chart does not include forest area in the Great 
Plains States of North Dakota, South Dakota, Nebraska, and Kansas).
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Figure 71—Forecasts of the area of forest types in the Rocky Mountains Region for nine Resources Planning Act (RPA) scenario-climate combinations with 
harvesting based on historical behavior, 2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general 
circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 
for B2) by yellow; HadCM3 by black. Lines with blocks indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).
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Figure 72—Forecasted biomass measured as growing stock inventory by forest type in the Rocky Mountains Region for nine Resources Planning Act (RPA) scenario-
climate combinations with harvesting based on historical behavior, 2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. 
MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 
and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines with blocks indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).

Figure 73—Softwood and hardwood growing stock inventories for the Rocky Mountains Region, 1952–2060. Forecasts (2010–60) bracket the range of future 
inventories shown in figures 62 and 63.
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upward trend in these pools. Slight decreases in soil carbon just 
offset by increases in carbon in overstory and understory pools 
yield stable carbon pools through time.

Removals

Due to limited data, harvests are not directly modeled for 
the Rocky Mountains Region. Harvests are infrequent when 
compared to the area or volume of forests in this region—about 
0.5 percent of growing stock inventory per year (Smith and 
others 2007)—so harvested plots are observed very rarely in 
data from the Forest Inventory and Analysis (FIA) Program of 
the Forest Service, U.S. Department of Agriculture, making 
the direct modeling of harvest activities implausible. Instead 
we focus on modeling stand replacing events generally. 
Accordingly there is no direct estimate of removals available 
from the model. We can infer from age class projections that 
the rate of removals is roughly consistent with the average 
values observed between the mid-1990s and the mid-2000s plus 
or minus the FIA sampling error for removals. We discuss total 
removals forecasts for the West in the section of this report on 
the Pacific Coast Region.

Age Structure/Habitat

Age class distributions are affected by the starting distributions 
and by disturbance regimes forecast for forests in the future. 
Simulated inventories can be used to evaluate various aspects 
of future forest conditions. One aspect of significance to 
wildlife habitat conditions in the Rocky Mountains Region is 
the distribution of forests by age class, and the implications for 
the provision of early, middle, and late age forest conditions. 
We evaluate changes in the age class distributions of softwood 
forest types using two charts. One displays the aerial age class 
distribution by decade for the most recent inventories of the 
Rocky Mountains Region. We then summarize changes 

in age class resulting from the nine RPA scenario-climate 
combinations between 2010 and 2060 using box plots. Figure 
76 shows the current age class distribution for hardwood 
forests in the Rocky Mountains Region by 20-year age classes. 
Each box plot describes the distributions of changes in age 
classes. The bottom of the box represents the 25th percentile 
of the predicted changes, the top of the box represents the 75th 
percentile of the predicted changes, the line in the box indicates 

Figure 74—Forecasts of total carbon stored within forests in the Rocky Mountains Region for nine Resources Planning Act (RPA) scenario-climate combinations 
with harvesting based on historical behavior, 2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general 
circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 
for B2) by yellow; HadCM3 by black. Lines with blocks indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).
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Figure 75—Forecasts of carbon stored in various pools within forests in the Rocky Mountains Region for nine Resources Planning Act (RPA) scenario-climate 
combinations with harvesting based on historical behavior, 2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. 
MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 
and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines with blocks indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).
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the median forecast, and the plus in the box indicates the mean 
forecast. The “whiskers” of the box show the extreme values of 
the forecasts. 

The age class distribution in 2010 is peaked in the 81–100 and 
101–120 age class groupings, reflecting disturbance history 
including early logging and fires (fig. 76). Forecasts emphasize 
an aging of this cohort and an expansion in the area of forests 
in the 201+ age classes. Stand replacement models yield a 
steady level of the youngest aged forests and models indicate 
a substantial reduction in the area of the middle age classes, 
especially for the 81–100 and 101–120 classes. 

Discussion

The nine RPA scenario-climate combinations considered for 
the Rocky Mountains Region provide a range of plausible 
futures affecting forests in the region. Population and income 
changes affect an increase in developed land, but the effects 
on forest area in the Rocky Mountains Region is small 
in terms of area and proportion—a loss of 1–1.5 million 
acres amounting to < 1 percent of total forest area. More of 
the forecasted development is focused on agricultural and 
rangelands in this region.

Inventories of forest biomass are forecast to remain relatively 
constant in the region as forests age and stand replacement 
rates are essentially constant. These forecasts imply that 
removals and mortality just offset forest growth and growth is 
expected to decline as forest aging progresses.

What is variable across the forecasts is change in forest types 
driven by projected changes in climate variables between 
2010 and 2060. The direction of these changes is generally 
consistent across RPA scenario-climate combinations but the 
magnitude of change is variable. The greatest changes arise for 
lodgepole pine, ponderosa pine, and Douglas fir forest types. 
Across all combinations, both lodgepole pine and Douglas fir 
types are forecasted to decline in area (8–32 percent and  
16–33 percent, respectively) while the area of the ponderosa 
pine type is forecasted to increase (up to 29 percent). A 
moderate increase in spruce-fir forests type area is also 
projected. Two studies addressing the potential influence of 
climate change on forest species distributions in the Rocky 
Mountains Region, while not congruent with our approach 
to modeling forest type associations, provide points of 
comparison. Our forecasts of increasing ponderosa pine 
types are generally consistent with increased P. ponderosa 
distributions predicted by Shafer (2001) and by Rehfeldt and 
others (2006). Increases in spruce-fir types conflicts with 
the prediction by Rehfeldt and others (2006) of decline but 
is consistent with Shafer’s prediction of an increase in P. 
engelmannii in the region. 

Rates of forest type changes are generally ordered by the 
GCMs paired with the RPA scenarios. The greatest change 
in forest types occur under the MIROC3.2 (both A1B and A2 
scenarios) and HadCM3 (B2) GCMs, the warmest and driest 
scenario-climate combinations. Conversely the least change is 
associated with the CGCM3.1 and CGCM2 GCMs. The RPA 
scenarios paired with the MIROC3.2 GCM (A1B and A2) 
produce the greatest increases in temperature between 2010 

Figure 76—(A) Age class distributions for softwood forest types in the Rocky Mountains Region in 2010 and for the B2-Hadley scenario in 2060, and (B) change 
in age class groups across all scenarios. 
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and 2060 and by 2030, and temperature changes are largely 
coincident with the forested portions of the Rocky Mountains 
Region. HadCM3 temperatures are coincident with MIROC3.2 
beyond the 75th percentile of the temperature distribution, 
i.e., in the warmest 25 percent of the region. MIROC3.2 and 
HadCM3 generate the greatest reductions in total precipitation 
between 2010 and 2060 among the GCMs evaluated. Forecast 
models for forests in the West (Rocky Mountains Region and 
Pacific Coast) differ from those developed for the eastern 
regions in some fundamental ways. Inventory data are 
relatively scarce in the West with survey internals exceeding 
10 years for most States and the transition to the newer annual 
inventory approach taking longer. In all cases, the inventory 
design changed substantially between the most recent two 
inventories, effectively precluding the use of matched plots to 
estimate change models. As a result, transition models could 
not be fit and models of forest type change relied on cross-
sectional analysis (classification) of forest type occurrences 
relative to current conditions. While these models allow for a 
high degree of detail regarding the relationship between site 
variables, climate variables, and forest conditions, they cannot 
incorporate the relative inertia or the speed of change of type 
condition on forest plots. We might expect these types of 
models to overestimate the rates of resulting changes in forest 
conditions. This suggests placing most focus on the longer term 
projections where disturbance, mortality, and recruitment have 
time to play out in generating the changes.
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For the Pacific Coast Region, forest forecasts were generated 
for each of the nine Resources Planning Act (RPA) scenario-
climate combinations with harvest models that reflect 
historical harvest relationships. In addition, we simulate 
inventory development under three futures (based on the 
RPA A1B-CGCM3.1, A2- CGCM3.1, and RPA B2-CGCM2 
combinations); with adjusted harvest probabilities to simulate 
removals predicted by the U.S. Forest Products Model (Ince 
and others 2011) for the economic futures attached to the RPA 
scenarios. To match the harvests from the Forest Products 
Model, we adjust the scaling parameter in equation 4 to reflect 
Forest Product Model runs for the respective scenario. Because 
paired inventories are not available, future forest types could 
not be modeled using transition models but were modeled 
using a forest type classification algorithm linked to climate 
forecasts and site attributes. This region spans a great variety of 
conditions between the Eastside and Westside of the Cascades, 
so separate models were developed for these two sub-regions 
for both forest type transitions and for harvest probabilities by 
ownership class. Data for Oregon and Washington were pooled 
to estimate models and a separate set of California models 
were estimated. Table 3 defines the labels for the 12 futures 
evaluated in this section. 

Climate

To frame a discussion of the forest forecasts, we compare 
climate projections from the nine RPA scenario-climate 
combinations with historical conditions for the Pacific Coast 
Region. Distributions of monthly values for a projected decade 
(2010 refers to the monthly values between 2001 and 2010, 
2020 refers to monthly values between 2011 and 2020, and 
so on) are compared with a historical decade (2000 for the 
monthly values between 1991 and 2000). We start by plotting 
the cumulative distributions of temperatures/precipitation for 
a graphical view of change across time. We then map where 
significant differences in these distributions arise between 
projected and historical data for counties in the region.

Figure 77 shows a comparison of empirical temperature 
distributions between the historical decade and the 2060 
decade for the nine climate projections. For all projections, 
the distributions shift outward over time as temperatures are 
projected to rise. The RPA A1B-MIROC3.2 combination 
generally shows the greatest increase in temperatures between 
2010 and 2060, with a 3 °C increase in temperature at the 50th 
percentile of the distribution and a 4 °C increase at the 90th 

CHAPTeR 7
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Figure 77—Empirical distributions of monthly temperatures for the Pacific Coast Region for a historical decade (1991–2000) and projections of the nine Resources 
Planning Act (RPA) scenario-climate combinations in the 2060 decade (2051–60).
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percentile. Through the 50th percentile, the other scenario-climate 
combinations yield outward shifts in temperature distributions of 
about 75 percent of the temperature increase shown for RPA A1B-
MIROC3.2 (about a 2.5–3 °C increase at the 50th percentile). 
However, beyond the 65th percentile the RPA B2-HadCM3 
combination yields larger temperature increases (+5 °C  
at the 90th percentile). This combination generates the greatest 
increase in temperature at the warm end of the distribution and 
the least increase at the cool end of the distribution. All scenario-
climate combinations show a fairly regular outward shift in 
distributions over the decades (figs. 77 and 78).

Spatial patterns of change vary across the scenario-climate 
combinations. Figure 79 shows spatial patterns of change 
based on the Kolmogorov-Smirnov test (p=0.05) for monthly 
temperatures at the county level applied to the RPA A1B-
MIROC3.2 combination (one of the two warmest scenario-
climate combinations). The black areas indicate counties 
where there is distributional disagreement between historical 
and projected temperature data across the decades. Figure 80 
provides the same set of maps for RPA A1B- CSIRO-Mk3.5. 
For RPA A1B-MIROC3.2 (fig. 79), discernible temperature 
differences appear beginning in 2030 largely along the coastal 
portions of the Pacific Coast Region. By 2050 temperature 
increases consolidate along the coast and include inland areas 
of southern and central California, and eastern Washington and 
Oregon. Beginning with the 2050 decade, many more inland 
counties show significant change. By 2060, the entire map is 
black for this combination, indicating a significant difference in 
temperature distributions over 2000 distributions for all counties. 

For the Pacific Coast Region, the change pattern is similar for 
RPA A1B-MIRO3.2 and RPA A1B-CSIRO-Mk3.5 combination 
(fig. 80). Significant temperature increases start along the 
coastal areas of the Pacific Coast Region in 2030 and spread 
inland over the decades. By 2060, temperature distributions 

are significantly different for most of the region (exceptions are 
eastern Washington and south central California). Figure 81  
shows a strong degree of concurrence among the RPA 
scenario-climate combinations for temperature projections 
in the Pacific Coast Region. Along the coast, and for a strong 
majority of counties in the region, 7 to 9 of the 9 climate 
projections show significant differences  in temperature  
(KS test, p=0.05). This region shows the greatest concurrence 
across climate projections among RPA regions.

Projections of precipitation are more variable than temperature 
projections across the RPA scenario-climate combinations 
and across the region (Joyce and others, in press). Under some 
combinations, overall precipitation is lower tha historical values 
in the 2060 decade; under others precipitation is higher in the 
2060 decade (fig. 82). Cumulative distributions of monthly 
precipitation values for the historical decade (2000) and for 
the nine climate projections in 2060 show an inward shifting 
of precipitation (drying) for RPA A2-MIROC3.2 and RPA B2- 
HadCM3 and a strong outward shift (increase) in precipitation 
for RPA A1B-CGCM3.1 and RPA B2-CGCM2 (figs. 82 
and 83). For the other combinations, the distributions pivot, 
indicating that some areas become wetter while others become 
drier. For the various scenarios, the precipitation distribution 
shifts vary between time steps, in some cases alternating 
between wetter and drier decades (figs. 84 and 85).  
Figure 86 indicates very few counties with significantly 
different precipitation distributions in 2060 for four or more 
scenarios. These are focused in an area from the Bay area of 
California to the south.

Maps of significant shifts in mean temperature and total 
precipitation highlight areas with emphatic change in these 
two variables, i.e., these are conservative tests. Other climate 
variables may also have important influence on future forest 
conditions but are not examined here.

Figure 78—Empirical distributions of monthly temperatures for the Pacific Coast Region for a historical decade (1991–2000) and 6 successive decades of climate 
projections (A) for the Resources Planning Act (RPA) A1B-MIROC3.2 combination and (B) for the RPA B2-CSIRO-Mk2 combination.
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Figure 79—Results of county-level Kolmogorov-Smirnov tests comparing 
distributions of monthly temperatures for a historical decade (1991–2000) 
and 6 successive forecasted decades (2010–60) for the Resources Planning 
Act (RPA) A1B-MIROC3.2 combination. Black areas indicate distributional 
disagreement between historical and projected temperature distributions (p 
value <0.05). 

fail to reject null: p > 0.05
reject null: p ≤ 0.05

fail to reject null: p > 0.05
reject null: p ≤ 0.05

fail to reject null: p > 0.05
reject null: p ≤ 0.05

fail to reject null: p > 0.05
reject null: p ≤ 0.05

Figure 80—Results of county-level Kolmogorov-Smirnov tests comparing 
distributions of monthly temperatures for a historical decade (1991–2000) and 
6 successive forecasted decades (2010–60) for the Resources Planning Act 
(RPA) A1B-CSIRO-Mk3.5 combination. Black areas indicate distributional 
disagreement between historical and projected temperature distributions (p 
value <0.05).



73

Forest Forecasts for the Pacific Coast Region

fail to reject null: p > 0.05
reject null: p ≤ 0.05

Figure 81—Proportion of the nine scenario-climate combinations yielding significant differences in decadal temperature distributions between the historical 
decade (1991–2000) and the 2060 decade (2051–60) for counties in the Pacific Coast Region.
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Figure 82—Empirical distributions of monthly precipitation values for the Pacific Coast Region for a historical decade (1991–2000) and projections of the nine 
Resources Planning Act (RPA) scenario-climate combinations in the 2060 decade (2051–60).
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Figure 83—Empirical distributions of monthly precipitation for the Pacific Coast Region for a historical decade (1991–2000) and 6 successive decades (2010–60) 
of climate projections for the Resources Planning Act (RPA) A1B-MIROC3.2 combination.
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Figure 84—Results of county-level Kolmogorov-Smirnov tests comparing 
distributions of monthly temperatures for a historical decade (1991–2000) 
and 6 successive forecasted decades (2010–60) for the Resources Planning 
Act (RPA) A1B-MIROC3.2 combination. Grey and black areas on the maps 
indicate distributional disagreement between historical and forecasted 
distributions (p value <0.05) and indicate drier and wetter conditions, 
respectively. 

fail to reject null
reject null: drier
reject null: wetter

fail to reject null
reject null: drier
reject null: wetter

fail to reject null
reject null: drier
reject null: wetter

fail to reject null
reject null: drier
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Figure 85—Results of county-level Kolmogorov-Smirnov tests comparing 
distributions of monthly temperatures for a historical decade (1991–2000) 
and 6 successive forecasted decades (2010–60) for the Resources Planning 
Act (RPA) A1B-CSIRO-Mk3.5 combination. Grey and black areas on the 
maps indicate distributional disagreement between historical and forecasted 
distributions (p value <0.05) and indicate drier and wetter conditions, 
respectively. 
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Figure 86—Proportion of the nine scenario-climate combinations yielding significant differences in decadal precipitation distributions between the historical 
decade (1991–2000) and the 2060 decade (2051–60) for counties in the Pacific Coast Region.
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Forest Area

Across the three RPA scenarios, the Pacific Coast Region is 
forecast to lose between 1.7 million and 2.7 million acres of 
forest in response to ongoing population-fueled development 
between 2010 and 2060 (fig. 87). The highest loss is for 
the RPA A2 and A1B scenarios (unlike other regions, the 
Pacific has nearly identical forest loss trajectories for these 
two scenarios). The least area of loss accrues to the RPA B2 
scenario. Due especially to patterns of land use in the region, 
land use changes and forest losses are not spread evenly 
across the Pacific Coast Region. Instead there are several large 
blocks of changes within the region (fig. 88). The largest area 
of projected forest losses is forecasted for the west side of the 
Cascade mountain range in Washington, in an area centered 
on Seattle but extending between the Canadian border and the 
Oregon border. In Oregon, forest losses concentrate in two 
areas, the northwestern corner centered on Portland and the 
southwest corner centered on Medford. In California, forest 
losses are forecasted for the San Francisco Bay area and along 
the Interstate 80 corridor to the Nevada border at Reno. 

Forest Types

While the 50-year forecast of forest area varies little across 
the various three RPA scenarios, the area of individual forest 
types does change in response to shifts in projected climates 
associated with the scenario-climate combinations. Western 
models of forest transitions derive from a single cross-sectional 
dataset and focus on predicting forest type probabilities as 
a function of site and various climate variables. General 
circulation model projections for a given year and scenario 
define the set of forest type probabilities, and random draws 
are used to select forest type for each plot within the inventory. 
In this way, shifts in climate can give rise to changes in overall 
forest type distributions. 

The broad diversity of forest types in the Pacific Northwest 
reflects the variety of growing conditions from the Coast to the 
Inland West. Six forest type groups—Douglas fir, fir-spruce-
hemlock, ponderosa pine, hemlock-sitka spruce, white oak, and 
California mixed conifer (CMC)—combine to make up about  
73 percent of forests in the region in 2010 (fig. 89). Douglas fir and 

Figure 87—Total forest area for three RPA scenarios for the Pacific Coast Region. By model construction, forest area in the Pacific Coast Region varies only by 
Resources Planning Act (RPA) scenario (not by general circulation model).
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hemlock-Sitka spruce dominate the Westside forests, but Douglas 
fir is also a dominant  type in the drier and less productive forests 
of the east side, reflecting its very broad ecological amplitude 
(Rehfeldt and others 2008). Forecasts suggest some changes in 
type composition over the next 50 years.

In 2060, the area of Douglas fir ranges from its 2010 value  
(20 million acres) to an increase of about 15 percent across the 
scenario-climate combinations (fig. 90A). The relative stability of 
Douglas fir in the Pacific Coast Region is the result of offsetting 
trends in Eastside and Westside forests. On the Westside, 

Scenario A1
Forest < -0.12

-0.12 to -0.07
-0.07 to -0.02
-0.02 to 0.02
0.02 to 0.7
0.07 to 0.12
> 0.12

0.7 or 0.07 ??

Scenario B2
Forest < -0.12

-0.12 to -0.07
-0.07 to -0.02
-0.02 to 0.02
0.02 to 0.07
0.07 to 0.12
> 0.12

Scenario B2
Forest < -0.12

-0.12 to -0.07
-0.07 to -0.02
-0.02 to 0.02
0.02 to 0.07
0.07 to 0.12
> 0.12

Figure 88—Forecasted changes in the proportion of non-Federal land within a county in forest, 1997–2060, for the A1B and B2 storylines

Scenario A1B
Forest Scenario B2

Forest
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Douglas fir increases and mirrors strong declines in hemlock-
Sitka spruce (from 4 million acres in 2010 to between half a 
million and 2 million acres in 2060; fig 90D). On the east side, 
Douglas fir declines and mirrors increases in ponderosa pine.

The area of fir-spruce-hemlock declines for all scenario-climate 
combinations (fig. 90B). Starting at roughly 9 million acres in 
2010, this forest type group which is predominantly on the East 
side of the Cascades, falls to between 3.5 million and 7 million 
acres (a decline of 20–60 percent) by 2060. The ordering of 
combinations shows no clear differences between scenarios or 
GCMs and change in the area of fir-spruce-hemlock.

Ponderosa pine, in contrast, shows strong gains across all 
scenario-climate combinations (fig. 90C). By 2060, ponderosa 
pine area is forecasted to grow by substantial amounts from 
9.2 million acres in 2010 to between 12 million and 18 million 
acres (gains of 30–96 percent). This gain in ponderosa pine 
forests in Eastside forests is qualitatively similar to forecasts of 
expanding ponderosa pine for the Rocky Mountains Region.

Hemlock-Sitka spruce has the greatest percentage loss of 
area among forest type groups across the forecasts (fig. 90D). 
Starting at 4.3 million acres in 2010 this forest type group is 
forecast to occupy between half a million and 2.3 million acres 
in 2060 (losses of between 55 and 88 percent). 

The CMC forest type shows some variation over time but in 
2060 all forecasts are very close to the 8 million acres observed 
in 2010 (fig. 90E). In contrast, the white oak forest type group 
is forecasted to expand across all scenarios from about 10 

million acres in 2010 to between 12.4 million and 14.9 million 
acres (gains of 24–49 percent) in 2060 (fig. 90F). Most of this 
forest type and all the gains forecast for the type are found in 
California.

Standing Biomass

Of the various metrics available for measuring biomass 
changes for a site in a forest inventory, we opted to focus 
on the volume of growing stock because it is a useful index 
both for timber analysis and for measuring other ecosystem 
services. Total growing stock volumes are forecasted to change 
in response to both land use changes and timber harvesting 
levels. In the Pacific Coast Region, nearly 90 percent of total 
growing stock inventory is softwood. Standing at 204 billion 
cubic feet in 2010, softwood inventories are forecast to expand 
slightly between 2010 and 2030 and then decline gradually to 
2060 (fig. 91A). In 2060, softwood inventories range between 
175 billion and 197 billion cubic feet (net declines of 2–12 
percent from 2010 values; fig. 91A). Hardwood inventories, 
about 10 percent of total inventory, would fall by about  
20 percent for all nine of the scenarios (fig. 91B).

Figure 92 puts changes in softwood growing stock in the 
context of a longer history of changes. Peak values forecast for 
2020–30 would be roughly equivalent to growing stock values 
estimated for the early 1950s. Relatively high harvest levels 
from the 1960s to the 1990s were accompanied by a decline in 
inventories. Harvest reductions beginning in the early 1990s 
were followed by a net accumulation of inventory in the region. 

Figure 89—Current and forecasts of forest type distributions for A) A1B-MIROC3.2 and B) B2-HadCM3 scenarios.
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Figure 90—Forecasts of the area of forest types in the Pacific Coast Region for nine Resources Planning Act (RPA) scenario-climate combinations with 
harvesting based on historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest Products Model, 2010–60. RPA 
A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM 
(CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines with blocks 
indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).
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Softwood growing stock inventories in 2060 would be roughly 
equivalent to the range of values observed between the 1990s 
and the 2000s.

Forest Carbon

Carbon contained in the forests of the Pacific Coast Region 
amounts to about 7.8 billion metric tons at the beginning 
of the forecasts (fig. 93), with a majority of the carbon in 
soil organic matter and living trees (fig. 94A). Accordingly, 
forecasts of forest carbon would be affected by changes in 
the area of forests and in the amount of biomass as described 
earlier. Figure 93 shows forecasts of future forest carbon in 
the Pacific Coast Region and a gradual decline in the amount 
of carbon in forest pools between 2010 and 2060. Total forest 
carbon declines to between 7.1 billion and 7.5 billion tons  
(or a loss of between 4 and 9 percent) over this period. 
Patterns of loss are dominated by the change in growing stock 
volumes (forest area loss is relatively small in this region over 
the simulation period). 

Estimates of the total carbon stored in forests derive from 
summing estimates of the carbon stored in eight different 
compartments or pools in forested ecosystems. Aboveground 
pools include live trees, understory plants, down and standing 
dead trees, and litter. Belowground pools include root material 

for live trees, understory plants, and soil organic matter. 
The sum of soil organic matter, aboveground live trees, and 
belowground live trees comprises nearly 80 percent of the 
total and forecasts for these three pools are shown in figs. 94A 
through C. Losses of soil organic carbon are greater than the 
slight downward trend in total forest area in the region (5–8 
percent versus 1–3 percent). We posit that they also reflect 
changes in forest types associated with the climate futures. 
Live tree above- and belowground carbon pools show patterns 
of change that are very similar to forecasts for growing 
stock inventories, e.g., a decline of 6–13 percent for live tree 
aboveground pools.

Removals

Forecasts of removals for the nine scenario-climate combinations 
without links to the Forest Product Model outputs are driven 
by harvest probabilities assigned to plots based on ownership 
types, forest type, and age class and adjusted to reflect recent 
historical regional removal patterns. Applying these probabilities 
to forecasted forest inventories (i.e., accounting for climate, 
forest type shifts, and aging), yields a set of removals forecasts 
that extends historical patterns to future conditions. For eight 
of the nine combinations, forecasted softwood removals (about 
83 percent of total removals) increase over the first 20 years 

Figure 91—Forecasted biomass measured as growing stock inventory of forests in the Pacific Coast Region for nine Resources Planning Act (RPA) scenario-
climate combinations with harvesting based on historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest 
Products Model, 2010-2060. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is 
represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 
by black. Lines with blocks indicate the market scenario for the respective RPA scenario (all using the CGCM GCM). 
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and then decline slightly (fig. 95A). In 2060, softwood removals 
would be between 77 and 97 percent of 2010 values.

Softwood removals forecast for the three market scenarios 
are based on the CGCM3.1 GCM for scenarios RPA A1B 
and RPA A2 and the CGCM2 GCM for scenario RPA 
B2. The 2060 removals reflect increases over the 2010 
removals level by roughly 3, 29, and 40 percent for the RPA 
B2, A2, and A1B scenarios, respectively and A1B and A2 
removals are substantially larger than forecasts for the nine 
RPA scenario-climate combinations (fig. 95A). Hardwood 
removals, which are a very small portion of total removals in 
the Pacific Coast Region, do not differ substantially between 
the market scenarios nor among the nine RPA scenario-
climate combinations (fig. 95B). Hardwood removals, which 
comprised a small portion of harvests in 2010 (17 percent), 
decline throughout the forecasts. All nine combinations yield 
substantial declines in hardwood removals—2060 removals 

levels amount to about 50 percent of their 2010 values. A 
comparison of forecasted harvest removals under even the A1B 
market scenario would not begin to approach peak harvest 
levels achieved in the early 1990s (fig. 96). 

Figure 97 compares the West’s (Rocky Mountain plus Pacific 
Coast regions) timber harvest forecasts from the Forest 
Products Model with the implied harvests from the Forest 
Dynamics Model, and shows that harvest forecasts are largely 
consistent between the models for the specific scenarios. Forest 
Dynamics Model harvest removals are within 10 percent 
of harvest removals from the Forest Products Model for all 
periods and scenarios, with one exception. As is the case in the 
other regions, the RPA A1B Forest Products Model projection 
is higher than the Forest Dynamics Model projections in the 
last 2 decades of the simulation—by roughly 20 percent in 
the West. Total removals match fairly closely for the entire 
simulation period. The Forest Dynamics Model projects 94, 

Figure 92—Softwood growing stock in the Pacific Coast Region, 1953–2060.
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Figure 93—Forecasts of total carbon stored within forests in the Pacific Coast Region, 2010–60, for nine Resources Planning Act (RPA) scenario-climate 
combinations with harvesting based on historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest Products 
Model, 2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented 
by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. 
Lines with blocks indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).

101, and 101 percent of total removals forecast by RPA A1B, 
A2, and B2 scenarios, respectively. 

Age Structure/Habitat

Age class distributions are affected by the starting distributions 
and by disturbance regimes forecast for forests in the future. 
Simulated inventories can be used to evaluate various aspects 
of future forest conditions. One aspect of significance to 
wildlife habitat conditions in the Pacific Coast Region is the 
distribution of forests by age class, and the implications for 
the provision of early, middle, and late age forest conditions. 
We evaluate changes in the age class distributions of softwood 
forest types using two charts. One displays the aerial age class 
distribution by decade for the most recent inventories of the 
Pacific Coast Region. We then summarize changes in age class 
resulting from the nine RPA scenario-climate combinations 
between 2010 and 2060 using box plots. Figure 98 shows the 

current age class distribution for hardwood forests in the Pacific 
Coast Region by 20-year age classes. Each box plot describes 
the distributions of changes in age classes. The bottom of the 
box represents the 25th percentile of the predicted changes, the 
top of the box represents the 75th percentile of the predicted 
changes, the line in the box indicates the median forecast, and 
the plus in the box indicates the mean forecast. The “whiskers” 
of the box show the extreme values of the forecasts. 

The 2010 age class distribution of forests in the Pacific Coast 
Region is strongly peaked in the 61–80 age category, reflecting 
harvest history in the region (fig. 98). As harvests and other 
disturbances are applied, 50-year forecasts shift this peak 
out and flatten the age class distribution. The oldest age class 
remains relatively constant in this area, reflecting an offsetting 
of mortality and recruitment and the area of the youngest age 
classes (0–20 and 21–40) remains relatively constant between 
2010 and 2060 across the scenarios.
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Figure 94—Forecasts of carbon stored in various pools within forests in the Pacific Coast Region, 2010–60, for nine Resources Planning Act (RPA) scenario-
climate combinations with harvesting based on historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest 
Products Model, 2010–60. RPA A1B scenarios are represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is 
represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 
by black. Lines with blocks indicate the market scenario for the respective RPA scenario (all using the CGCM GCM).
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Figure 96—Softwood removals from growing stock for nine Resources Planning Act (RPA) scenario-climate combinations with harvesting based on historical 
behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest Products Model, 2010–60. RPA A1B scenarios are represented 
by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and CGCM2 for 
B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines with blocks indicate the market scenario for the 
respective RPA scenario (all using the CGCM GCM).

Figure 95—Removals from inventory in the Pacific Coast Region for nine Resources Planning Act (RPA) scenario-climate combinations with harvesting based 
on historical behavior and three RPA scenario-climate combinations with harvesting based on the U.S. Forest Products Model, 2010–60. RPA A1B scenarios are 
represented by solid lines; RPA A2 dashed; RPA B2 dotted. MIROC3.2 general circulation model (GCM) is represented by red; CGCM (CGCM3.2 for A2 and 
CGCM2 for B2) by blue; CSIRO (CSIRO-Mk3.5 for A1B and A2 and CSIRO-Mk2 for B2) by yellow; HadCM3 by black. Lines with blocks indicate the market 
scenario for the respective RPA scenario (all using the CGCM GCM).
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Figure 97—Comparison of harvests predicted by U.S. Forest Products Model and the Forest Dynamics Model scenario associated with the U.S. Forest Products 
Model scenario for the Western United States (defined as the combination of the Rocky Mountain and Pacific Coast regions).

Figure 98—(A) Age class distributions for all forests in the Pacific Coast Region, 2010 and 2060, for the B2-HadCM3 scenario and (B) the range of changes in 
forest age classes across all Resources Planning Act (RPA) scenarios.
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Discussion

Forecasts of forest conditions in the Pacific Coast Region 
indicate a loss of 2–3 percent of forest area, amounting to  
1.7–2.7 million acres between 2010 and 2060, with most of this 
loss concentrated in the highly productive Westside forests of 
Oregon and Washington. This forest loss has implications for 
the standing biomass in the region with a decline in softwood 
and hardwood growing stock volumes between 2010 and 2060. 
Due to land area and growing stock declines overall, the total 
amount of carbon stored in Pacific Coast Region forest is also 
forecast to decline, falling between 4 and 9 percent between 
2010 and 2060.

While forecasts of overall forest area, biomass, and carbon 
attributes change gradually over time, change in forest types 
is more substantial. For the Westside of the Cascades, the area 
of the hemlock-Sitka spruce forest type group is forecast to 
decline substantially (50–85 percent) while the Douglas fir 
forest type group increases. While we caution against over-
interpreting forecasts for small forest area (at 4 million acres 
hemlock-Sitka spruce represents about 5 percent of forest area 
in 2010) our forecasts indicate especially important shifts in 
the habitat suitability for this forest type over all the climate 
scenarios considered here. This is consistent with Hansen and 

others’ (2001) finding that habitats for rainforest conifers in the 
Pacific Northwest are likely to decline in area as a response to 
anticipated climate changes.

The dominant forest type dynamic for inland forests in the 
Pacific Coast Region are declines in the subalpine spruce-
fir-hemlock forest type group (20–60 percent) and a strong 
increase in ponderosa pine forest type group (30–96 percent) 
between 2010 and 2060. Similar patterns of change have been 
forecast by Rehfeldt and others (2006), who simulate loss of 
suitable habitat for Picea engelmannii (47 percent across the 
Rocky Mountain and Pacific Coast regions by 2060), and 
gains in suitable habitat for Pinus ponderosa (11 percent by 
2060). Both are consistent with overall declines in subalpine 
vegetation simulated by Rehfeldt and others (2008) and by 
Bachelet and others (2001) under various climate futures.

While the trends are generally consistent across scenarios, 
the broad range of the forecasts for forest type areas indicates 
that these forecasts are sensitive to climate futures. Futures 
generated using the CGCM3.2 and CGCM2  produced the least 
change across most variables; the HadCM3 and MIROC3.2 
GCMs, with the warmest and driest futures, generally 
produced the most change in key variables from forest type 
areas to carbon storage.
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In this report, we describe 50-year forecasts of forest conditions 
for several scenarios regarding future demographic, economic, 
and climate conditions. Forecasts define a range of plausible 
futures for forests reflecting the breadth of the Resources 
Planning Act (RPA) scenarios, as interpreted by a set of models 
and the design of the U.S. Forest Assessment System. The 
Forest Dynamics Model defines forecasts that directly simulate 
change in the forest inventories conducted by the Forest 
Inventory and Analysis (FIA) Program of the Forest Service, 
U.S. Department of Agriculture. Forecast variables therefore 
correspond directly to the measures used to monitor the 
Nation’s forest conditions, and establish a means of evaluating 
the performance of forecasts using subsequent inventories. 
In a sense, this defines the Forest Assessment System as 
a “hypothesis generator” regarding the future of forest 
inventories in the United States, with hypotheses defined using 
metrics consistent with the ongoing monitoring system.

The Forest Dynamics Model attempts to draw maximum 
information from the data contained in the FIA system to 
forecast future inventories. Future measured inventories 
should provide additional information for improving the 
various component elements of the model and for validating/
invalidating forecast performance. Additional panels of data for 
the Western United States, where it is not yet possible to match 
plots between successive inventories, should prove especially 
useful, but new inventories will allow the refinement of 
models in all regions, e.g., in the South where data are already 
relatively plentiful but where harvesting is the most frequent 
and land use dynamics are the most rapid in the United States.

Any modeling approach has strengths and weaknesses. In 
the case of the Forest Dynamics Model, use of historical 
plot imputations allows for forecasts of forest conditions that 
preserve the joint distributions of the many plot measures 
contained within the FIA system (Reams and McCullum 2000). 
This coherence depends on the assumption that the constituent 
elements of the future inventory (plots) will be consistent with 
the universe of historical plot observations—for example, that 
a forest plot of forest type X at age Y with average temperature 
Z in the future can be represented by a historical forest plot 
with X, Y, and Z attributes. In effect we assume that “novel” or 
“no-analog” conditions are unlikely to arise over the 50-year 
timeframe evaluated with these models. 

Several potential sources of novelty might be anticipated. 
Climate novelty (Williams and Jackson 2007) occurs where 
future climate conditions are unprecedented within a region. 
While the extent of novelty may be much greater over a 

100-year forecast period, our analysis indicates relatively 
low occurrences of significant shifts in temperature and 
precipitation distributions in the first three decades of the five 
decade period considered by the RPA Assessment. Novelty 
could also occur where the intersection of climate and site 
variables give rise to favorable conditions for an unprecedented 
combination of tree species (Iverson and others 2008, Rehfeldt 
and others 2006). Atmospheric composition defines another 
potential source of novelty, e.g., CO2 fertilization has enhanced 
tree growth in controlled experiments (Norby and others 2005). 

Our approach to imputing future forest plots by resampling 
from plots of forest type groups allows for shifts in species 
composition both within and between type groups. For 
example, while a plot might retain its assignment to the oak/
hickory type group (500), its resampled type could shift from 
yellow poplar/white oak (506) to white oak/red oak/hickory 
(503) in response to climate changes and forest aging. Still all 
species combinations are restricted to those observed within 
the universe of measured FIA plots contained in the donor 
pool. Iverson and others (2008) in the East and Rehfeldt and 
others (2006) in the West indicate a potential for structural 
shifts in species mixes over a 100-year timeframe with the 
extent of change depending on the severity of the projected 
climate changes. Our decision to retain historical forest type 
associations is fundamental to the use of the imputation 
approach—without it, the species structure of novel plots would 
need to be constructed introducing new sources of forecast 
error—and might be justified based on the 50-year timeframe 
of the forecasts and the inertia of forest ecosystems. The 
degree to which this assumption could be violated is expected 
to be directly proportional to the timeframe of the forecasts. 
Uncertainty regarding the plausibility of predicted forest 
composition increases over time.

The inertia of existing forest ecosystems likewise depends 
on the future of forest disturbance regimes across the regions 
of the United States (Turner 2008). Our modeling approach 
forecasts forest conditions based on disturbance dynamics 
reflected in historical inventories, e.g., a proportion of southern 
pine forests reflect damage from southern pine beetle in 
the South consistent with historical insect dynamics, and 
a proportion of lodgepole pine forests in the West reflects 
historical mountain pine beetle dynamics. In the East and the 
Pacific Coast regions, we explicitly forecast timber harvesting 
but leave other disturbance activities as “background” 
disturbances—not explicitly modeled but influencing forest 
conditions through donor pools. In the Rocky Mountains 
Region, we explicitly model probabilities of fire and insect 

CoNCLUSIoNS



89

Conclusions/Acknowledgments/Literature Cited

damage (as measured on the FIA plots and as a function of 
climate and site variables) and then the probability of a stand 
replacement contingent on these events. Unprecedented 
disturbance vectors, for example those generated by new 
nonnative pests, have not been addressed. Incorporating their 
effects defines a potentially useful line of future inquiry, e.g., 
in ongoing work, we are addressing the spread of emerald ash 
borer in the North Region.

Carbon accounting allows for a comprehensive evaluation 
of forest carbon pools consistent with inventory measures 
of carbon and potentially policy relevant information from 
the forecasts. This accounts for the temporal dynamics of 
forests and how they may be influenced by human uses, 
disturbances, and climate-driven productivity changes. Our 
approach is to monitor net carbon change consistent with all 
of these dynamics. Our findings highlight different carbon 
trajectories in the various regions of the United States. In the 
South, carbon stocks reach a peak and then either level off 
or decline somewhat depending on the scenario. In general, 
losses due to removals are offset by strong growth and 
management responses. In western regions, where removals 
are small portions of standing inventories, carbon stocks are 
flat to declining as forests reach ages where mortality begins 
to outweigh removals. The greatest potential decrease in 
carbon forecast is in the North where, under RPA scenario 
A1B, removals could increase substantially but countervailing 
investment in forest management is not simulated. This 
type of unprecedented demand futures would likely lead to 
unprecedented management responses in the North, but this 
was not addressed by the models. Nationwide, the greatest 
influence on future carbon is forecasted change in forest area 
related to urbanization. Some portion of the projected loss of 
carbon from forest pools would therefore be transferred to 
carbon stored in other land uses, e.g., suburban or crop uses, 
and would not be emitted to the atmosphere. Ongoing analysis 
addresses these carbon transfers among land uses.

The Forest Assessment System is designed to support strategic 
analysis of forest conditions in the United States as a part of 
the RPA assessment and in support of various forest futuring 
efforts. The results presented in this paper describe the first 
implementation of this modeling system and we anticipate 
refining the methods and updating models as new data become 
available from FIA. Future work on the Forest Dynamics 
Model will focus on refining the algorithms used to transition 
forest plots through time, including forest type transitions 
and forest harvesting. The latter is an essential element of 
the linkage between the Forest Dynamics Model and Forest 
Products Model. As currently formulated, the model allows 
for economic modeling of harvest choices on plots only for 
the South, where data are the most plentiful. In other regions, 
we rely on aggregate supply equations to simulate markets 
in the Forest Products Model and downscale harvests in the 

Forest Dynamics Model to plots by adjusting relative harvest 
probabilities for various plot types. Regional differences 
among forest type transition models reflect differences in 
data availability. Future models might further consider the 
timeframe of potential transitions and differentiate models to 
ask short-run and long-run questions.

Additional work is needed to more precisely address the 
potential for and implications of novel conditions and to explore 
methods for examining unprecedented forest conditions in 
the future. In addition to exploring potential climate novelty, 
models might examine the influence of highly invasive pest 
species, e.g., emerald ash borer, expanded forest management 
(especially in the North Region), and genetically modified 
production forests (especially in the South). All elements of 
the modeling should be improved as additional panels of data 
are provided by the ongoing FIA forest inventories across the 
United States.
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This report focuses on the forecasts of forest conditions 
provided by the Forest Dynamics Model (fig. A1). Discussion 
of methods concentrates on this component of the U.S. Forest 
Assessment System (fig. 1), while the U.S. Forest Products 
Model is described in Ince and others (2011) and the All Land 
Use Model is described in Wear (2011).

Within the Forest Dynamics Model, forecasts of the development 
of forest conditions in the United States are constructed for each 
observed forest plot in the inventories.1 This is the constituent 
scale of the inventory of the Forest Inventory and Analysis (FIA) 
Program of the Forest Service, U.S. Department of Agriculture, 
and forecasting at this level allows for re-aggregation of findings 
at different scales of resolution, though not at levels finer than 
appropriate for reporting historical inventory data. For example, 
forecasts described in this report have also been used as a 
foundation of the Southern Forest Futures Project (Wear and 
Greis, in press) and the Northern Forest Futures Project (http://
nrs.fs.fed.us/futures/). To the extent possible, simulations start 
with direct evaluation of FIA plot data and results are expanded 
to broader scales using the area frame design of the forest survey. 
These methods generate full inventory datasets for each time 
step of the forecast.

To model and forecast changes in forest conditions, the U.S. 
Forest Assessment System forecasts the condition of each 
plot in the forest inventory in response to multiple vectors of 
change. Each plot record contains a set of measured variables 
combined with an expansion factor which describe the area 
(portion of the sampled population of forests) that each plot 
represents. Expansion factors are reconciled at the county level 
in the FIA system. The information set for each plot I(p) is 
defined as:

I (p)={S, Z, C, E} (1)

where 

S represents a vector of state variables
Z = a vector of condition variables
C = a vector of climate variables
E = a vector of expansion factors for the plot 
S and Z together comprise the measured variables for each 
plot from phase 2 (field measurements) of the FIA inventory 

1 The use of the term “plot” in this report refers to what is technically called a 
“condition” within a plot in the FIA system. Where plots can have more than 
one forest condition, e.g., they occur on a boundary between forest types, 
then multiple conditions are recorded for each plot. Use of the word “plot” 
simplifies the language in this report without loss of precision.

while climate variables are derived from ancillary datasets and 
E is derived from phase 1 (aerial measurements) of the FIA 
inventory. Our definition of state and conditional variables 
facilitates descriptions of modeling approaches.

Forecasting plot conditions starts with projecting changes in 
the state variables (S) using transition models. For example, the 
future age of a forest plot is determined by adding the time step 
of the simulation to the current age unless a forest disturbance 
causes the age to be reset to another age (typically to zero). Once 
the forecasted state variables have been established, then a plot 
record is assigned based on an imputation or resampling of the 
historical database of plots with comparable values for the state 
variables. Changes in the expansion factors (E)  for each plot are 

APPeNDIx: STRUCTURe oF THe FoReST DyNAMICS MoDeL

 Figure A1—Flow chart of the Forest Dynamics Model’s approach to projected 
forest inventories.
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determined by a land use model that forecasts urbanization and 
other land use choices driven by the population and economic 
variables contained in the RPA scenarios (Wear 2011).

Key decisions in developing the projection models involve 
choosing which variables are state variables, how to project 
changes in state variables, and the structure of the imputation 
algorithm. These choices are based in part on the frequency of 
FIA inventories which varies among the regions of the country. 
In all regions however, the basic structure of the modeling 
approach is defined by three modules. Changes in key state 
variables for each forest plot are forecasted in response to 
projected forest aging, climate conditions, and human use 
choices (the transition module). After forecasting the state 
variables, a historical plot record with comparable conditions is 
selected to represent the simulated plot in the future inventory 
(the imputation module). The modeling starts with an algorithm 
that clusters similar plots according to a set of independent 
variables (the partitioning module). These partitions of plots 
define the groupings of plots for the imputation module and 
also define which variables are the state variables that need to 
be forecasted within the transition module. 

In most cases, models are developed on a State-by-State 
basis because of disparities in inventory dates. In some 
cases, multiple adjacent States are modeled together either 
because a concurrence of inventory dates allowed for pooling 
of dates—thereby enhancing the information content of the 
resulting models—or because a State was too small to support 
model estimation. For example, we pooled southeastern States 
(Virginia, North Carolina, South Carolina, and Georgia) and 
aggregated the Delaware data with adjacent survey units from 
Pennsylvania.

The Partitioning Module

The objective of the partitioning model is to define aggregates 
of plots that share common distributions of variables of interest, 
in this case the biomass contained on each plot (softwood 
and hardwood growing stock or live tree volumes). Plots are 
clustered according to several state variables and a clustering 
rule provides a compact description of the relationship 
between the state variables and the biomass distributions. 
Applying the clustering rule to an inventory places each plot 
into a partition with a similar joint distribution of biomass 
variables. Multivariate regression trees are used to generate 
the partitioning model, i.e., to sort plots into clusters for the 
imputation module. A detailed description of the partitioning 
approach can be found in Vokoun and others (2009).

Regression tree analysis is a nonparametric method for 
describing the relationship between independent state variables 
and the dependent variables (Breiman and others 1984). 

Univariate regression tree techniques split a dataset, referred to 
as the root node, into a set of nodes (or bins) where the values 
of a single index or response variable are similar (De’ath and 
Fabricus 2000). Variation of the dependent variable within 
each node (called impurity) is measured by the sum of squared 
differences from the node mean. The technique begins by 
splitting the root node into two subsets, or daughter nodes, 
based on the value of a state variable. The best split is defined 
by the partition of a single state variable that minimizes the 
total of the two sums of squares across the daughter nodes or 
equivalently, maximizes the reduction in the sum of squares in 
the aggregate dataset (De’ath and Fabricus 2000). Subsequent 
splits are performed until a stopping criterion is met, usually a 
minimum threshold for reductions in the sums of squares. The 
terminal nodes have the least impurity or variation about the 
mean of the index variable. The partitions based on values of 
the state variables define the clustering rule for a tree. 

Univariate or multivariate regression trees extend the univariate 
case by allowing more than one index or response variable. 
Node impurity in the multivariate case is the total of the sum of 
squared differences from the node mean across all dependent 
variables (De’ath and Fabricus 2000). Splitting is accomplished 
by choosing the partitions in the state variables that maximize 
the reduction in the multivariate sum of squares. We included 
various specifications of climate variables and FIA plot attribute 
variables as candidates for constructing the regression trees.

The R statistical software package with the MVPART 
(MultiVariate PARTitioning) package was used to generate 
state-level multivariate regression trees and the corresponding 
clustering rules to describe the relationships between the 
state variables and dependent variables for FIA plots. The 
regression tree algorithm sorts among several plot level 
variables and climate variables in determining the final tree. 
For each of the modeled States or State aggregates, we generate 
a multivariate regression tree for each of several forest type 
groups. Accordingly, the forest type is one state variable for 
our partitioning of plots into clusters. Other state variables are 
defined by the splits in each regression tree which vary by State 
and forest type, and include forest age, various climate variables, 
and site attributes such as ownership, aspect, and slope.

The specification of candidate variables for constructing 
regression trees greatly influences the outcome. For measured 
plot records, average values of variables were applied, e.g., 
average age, average diameter. For climate records, multiple 
formulations and variables were possible. We studied Iverson 
and Prasad’s (1998) classification trees of individual tree 
species for guidance on useful climate variables, e.g., average 
temperatures in January and July, average annual precipitation, 
and potential evapotranspiration. In addition, we experimented 
with various approaches to averaging the climate data and 
settled on different approaches for the East and the West based 
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on the fit of these models. In the East, climate variables were 
averaged over the life of a forest—i.e., a 25-year-old plot would 
have climate conditions averaged over the previous 25 years—
for the West, climate variables were averaged over a fixed time 
period—generally 20 years—for constructing the regression 
trees. In all cases, a large number of variables were provided 
for regression tree construction and the algorithm selected 
state variables for partitioning the FIA plots. Table A1 shows 
the number of regression trees in each region that contained 
specific climate variables.

The Transition Module

Regression trees separate inventory plots into partitions based 
on two types of state variables: (1) time invariant variables 
associated with plot conditions, for example slope or aspect, 
and (2) those that may change over time, for example forest 
age or climate. Forecasted changes in the latter variables 
predict changes in the plot cluster each plot location would be 
associated with in the future. Time variant variables are either 
exogenous climate variables—projected by general circulation 
models for the modeled scenarios (Joyce and others, in press)—
or are driven by human choices and plot dynamics which 
we model with a set of transition probabilities or rules. We 
develop models to yield three interlinked transitions: (1) forest 
harvesting, (2) forest aging, and (3) forest type changes.

Harvesting

Conditional harvest probabilities simulate the harvesting 
of plots in the inventory in response to changes in forest 
conditions and economic factors. The specification of these 
models varies between the regions and most importantly 
depends on the frequency of inventory measurements. For 
example, in the South Region, where the inventory interval 
is shortest, models derive from an explicit economic choice 
model that accounts for the effects of timber price levels on the 
likelihood of harvesting forest plots. In the North Region, the 
interval between forest inventories is longer and while harvest 
models show significant relationships between harvesting and 
biophysical attributes of the plot, timber prices did not yield 
significant effects. In the Western United States, the inventories 
are too infrequent to deduce harvesting relationships between 
matched inventories, so the distribution of harvest activity 
was inferred from a single inventory coupled with ancillary 
harvesting data. Resulting empirical models were calibrated to 
reflect historical patterns of timber removals.

In all cases, harvest probabilities can be adjusted to simulate 
future market outcomes. In the South, harvest probabilities are 
explicit functions of timber prices. In the other regions of the 
country, where harvest probabilities are not explicitly linked to 
prices, regional harvest levels can be shifted up or down using 
a scalar adjustment factor applied to the harvest probabilities. 
Market simulations for the U.S. Forest Assessment System, using 
the Forest Products Model, are based on information regarding 

Table A1—Occurrence of averaged climate variables in regression trees for 
each of the Resources Planning Act (RPA) regions (the Rocky Mountains 
Region is separated into its Great Plains [Plains] and Mountain State [RM] 
components)

RPA Region
Climate variable South North Plains RM Pacific Coast

number of regression trees
Annual average temperature 4 8 3 2 5
Average temperature in January 5 6 1 2 2
Average temperature in July 5 3 1 1 3
Average temperature May-September 2 2 1 0 1
Total annual precipitation 3 8 1 5 5
Average potential evapotranspiration 5 4 0 3 2
Average aridity July-August 4 7 1 3 4
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timber supply derived from the Forest Dynamics Model for the 
South and from aggregate supply models for the North and West. 
Because forest inventory dynamics alter supply futures, the 
Forest Products Model (with aggregate supply models) and the 
Forest Dynamics Model (with plot level harvest choice models) 
need to be reconciled.

In the South, harvesting models have the following general 
form and are described in detail in Polyakov and others (2010):

Pr (Harvest) = f {BH, BD} (2)

Harvest probabilities are modeled as a function of the 
differences between the marginal benefits of delaying harvest 
(BD) and the marginal benefits of harvesting (BH). These 
benefits can accrue not only to timber revenues but also to 
nonmonetary returns to holding the forest. Conditional logit 
models define the probability of observing harvests of two 
intensities (partial harvest and complete harvest) as functions 
of revenue and forest attribute variables which could proxy 
for nonmarket returns as well as site-specific costs. The logit 
harvest model has the following form:

Pr (havest | p, q) = ———————— (3)

where 

h = one of three harvest options: (1) no harvest, (2) partial 
harvest, and (3) complete harvest 

μ proxies for the difference in returns to harvesting and 
not harvesting as a function of revenue and forest attribute 
variables (p and q respectively) for each harvest option (h). 
Harvest simulations therefore depend on conditions of the the 
plot and timber prices which together define the revenue terms 
of equation 3.

Harvest choice models described by equation 3 were developed 
for each of the States in the South.2 Separate harvest models 
were estimated for the five broad forest management types 
(planted pine, natural pine, mixed pine-hardwood, upland 
hardwood, and lowland hardwood) and for public and private 
ownership groups. Ten States or State aggregates, five forest 
management types, and two ownership groups define 100 
separate harvest choice models.

Models similar to those estimated for the South were attempted 
in the North, but estimation results did not support their use. 
Correlations between harvest probability and revenue variables 
were generally inconsistent and lacked significance, perhaps 
reflecting the large variety of hardwood products harvested 
2 In some cases, small sample sizes precluded estimating separate models for a 
State. For example, we applied the harvest choice model for Tennessee to FIA 
plots in Kentucky and used Arkansas models for harvest choices in Oklahoma.

from forest stands and less frequent FIA records in this region. 
An alternative, two-step empirical harvest probability model 
was estimated for each forest type in each State of the North. 
In the first step, harvest probability was modeled as a function 
of a set of biophysical attributes in the inventory, including 
sawtimber volumes observed at the beginning and predicted 
for the end of the period, stand age, slope, ownership class, 
average stand diameter, and an index that gauges the diversity 
of the tree species on the plot. In the second step, harvests 
were defined as full or partial based on the frequency of these 
harvest types observed for the paired inventories for each State-
forest type permutation.

Models for the North can apply observed harvest patterns from 
the historical period (generally, the mid-1990s to the mid-
2000s) to future forest inventories to project future harvests. 
Alternatively, aggregate timber harvests can be adjusted up or 
down using the following equation:

Pr (Harvest) = δ f {Z} (4)

where

d = a scaling parameter used to increase or decrease harvest
f(Z) defines the harvest probability as a function of the set of 
attributes (Z) that are described above. 

Adjusted harvest levels therefore preserve the ordering of 
harvest probability across plot attributes observed in inventory 
records while allowing simulations of increasing or decreasing 
harvest levels. We use this approach to describe the effects of 
market futures on forest conditions.

In the West, inventories and especially harvests are even 
less frequent than in the North and harvests are modeled in 
different fashion with separate modeling approaches applied 
in the Rocky Mountain and the Pacific Coast regions. For 
the Rocky Mountains Region, instead of modeling harvests 
separately, we model the probability of a stand replacement 
event (indicated by a plot with forest age of between 0 and 10 
years). In this region, plot records indicate harvests of very 
low frequency—too low to estimate with empirical models. 
Stand replacement is therefore modeled using sequential logit 
models that (1) estimate the probability of fire occurrence, (2) 
estimate the probability of insect occurrence, and (3) estimate 
the probability of stand replacement as a function of forest 
type, forest age, and the insect and fire occurrences. Stand 
replacement therefore accounts for harvest effects but is more 
strongly influenced by other types of forest disturbances.

In the Pacific Northwest, especially on the west side of the 
Cascade Mountains, timber harvesting dominates forest 
disturbance but the infrequency of FIA inventories precluded 
estimating harvest probabilities using paired inventory 

exp (μt (h, p, q))
∑ exp (μt (k, p, q))

k∈H
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observations. Instead we developed a set of net harvest 
probabilities that accounted for natural disturbance and 
reproduced historical proportions of partial and full harvests. 
Removal intensities were adjusted to simulate historical 
removal totals. We used inventory records from reserved public 
land to infer the mortality rates for forests associated with 
natural disturbances in all forests—assuming that plots aged 
0–10 had experienced mortality in the previous 10 years. 

mj = ——————— (5)

where

F≤ 10, R, j  = the area of forest from age 0 to 10 years in reserved 
areas

F> 10, R, j = the area of reserved forest with age > 10 years
mj = the derived mortality rate for forest type j.

The area of clearcutting was estimated as the area of forests 
with ages of 0–10 years that was not explained by the 
background mortality rates. The literature on forest harvesting 
in the Pacific Northwest (Alig and others 2000, Zhou and 
others 2005) suggests that private landowners on the westside 
of the Cascades typically conduct final harvests at between 45 
and 65 years for both Douglas fir and hemlock forest types. We 
used the estimated clearcut area along with the pool of eligible 
acres—defined for example, for Douglas fir, as forests in the 
40–80 year age range plus the harvested acres—to estimate the 
previous period’s rates of final harvest by ownership and forest 
type for the eligible age class. Separate models were developed 
for the east and west sides of the Cascades to account for 
differences in forest conditions.

Pr (clearcut|owner  i, forest type = j)= ———————— (6)

where

Feligible, NR, i, j  = the area of nonreserved forest of ownership i and 
forest type j eligible for clearcuting (defined as 40–80 years old 
for Douglas fir) and other variables are defined above.

For public forests, this approach generated little evidence of stand-
replacing harvests over the last decade, consistent with Forest 
Service management reports. As a result, nearly all harvesting on 
this ownership is expected to be from partial cutting. 

Ancillary data on the proportion of harvested area accounted 
for by partial cutting and clearcutting (State of Oregon) 
was then used to assign an acreage estimate for the area of 
partially harvested plots for both west and east sides. As a 
final step, removal rates for partial cuts and clearcuts (as a 
portion of total growing stock) were used to estimate total 
harvest removals, and removal rates were adjusted to simulate 

historical removal levels for the region [based on Smith and 
others (2009) and Haynes and others (2007)]. This algorithm 
provides sets of harvest probabilities for clearcutting and 
partial harvesting by major forest type groups, ownership 
types, and age classes. The resulting harvest probabilities 
can be scaled or adjusted up or down to reflect increasing or 
decreasing harvest levels in the region as predicted by market 
forecasts for various scenarios from the Forest Products 
Model (Ince and others 2011).

Aging

The second stage of the transition module addresses changes 
in the attributes of unharvested plots. In addition to several 
climate variables, the partitioning module identified forest age 
as an important state variable. We predict change in the average 
forest age (Age) either using a fixed time step or a regression 
equation where

Aget+1 = f {Aget , FT } (7)

Within the inventory framework, the relationship between 
age and the time step of the simulation may not always be 
additive. Because forests are often collections of trees of 
multiple ages, plot level age is based on the average age of 
individual trees measured for the plot, and the rate of age 
change may vary with the age of the plot. For example, in 
a case where older cohorts of trees are replaced by younger 
trees in a multi-aged plot, the rate of aging for the overall 
plot could decline with time, suggesting an approach toward 
an age asymptote or even an eventual decline in age at some 
point in forest development due to mortality.

Forest Type Change

Forest type transition models vary between regions and model 
choice reflects data availability and model performance. For 
the South, models use a combination of rules and empirical 
probabilities to forecast forest type changes. In the North, 
empirical transition frequencies based on matched inventories 
define conditional transition probabilities. For the West, where 
only one useable forest inventory was available and forest type 
transitions could not be explicitly modeled, a classification 
approach was applied where the probability of observing each 
forest type was modeled as a function of plot and climate 
variables. Each approach is described in turn below. Our 
definition of forest type for modeling is technically the forest type 
group or aggregates of these groups defined by FIA (table A2).

For the South, after experimenting with a variety of forest 
type transition models we adopted a combination of rules and 

F≤ 10, R, j

F≤ 10, R, j + F> 10, R, j

F≤ 10, NR, i, j (1-mj)
Feligible, NR, i, j + F≤ 10, NR, i, j
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Table A2—Forest type groups as defined in the database of the Forest Inventory and Analysis (FIA) Program of the Forest 
Service, U.S. Department of Agriculture

100 White / red / jack pine group
101 Jack pine
102 Red pine
103 Eastern white pine
104 Eastern white pine / eastern hemlock
105 Eastern hemlock

120 Spruce / fir group
121 Balsam fir
122 White spruce
123 Red spruce
124 Red spruce / balsam fir
125 Black spruce
126 Tamarack
127 Northern white-cedar
128 Fraser fir
129 Red spruce / Fraser fir

140 Longleaf / slash pine group
141 Longleaf pine
142 Slash pine
150 Tropical pine group
151 Tropical pines

160 Loblolly / shortleaf pine group
161 Loblolly pine
162 Shortleaf pine
163 Virginia pine
164 Sand pine
165 Table mountain pine
166 Pond pine
167 Pitch pine
168 Spruce pine

170 other eastern softwoods group
171 Eastern redcedar
172 Florida softwoods
180 Pinyon / juniper group
182 Rocky Mountain juniper
184 Juniper woodland
185 Pinyon / juniper woodland

200 Douglas-fir group
201 Douglas-fir
202 Port-Orford-cedar
203 Bigcone Douglas-fir

220 Ponderosa pine group
221 Ponderosa pine
222 Incense-cedar
224 Sugar pine
225 Jeffrey pine
226 Coulter pine

240 Western white pine group
241 Western white pine

260 Fir / spruce / mountain hemlock group
261 White fir
262 Red fir
263 Noble fir
264 Pacific silver fir
265 Engelmann spruce
266 Engelmann spruce / subalpine fir
267 Grand fir
268 Subalpine fir
269 Blue spruce
270 Mountain hemlock
271 Alaska-yellow-cedar

280 Lodgepole pine group
281 Lodgepole pine

300 Hemlock / Sitka spruce group
301 Western hemlock
304 Western redcedar
305 Sitka spruce
320 Western larch group
321 Western larch
340 Redwood group
341 Redwood
342 Giant sequoia

360 other western softwoods group
361 Knobcone pine
362 Southwestern white pine
363 Bishop pine
364 Monterey pine
365 Foxtail pine / bristlecone pine
366 Limber pine
367 Whitebark pine
368 Miscellaneous western softwoods
369 Western juniper

370 California mixed conifer group
371 California mixed conifer

380 exotic softwoods group
381 Scotch pine
383 Other exotic softwoods
384 Norway spruce
385 Introduced larch

390 other softwoods group
391 Other softwoods 

400 oak / pine group
401 East wh pine/ northern red oak /white ash
402 Eastern redcedar / hardwood
403 Longleaf pine / oak
404 Shortleaf pine / oak
405 Virginia pine / southern red oak
406 Loblolly pine / hardwood
407 Slash pine / hardwood
409 Other pine / hardwood

500 oak / hickory group
501 Post oak / blackjack oak
502 Chestnut oak
503 White oak / red oak / hickory
504 White oak
505 Northern red oak
506 Yellow-poplar /white oak /northern red oak
507 Sassafras / persimmon
508 Sweetgum / yellow-poplar
509 Bur oak
510 Scarlet oak
511 Yellow-poplar
512 Black walnut
513 Black locust
514 Southern scrub oak
515 Chestnut oak / black oak / scarlet oak
516 Cherry / white ash / yellow-poplar
517 Elm / ash / black locust
519 Red maple / oak
520 Mixed upland hardwoods

600 oak / gum / cypress group
601 Swamp chestnut oak / cherrybark oak
602 Sweetgum / Nuttall oak / willow oak
605 Overcup oak / water hickory

606 Atlantic white-cedar
607 Baldcypress / water tupelo
608 Sweetbay / swamp tupelo / red maple
609 Baldcypress / pondcypress

700 elm / ash / cottonwood group
701 Black ash / American elm / red maple
702 River birch / sycamore
703 Cottonwood
704 Willow705 Sycamore / pecan / American elm
706 Sugarberry / hackberry / elm / green ash
707 Silver maple / American elm
708 Red maple / lowland
709 Cottonwood / willow
722 Oregon ash 

800 Maple / beech / birch group
801 Sugar maple / beech / yellow birch
802 Black cherry
805 Hard maple / basswood
809 Red maple / upland

900 Aspen / birch group
901 Aspen
902 Paper birch
903 Gray birch
904 Balsam poplar
905 Pin cherry

910 Alder / maple group
911 Red alder
912 Bigleaf maple

920 Western oak group
921 Gray pine
922 California black oak
923 Oregon white oak
924 Blue oak
931 Coast live oak
933 Canyon live oak
934 Interior live oak
935 California white oak (valley oak)

940 Tanoak / laurel group
941 Tanoak
942 California laurel
943 Giant chinkapin

960 other hardwoods group
961 Pacific madrone
962 Other hardwoods

970 Woodland hardwoods group
971 Deciduous oak woodland
972 Evergreen oak woodland
973 Mesquite woodland
974 Cercocarpus (mountain brush) woodland
975 Intermountain maple woodland
976 Miscellaneous woodland hardwoods

980 Tropical hardwoods group
982 Mangrove
983 Palms
989 Other tropical hardwoods

990 exotic hardwoods group
991 Paulownia
992 Melaleuca
993 Eucalyptus
995 Other exotic hardwoods

999 Nonstocked

Note: The forest type names used by FIA do not come from a single published reference. The current list of forest type names has been developed 
over time using sources such as historical FIA lists, lists from the Society of American Foresters, and FIA analysts who developed names to meet 
current analysis and reporting needs. (Source: Woudenberg and others 2011).
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empirical probabilities to forecast forest types. Inventory plots 
reveal few transitions between five broad forest management 
types in the South—planted pine, natural pine, mixed pine-
hardwood, upland hardwood, and lowland hardwood—likely 
reflecting the physiographic basis for these broad forest 
management types. Instead we observe strong associations 
between forest age and the occurrence of fine scale forest types 
within the broad type group (e.g., poplar/sweetgum on young 
upland hardwood plots and red oaks predominately on older 
upland hardwood plots). Accordingly, for this set of simulations 
we hold the broad forest management type of the plot constant 
over time except when the plot is predicted to be harvested. 
Transitions among forest types within each forest management 
type are simulated through the imputation algorithm described 
below. When harvest occurs, the plot returns to its historical forest 
management type or is transitioned to a planted pine management 
type. The probability of being planted derives from the observed 
planting frequency (PF) for each forest management type within 
the modeled State and adjusted to reflect market conditions.

pr (planting|harvest, FT ) = f {γ, PF [FT ]} (8)

where

γ = a scaling factor which is used to adjust the expansion in 
planted pine area consistent with the economic conditions of 
the scenario
FT = the observed forest type. 

Forest type transitions in the South rely on these rules 
and empirical probabilities and are not directly influenced 
by changes in climate conditions. As explained later, the 
imputation module allows the species composition within 
each of these forest type groups to shift in response to climate 
variables.

Forest type transitions in the North are modeled based on 
empirical transition matrices derived from matched plots. A 
separate model was derived for each State or State-aggregate 
in the North based on the most recent pair of inventories. In 
each State, forest types representing more than 2 percent of the 
forest area in the most recent survey were selected for inclusion 
in the transition matrix (table A3).

pr (FTt+1 = 1|FTt = j) = fi,j (9)

where

fi,j = the observed frequency of transitions between inventories. 
Equation 9 defines a transition matrix for all modeled forest 
types. Plots of all other forest types (those with < 2 percent of 
forest area) have fixed forest types throughout the simulation. 
Forest type transitions in the North therefore rely strictly on 
transition propensities observed across recent inventories and 
are not directly influenced by changes in climate conditions. 
As explained later, the imputation module allows the species 
composition within each of these forest type groups to shift in 
response to climate variables.

Table A3—Modeled forest type groups [Forest Inventory and Analysis (FIA) codes] and modeling units (States 
or State aggregates) for the North Resources Planning Act Region

State or State/Survey unit-aggregatea

Forest type group
(FIA code)b MN MI WI MO ME IA VT-NH

MA-
CT-RI

East PA-
East MD-

NJ-DE

East 
OH-West 
PA-West 
MD-WV

IL-IN-West 
OH NY

Aspen-birch (900) X X X X X X X
Elm-ash-cottonwood (700) X X X X X X X X X X X X
Maple-beech-birch (800) X X X X X X X X X X X
Mixed pine hardwood (400) X X X X X X X X X X X X
Oak-hickory (500) X X X X X X X X X X X X
Spruce fir (120) X X X X X X
White/red/jack pine (100) X X X X X X X X
Loblolly/shortleaf pine (160) X X
Oak-gum-cypress (600) X
Eastern red cedar (171) X

a States are named by their postal abbreviations.
b See table A2 for explanations of FIA codes.
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For the West, matched pairs of inventory plots were unavailable 
for modeling. Instead, a classification model for forest types 
in the West defines the occurrence probability of each forest 
type (rather than the transition between types) as a function 
of various site and climate variables. After experimenting 
with various approaches including naïve Bayes and clustering 
models, we chose a quadratic programming approach to 
derive conditional probabilities of observing a forest type 
conditioned on site and climate variables (Cortes and Vapnik 
1995). For each forest type, the model generates a “supporting 
hyperplane” as a function of climate and site variables that 
separates the referenced forest type from all other observed 
forest types. 

The quadratic programming approach defines a classification 
model. Given k forest plots and a set of m explanatory variables 
(which could include interaction terms), the quadratic program 
is specified to minimize the classification noise, i.e., to 
maximize the match between actual and predicted forest types. 
The measure of model fitness (an L2 norm or Euclidean error 
norm) is based on the classification rates for the modeled forest 
type as a relative measure of accuracy. 

Given the following variables as vectors:

Xi = Predicted occurrence of forest type i for each observation 
using the model (kx1 matrix)
Actuali = Actual forest type i for each observation, a vector 
of binary variables with 1 indicating the plot has the modeled 
forest type (kx1 matrix)
αi = estimated coefficients from the quadratic model (mx1 
matrix)
B = m explanatory variables for the k observations (k x m 
matrix)

The objective function is to minimize L2:

L2 (Xi) = (Xi – Actuali)2 (10.1)

Subject to:

B x αi = Xi (10.2)

Separate models are estimated for each forest type and result in 
probabilities of observing the specified forest type conditioned 
on the climate and site variables (B) observed for the plot. 
For each plot the probabilities of observing all forest types 
are normalized so that they sum to one. As climate variables 
are shifted by the scenarios, the QP approach generates new 
probabilities of observing each forest type for each forest plot. 
In each State or State aggregate, forest types representing more 
than 2 percent of forest area in the most recent survey were 
modeled (tables A4 and A5).

This classification approach to modeling future forest types 
for the Western United States is structurally similar to several 
studies that address future ranges of either broad biome types 
or individual tree species using nonparametric models. For 
example, Iverson and others (2008) in the Eastern United 
States and Rehfeldt and others (2006) in the West use similar 
approaches to constructing classification models—e.g., 
Random Forests models—to predict suitable habitat for 
individual tree species as functions of similar sets of climate 
and site variables. A longer history of data envelopment 
studies also describe (classify) boundaries between broad 
biome types—such as between prairie and forest (Gosz and 
Sharpe 1989). Applying climate projections to these models 
allows for inferences regarding the potential responses of 
species/biome ranges to future climates. A related body of 
work predicts forest inventory characteristics based on site 
attributes and ancillary data from satellite imagery (Moisen 
and Frescino 2002), not to produce temporal forecasts but 
to develop spatial interpolation of inventory data to maps of 
forest conditions.

In contrast to the transition models developed for eastern 
regions and explicitly linked to existing conditions, these 
classification models for western forests allow for more rapid 
transitions in type in response to projections of future climates. 
This suggests placing most emphasis in the longer term 
projections, e.g., focusing mostly on 30- to 50-year projections. 
Still, projections are provided for 10-year time steps to allow 
for insights into model behavior. 

Tree species-climate envelope models correspond most 
directly to our forest type classification models. However, our 
approach—predicting forest type groups to support whole 
plot imputation modeling—does not allow for novel species 
assemblages that can be implied by projections from species-
climate envelope models (Williams and Jackson 2007). By 
construction, our approach constrains future assemblages to 
be consistent with historical occurrences, an assumption that 
seems reasonable given the 50-year timeframe of forecasts, 
the inertia of persistent vegetation, and uncertainty about 
mechanisms of these changes.

The Imputation Module

The implementation of the forest harvesting, aging, and 
planting equations are set within a Monte Carlo modeling 
framework. Projections of exogenous variables for the various 
scenarios (e.g., climate variables and timber prices) and fixed 
variables for plots (e.g., slope) are used to assign forest type, 
harvest and planting probabilities, and ages based on equations 
2–10. Implementation of the probabilities using random number 
generators defined predicted outcomes for the state variables. 
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Table A5—Modeled forest type groups [by Forest Inventory and 
Analysis (FIA) codes] and modeling units (States or State aggregates) 
for the Pacific Coast Resources Planning Act Region 

State or State-Aggregatea

Forest type group
(FIA Code)b CA

OR-WA  
West side

OR-WA 
East side

California mixed conifer (370) X
Douglas fir (200) X X X
Fir-spruce-mountain hemlock (260) X X X
Lodgepole pine (280) X X
Other western hardwoods (920) X
Piñon juniper plus (180+) X
Ponderosa pine (220) X X
Tanoak-laurel (940) X
Redwood (340) X
Western oak (920) X
Alder-maple (910) X
Hemlock-Sitka spruce X
Other western softwoods (360)   X

a States are named by their postal abbreviations.
b See table A2 for explanations of FIA codes.

Table A4—Modeled forest type groups [by Forest Inventory and Analysis (FIA) codes] and 
modeling units (States or State aggregates) for the Rocky Mountain Resources Planning Act 
Region 

State or State-Aggregatea

Forest type group
(FIA Code)b CO-UT MT WY ID NV AZ NM ND-SD KS-NE
Aspen birch (900) X X X X X X
Douglas fir (200) X X X X X X
Deciduous oak woodland (970) X
Fir-spruce-mountain hemlock (260) X X X X X X
Lodgepole pine (280) X X X X
Piñon juniper (180) X X X X X X
Ponderosa pine (220) X X X X X X X X
Other western softwoods (360) X
Fir-spruce-hemlock (260) X X
Piñon juniper plus (180+) X X
Western larch (320) X X
Other western hardwoods (920) X X X
Elm-ash-cottonwood (700) X X
Oak-hickory (500) X X
Eastern redcedar (171) X
Mixed pine hardwood (400) X

a States are named by their postal abbreviations.
b See table A2 for explanations of FIA codes.
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Forecasts of all state variables using climate projections, price 
forecasts, and the transition module, place each plot into a plot 
cluster defined by the partitioning module. To construct the 
future inventory, a historic plot is drawn at random and with 
replacement from the plot cluster. Plot draws for all plot locations 
define a complete set of plot records for the future inventory. 
This set of resampled historic plot records provides estimates of 
all forest attributes measured by the forest inventory.

Using whole plot records to populate the inventory defines 
this imputation procedure as a “hot-decking” technique from 
the literature on the analysis of incomplete data or missing 
observations in survey processing. Here we extend the 
structure of hot-deck imputation from missing data to provide 
the entire forecasted dataset using historical plot records as 
proposed by Van Deusen (1997, 2006). 

Our partitioning model using regression trees defines what 
Ford (1983) calls a classification process for the hot-decking 
model, whereby observations within each partition are as 
homogenous as possible. Our objective in applying this hot-
decking approach is to produce forecasts that have reasonable 
joint and marginal distributions for measured forest inventory 
attributes. We should expect that the distributions within 
each partition are unbiased. Reams and McCullum (2000) 
demonstrate that this type of whole plot imputation procedure 
is equivalent to using regression equations to estimate average 
biomass volumes for historical simulations but that it preserves 
the joint distribution attributes between multiple independent 
variables. What’s more, the hot-decking approach preserves 
the variability of the data generation process inherent in the 
inventory (Reams and McCullum 2000) and contributes to 
estimates of the variance of the forecasts.

Simulation Structure

Recalling the definition of the information set for each plot in 
the inventory: 

I (p) = {S, Z, C, E} (1)

The Partitioning, Transition, and Imputation models provide a 
mechanism for predicting the plot attributes (S, Z) for the entire 
inventory conditioned on the climate (C). Linking the forecasted 
plot record to the scaling framework defined by the survey design, 
or the expansion factor (E), then completes the projection. To 
account for changes in the area frame of the survey we employed 
a land use model (Wear 2011) estimated with county-level data 
derived from the National Resource Inventories (U.S. Department 
of Agriculture Natural Resources Conservation Service  2000). 
This model provides estimates of the distribution of non-Federal 
land uses, including cropland, pasture, range, developed, 
forest, and other uses, in response to population, economic, and 

biophysical variables while Federal land area is held constant. 
Non-Federal FIA forest area within a county is assumed to 
change in direct proportion to the forest area change forecasted 
by the land use model. The expansion factors for all non-Federal 
plots in the county are adjusted to reflect these forecasts of 
changes in county forest area over time. These land use forecasts 
are driven by the population and income forecasts of the RPA 
scenario and, in the South, by timber price forecasts associated 
with the model run.

We seek to generate aggregate estimates of inventory values for 
reporting units such as ecological sections, State survey units, and 
State totals, consistent with the sampling design of the inventory. 
To test the performance of the modeling framework we conducted 
validations at two different levels: aggregate forecasts and the 
distribution of attributes within each of the partitions defined 
by the partitioning model. During the design phase for several 
States in the East, we simulated the development of the inventory 
between two measured inventories and compared actual values 
with those forecasted by the model. For aggregate validation, 
we compared a forecasted 95-percent confidence interval for six 
variables using 26 iterations of the model: trees per acre, total 
biomass (measured as growing stock volume), and sawtimber 
biomass (volume in trees > 9 inches in diameter) for both 
hardwood trees and softwood trees. Validation tests proved useful 
for identifying specification and programming errors.

The structure of the Monte Carlo simulation algorithm is 
described in figure A1. Simulation experiments indicated a 
convergence of variance estimates after about 20 simulations 
and we chose to run the model for 26 iterations for each scenario 
(limits of computing time kept us from constructing more 
simulations). For the display of forecast results, we selected one of 
the 26 model runs as a “representative” realization of the future 
inventory based on the minimum proportional distance of six 
variables from the means for the run over the 50-year simulation 
period. These six variables were total growing stock volume 
(cubic feet), trees per acre, and sawtimber volume for hardwoods 
and softwoods for the State or State-aggregate being modeled.

Models were implemented for individual States or aggregates 
of two to four States or adjacent survey units across States and 
results were summed up to display results for the RPA regions. 
The time step for each model in the East was defined by the time 
interval of the paired inventories used to build the transition 
module and in the West was defined as a fixed 10-year step. 
Inventories commenced from the date of the latest inventory 
available, so the years for which forecasts were generated 
varied across States. To construct regional aggregates for the 
reporting years (2020, 2030, 2040, 2050, and 2060), we assigned 
the inventory with the age closest to the reporting year to the 
aggregate, consistent with methods used to generate historical 
aggregates with FIA data (Smith and others 2009).
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