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introduCtion

W
ildland fire represents an important 
ecological mechanism in many forest 
ecosystems. It shapes the distributions of 

species, maintains the structure and function 
of fire-prone communities, and is a significant 
evolutionary force (Bond and Keeley 2005). At 
the same time, fire outside the historic range 
of frequency and intensity can have extensive 
economic and ecological impacts. Current 
fire regimes on more than half the forested 
area in the conterminous United States have 
been either moderately or significantly altered 
from historical regimes, potentially altering 
key ecosystem components such as species 
composition, structural stage, stand age, canopy 
closure, and fuel loadings (Schmidt and others 
2002). Fire suppression and the introduction 
of nonnative plants, in particular, have 
dramatically altered fire regimes (Barbour and 
others 1999). Additionally, fire regimes altered 
by global climate change could cause large-scale 
shifts in vegetation spatial patterns (McKenzie 
and others 1996). 

MethodS
The Moderate Resolution Imaging 

Spectroradiometer (MODIS) Active Fire 
Detections for the United States database (USDA 
Forest Service 2010) allows analysts to spatially 
display and summarize fire occurrence on a 
yearly basis (Coulston and others 2005; Potter 
2012a, Potter 2012b). Fire occurrences are 
defined as the satellite detection of wildland fire 

in a 1-km2 pixel for one day. The data are derived 
using the MODIS Rapid Response System (Justice 
and others 2002) from the thermal infrared 
bands of imagery collected daily by two satellites 
at a resolution of 1 km2, with the center of a pixel 
recorded as a fire occurrence when the satellites’ 
MODIS sensors identify the presence of a fire 
at the time of image collection (USDA Forest 
Service 2010). The data represent only whether 
a fire was active, because the MODIS sensors do 
not differentiate between a hot fire in a relatively 
small area (0.01 km2, for example) and a cooler 
fire over a larger area (1 km2, for example). 
The MODIS Active Fire database does well at 
capturing large fires, but may underrepresent 
rapidly burning, small and low-intensity fires, as 
well as fires in areas with frequent cloud cover 
(Hawbaker and others 2008). 

The number of fire occurrences per 100 km2 
(10 000 ha) of forested area was determined 
for each ecoregion section in the conterminous 
United States (Cleland and others 2007) and 
Alaska (Nowacki and Brock 1995) for 2009. 
This forest fire occurrence density measure was 
calculated after screening out wildland fires on 
non-forested pixels using a forest cover layer 
derived from MODIS imagery by the Forest 
Service Remote Sensing Applications Center 
(USDA Forest Service 2008). The total number of 
fire occurrences across the conterminous United 
States and in Alaska was also calculated.

Additionally, a Getis-Ord hot spot analysis 
(Getis and Ord 1992) in ArcMap 9.2 (ESRI 2006) 
was employed to identify forested areas in the 
conterminous United States with greater fire 
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occurrence density than expected by chance in 
2009. The spatial units of analysis were cells of 
approximately 2500 km2 from a hexagonal lattice 
of the conterminous United States, intensified 
from Environmental Monitoring and Assessment 
Program (EMAP) North America hexagon 
coordinates (White and others 1992). This 
cell size allows for analysis at a medium-scale 
resolution of approximately the same area as a 
typical county. Fire occurrence density values for 
each hexagon were quantified as the number of 
forest fire occurrences per 100 km2 (10 000 ha) 
of forested area within the hexagon. The Getis-
Ord G

i
* statistic was used to identify clusters 

of hexagonal cells with fire occurrence density 
values higher than expected by chance. 

Briefly, G
i
* sums the differences between the 

mean values in a local sample, determined in 
this case by a moving window of each hexagon 
and the six neighboring hexagons, and the global 
mean of all the forested hexagonal cells in the 
conterminous United States. G

i
* is standardized 

as a z score with a mean of 0 and a standard 
deviation of 1, with values greater than 1.96 
representing significant (p < 0.025) local 
clustering of higher fire occurrence densities 
and values less than -1.96 representing 
significant (p < 0.025) local clustering of lower 
fire occurrence densities, since 95 percent of 
the observations under a normal distribution 
should be within approximately 2 standard 
deviations of the mean (Laffan 2006). Values 
between -1.96 and 1.96 have no statistically 

significant concentration of high or low values; 
a hexagon and its six neighbors, in other words, 
have neither consistently high nor consistently 
low fire occurrence densities per 100 km2 of 
forested area. The threshold values are not exact 
because the correlation of spatial data violates 
the assumption of independence required for 
statistical significance (Laffan 2006). The Getis-
Ord approach does not require that the input 
data be normally distributed because the local 
G

i
* values are computed under a randomization 

assumption, with G
i
* equating to a standardized 

z score that asymptotically tends to a normal 
distribution (Anselin 1992). The z scores are 
reliable, even with skewed data, as long as the 
distance band is large enough to include several 
neighbors for each feature (ESRI 2006).

reSuLtS and diSCuSSion
The MODIS Active Fire database captured 

76,611 wildland forest fire occurrences across 
the conterminous United States in 2009, the 
third most since the first full year of MODIS 
data collection in 2001, but fewer than in the 
2 previous years (fig. 3.1). The annual mean 
number of forest fire occurrences since 2001 
was 48,368. The database captured 33,331 fire 
occurrences in Alaska, also the third highest 
number since initial MODIS data collection. 
With a few exceptions, the conterminous 
United States and Alaska have seen opposite 
year-to-year trends in the number of forest fire 
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occurrences. This was the case between 2008 
and 2009, with the number of fires decreasing in 
the conterminous United States and increasing in 
Alaska (fig. 3.1). The increase in total number of 
fire occurrences across both regions is consistent 
with the official wildland fire statistics, which 
show a 12-percent increase in the overall area 
burned nationally between 2008 (2 141 801 ha) 
and 2009 (2 397 484 ha) (NICC 2010).

In 2009, ecoregion section M262A-Central 
California Coast Ranges experienced the highest 
number of fire occurrences relative to its area 
of forest, with 38.5 fires per 100 km2 of forested 
area (fig. 3.2). Two adjacent ecoregion sections 
also had high numbers of forest fire occurrences: 
M262B-Southern California Mountain and 
Valley and 261B-Southern California Coast, 
with 22.4 and 12.9 fires per 100 km2 of forested 
area, respectively. The southern plains of 
Oklahoma and Texas also had high densities of 
forest fire occurrences: 15.8 in ecoregion section 
315G-Eastern Rolling Plains and 15.0 in  
ecoregion section 255A-Cross Timbers and Prairie.

Figure 3.1—Forest fire occurrences detected by MODIS from 2001 to 2009, for the 
conterminous United States, Alaska, and the two regions combined. (Data source: 
U.S. Department of Agriculture Forest Service, Remote Sensing Application Center)
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Figure 3.2—The number of forest fire occurrences, per 100 km2 (10 000 ha) of forested area, by ecoregion section within the conterminous 
United States, for 2009. The gray lines delineate ecoregion sections (Cleland and others 2007). Forest cover is derived from MODIS imagery by 
the U.S. Forest Service Remote Sensing Applications Center. (Source of fire data: U.S. Department of Agriculture Forest Service, Remote Sensing 
Application Center)
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Regions with moderately high forest 
fire density in 2009 included much of the 
Southeastern Coastal Plain and all of Florida 
as well as ecoregion sections 231G-Arkansas 
Valley of Oklahoma and Arkansas, 255E-Texas 
Cross Timbers and Prairie and 315D-Edwards 
Plateau of Texas, M313A-White Mountains 
and 313C-Painted Desert of Arizona and New 
Mexico, and M261E-Sierra Nevada and M261D-
Southern Cascades of California (fig. 3.2).

In Alaska, the most fire occurrences in 2009 
(28.2 per 100 km2 of forest) were recorded in 
ecoregion section 139A-Yukon Flats (fig.3.3). 
Ecoregion sections 131A-Yukon Bottomlands 
and 131B-Kuskokwim Colluvial Plain also 
experienced a high density of forest fire 
occurrences, with 15.0 and 13.1 per 100 km2 
of forest, respectively. Three Alaska ecoregion 
sections had moderately high density of forest 
fire occurrences: M139B-Olgivie Mountains, 
135A-Copper River Basin, and M131C-
Kuskowkim Mountains.

While summarizing fire occurrence data 
at the ecoregion scale allows for the summary 
of fire density over time in a relatively large 
geographic area, a geographical hot spot analysis 
can offer insights into where fire occurrences 
are concentrated at a finer scale during a given 
length of time. Analyses of MODIS Active 
Fire data from previous years (Potter 2012a, 
Potter 2012b) indicated that geographical hot 
spots of fire occurrence density were limited 
almost entirely to the Pacific Coast, the Rocky 
Mountains, and the Southeastern Coastal 

Plain. In 2009, however, no hot spots existed 
in the Rocky Mountains, although hot spots 
were concentrated in Southern California and 
were scattered across the Southeastern Coastal 
Plain (fig. 3.4). Unlike previous years, which 
each encompassed at least one high-density 
geographic hot spot, the highest-density hot 
spots in 2009 were only moderately so. These 
hot spots were located in ecoregion sections 
261B-Southern California Coast, M262B-
Southern California Mountain and Valley, 
261A-Central California Coast, and M262A-
Central California Coastal Ranges. This pattern 
suggests that fires in 2009 were more evenly 
distributed across the conterminous United 
States, with slightly higher concentrations in a 
few areas. 

These lower-density hot spots included these 
ecoregion sections:

• M261E-Sierra Nevada and M261F-Sierra 
Nevada Foothills of California
• M242B-Western Cascades and M242C-
Eastern Cascades of southern Oregon
• M341C-Utah High Plateau and 
341F-Southeastern Great Basin of southwestern 
Utah
• M313A-White Mountains-San Francisco 
Peaks-Mogollon Rim, 313C-Tonto Transition, and 
313D-Painted Desert and 313A-Grand Canyon of 
Arizona
• 255A-Cross Timbers and Prairie, 
231G-Arkansas Valley, and M231A-Ouachita 
Mountains of Oklahoma
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Figure 3.3—The number of forest fire occurrences, per 100 km2 (10 000 ha) of forested area, by ecoregion section within Alaska, for 2009. 
The gray lines delineate ecoregion sections (Nowacki and Brock 1995). Forest cover is derived from MODIS imagery by the U.S. Forest 
Service Remote Sensing Applications Center. (Source of fire data: U.S. Department of Agriculture Forest Service, Remote Sensing Application 
Center)



37

Figure 3.4—Hot spots of fire occurrence across the conterminous United States for 2009. Values are Getis-Ord G
i
* scores, with values greater than 

2 representing significant clustering of high fire occurrence density values. (No areas of significant clustering of low fire density occurrence values, 
-2, were detected.) The gray lines delineate ecoregion sections (Cleland and others 2007). Background forest cover is derived from MODIS imagery 
by the U.S. Forest Service Remote Sensing Applications Center. (Source of fire data: U.S. Department of Agriculture Forest Service, Remote 
Sensing Application Center)
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• 315G-Eastern Rolling Plains and 255E-Texas 
Cross Timbers and Prairie of Texas
• 232F-Coastal-Plains and Flatwoods-Western 
Gulf of Louisiana
• 232B-Gulf Coastal Plains and Flatwoods and 
232L-Gulf Coastal Lowlands of northern Florida 
and southern Georgia and Alabama
• 232C-Atlantic Coastal Flatwoods and 
232J-Southern Atlantic Coastal Plains and 
Flatwoods of South Carolina and Georgia
• 232G-Florida Coastal Lowlands-Atlantic, 
232D-Florida Coastal Lowlands-Gulf, and 
411A-Everglades of southern Florida

The results of these geographic analyses 
are intended to offer insights into where fire 
occurrences have been concentrated, but 
are not intended to quantify the severity of 
a given fire season. Information about the 
concentration of fire occurrences may be useful 
for the identification of areas for management 
activities and for follow-up investigations related 
to the ecological and socioeconomic impacts of 
fires that may be outside the range of historic 
frequency.
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