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Abstract

In addition to its standard suite of mensuration variables, the Forest Inventory and Analysis 
(FIA) program of the U.S. Forest Service also collects data on forest health variables 
formerly measured by the Forest Health Monitoring program. FIA obtains forest health 
information on a subset of the base sample plots. Due to the sample size differences, the 
two sets of variables have traditionally been analyzed separately. However, the analysis of 
forest health indicator data can occur in conjunction with not only other stand characteristics 
(mensuration variables such as live-tree volume), but also with a plethora of ancillary 
information such as climate data and satellite imagery. This document is designed to 
help people interested in using auxiliary information in the analysis of the forest health 
indicators. Readers are initially treated to topics related to exploratory data analysis. This 
introductory content is followed by presentation of various statistical methodologies that 
may be employed; each section provides empirical analyses and discussion of the technique 
being presented. To cultivate a common theme throughout the document, carbon attributes of 
coarse woody debris (i.e., downed deadwood of a minimum size) is used as the forest health 
variable of interest; however, the underlying concepts can be applied to analyses of other 
variables as well.

Keywords: Analysis, ancillary data, coarse woody debris, estimation, FIA, forest health data.
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Introduction

The Forest Inventory and Analysis (FIA) program of the 
U.S. Forest Service is responsible for collecting forest inven-
tory data on an annual basis. The inventory has two main 
field components: 1) a set of nationwide ground plots on 
which standard mensuration variables, such as tree species, 
heights, and diameters, are measured, and 2) a subset of 
plots where forest health variables, such as down woody 
material, lichens, soils, and understory vegetation, are also 
measured. The full set of plots is called phase 2 (P2) plots. 
The plots having forest health measurements are called 
phase 3 (P3) plots. 

This design arose from the merger of two different 
inventory schemes: the FIA program, which tradition-
ally measured the standard mensuration variables (e.g., 
P2 plots), and forest health monitoring (FHM), which 
measured the forest health attributes (e.g., P3 plots). Prior 
to the merger of the field measurement portions of the two 
programs, the plot designs were incompatible and were not 
necessarily colocated, or measured at the same time. When 
the two monitoring efforts merged, a common plot design 
was adopted, along with colocated plots, and same-time 
measurements of both sets of variables. 

While some logistical efficiencies have been gained by 
jointly measuring the P2 variables and P3 variables on the 
P3 plots, relatively little statistical efficiency in terms of 
more precise estimates of P3 variables has yet been created 
by this merger. Part of this lack of increased statistical 
efficiency has been due to the nature of the two original 
programs. As an inventory program, FIA’s main outputs are 
county and State totals of variables such as forest area and 
tree volume and changes in those totals. FHM primarily had 
a long-term monitoring approach, whose main goals were 
status, trends, and changes in forest health. While the FIA 
program continued to produce State totals using P2 plots, 
the FHM portion of the merged program has continued to 
use just the P3 plots. With the new emphasis on estimates of 
carbon stocks, there is an increased need to estimate State 
totals for some of the P3 variables, particularly down woody 
material and soils. While State totals can be calculated from 
the P3 plots, the precision of these estimates can be poor 
due to the lower P3 sampling intensity. The precision can 
be improved by incorporating auxiliary information such as 
information from the P2 variables.

The objective of this publication is to explore and suggest 
methods to analysts wanting to incorporate other auxil-
iary data into their analysis of the P3 data. While we do 

emphasize using the P2 data and estimating population 
totals, we realize that other sources of data and other objec-
tives might interest analysts. We make some pre-analysis 
suggestions including ideas for checking for problem data. 
Because the goals, variables, and amount of available data 
differ for each project, there is no possible one-size-fits-
all type of statistical analysis. Therefore, a general review 
of different statistical techniques that could be used is 
provided. This review is not meant to be exhaustive. Also, 
our goal is not to create a text book with instructions on how 
to run each type of analysis, but rather to give the readers a 
sufficient intuitive feel for each method to help them decide 
which statistical method will best fit their needs. Chapters 
1 through 3 contain suggestions for preparing and exploring 
the data. Chapters 4 through 7 contain reviews of possible 
methods of analysis. 

Example Dataset

To increase the cohesion between the different chapters, 
examples of the analyses discussed in each chapter used the 
same dataset. These data are from the State of Michigan and 
were obtained from the FIA program. Data are collected in 
three phases. Phase 1 is the development of a stratification 
scheme using remotely-sensed data. Under the current FIA 
sampling design where plot locations are fixed over time, 
stratification occurs after the plot locations are selected, 
thus the term post-stratification. Currently, the post-strat-
ification for Michigan is based on canopy cover informa-
tion obtained from the national land cover database 2001 
map product (Homer and others 2004). Using plot location 
information, a percent cover was assigned to each plot. Plots 
were then aggregated into groups based on cover classes 
0–5, 6–50, 51–65, 66–80, and 81–100 percent. Stratum 
weights were determined by dividing the number of map 
pixels in each stratum by the total number of map pixels in 
the population. 

The second phase (P2) of data collection is measuring 
sample plots on the ground for the usual suite of variables 
such as tree species, diameter at breast height, and height, 
site index, forest type, stand age, etc. (U.S. Department of 
Agriculture Forest Service 2007). These data include 13,274 
P2 plots measured between 2002–06, which comprises 
the entire sample in the State. A unique feature of the 
plot measurement protocols is the delineation of separate 
conditions (Scott and others 2005). This entails describing 
a boundary line between areas on the plot that differ in 
certain attributes. 
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P3 forest health indicator data is collected on a subset of the 
P2 plots. The down woody material indicator is one of the 
forest health indicators collected on the P3 plots. Specifi-
cally, measurements of coarse woody debris were used to 
calculate the amount of coarse woody debris carbon per acre 
in each plot condition (Woodall and Monleon 2008). The 
data were from 468 conditions on 381 P3 plots in Michigan 
measured between 2002–06.

Data Sources for Forest Health Data

Before starting any analysis of the forest health indicator 
variables, the analyst needs to have an understanding of the 
forest health indicator. Each indicator has a unique refer-
ence publication: crowns (Schomaker and others 2007), 
down woody material (Woodall and Monleon 2008), lichen 
(Will-Wolf 2010), ozone (Smith and others 2007; Smith 
and others 2008), soils (O’Neill and others 2005), and 
vegetation diversity and structure (Schulz and others 2009). 
The field manuals for both the forest indicators (P3) and the 
standard forest mensuration variables (P2) can be found at 
http://www.fia.fs.fed.us/library/field-guides-methods-proc/. 
The documentation for the database for both the forest indi-
cators and the standard mensuration variables can be found 
at http://www.fia.fs.fed.us/library/database-documentation/. 

The data can be accessed from the FIA DataMart at 
http://apps.fs.fed.us/fiadb-downloads/datamart.html. 
However, going through http://www.fia.fs.fed.us/tools-data/
default.asp to get to the DataMart will make accessing 
customer support easier. Most of the forest indicator data 
tables include a variable named PLT_CN. This is the control 
number of the P2 plot measurement as it appears as CN 
in the PLOT table. Since the tables for the other standard 
mensuration variables, such as CONDITION and TREE, 
include the variable PLT_CN, this variable can be used to 
connect the forest health indicator data to the mensuration 
data. Due to the Food Security Act of 1985, FIA is not 
allowed to give out exact plot coordinates. Therefore, only 
approximate coordinates are given. If you need to have 
exact coordinates, you will need to contact FIA’s Spatial 
Data Services at http://www.fia.fs.fed.us/tools-data/spatial/
default.asp. 
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Section 1—Exploratory Analysis





There are statistical procedures called data mining tech-
niques, originally used primarily in marketing and credit 
analysis, that are designed to require very little prior 
knowledge about the relationships between the predicted 
variable (called the dependant variable or target variable) 
and the variables used to predict/model that variable (called 
the independent variables or the predictor variables). Some 
of these techniques are discussed in chapter 7. However, 
these techniques usually require very large datasets (>2,000 
observations). Most analysis of phase 3 (P3) variables will 
not have the luxury of datasets this large. The analysis 
methods for smaller datasets usually require assumptions 
about the relationships between the target variable and the 
predictor variables. Therefore, taking time to consider what 
is known about the relationships between the target variable 
and the predictor variables will usually be helpful. Writing 
out the expected relationships helps clarify relationships and 
point to expected results. 

Since we are using coarse woody debris carbon (CWDc) as 
the target variable in our example analyses, we are including 
an analysis of the biological/physical relationships between 
coarse woody debris (CWD) and the phase 2 (P2) variables. 
This analysis is broken into two parts. The first section 
describes the expected relationships between CWD

c
 and 

the independent variables of interest. The second section 
looks at the independent variables of interest and attempts to 
deduce their expected effect on CWDc.

Expected Relationships

The change in the amount of CWDc will be the difference 
between CWDc accretion and CWDc losses (Woodall 2010). 
CWDc accretion is the result of woody biomass mortality 
and subsequent downfall (Gough and others 2007), a forest 
ecosystem dynamic that is inherently linked to the ecology 
of CWD (Harmon and others 1986). As CWD is often not 
rooted to sites, it is often subjected to disturbance events 
such as removal by flooding. Under undisturbed conditions, 
most of the CWDc losses are expected to occur due to 
normal decomposition processes. Other sources of CWDc 
losses are fire and human intervention (e.g., harvesting and 
site preparation).

Because the main source of CWD accretion will be branch 
loss and tree mortality, CWD inputs are expected to be their 
lowest at stand initiation with subsequent increase as stands 
age. Aside from CWD inputs, there can be tremendous 
residual CWD at stand initiation due to prior disturbance 

events (e.g., wildfire or harvest). Therefore, in the absence 
of major disturbances, CWDc stocks may be related to 
stand age, stand density, stand volume, growth rate, and 
possibly tree species composition (Janisch and Harmon 
2002, Woodall and Westfall 2009). Since tree mortality 
will involve the loss of the remaining branches (Domke and 
others 2011), there may be a correlation between CWDc and 
the volume of standing dead trees. Stochastic disturbance 
events can create exceptions to this general trend (Woodall 
and Nagel 2007, Woodall and Westfall 2009). 

Decomposition can be broadly ascribed to a complex of 
abiotic and biotic processes entwined with the attributes 
of each downed deadwood piece itself (Harmon and 
others 1986, Yin 1999). Although fungi and microinver-
tebrates may be a primary driver of wood decay (Käärik 
1974), certain environmental factors such as moisture/
oxygen availability and wood attributes such as lignin 
content affect wood decay rates to an unknown extent 
(Harmon and others 2000, Freschet and others 2012). 
Hence, the variables in the Forest Inventory and Analysis 
database that may be useful for modeling CWD decay 
rates are those related to climate (e.g., physiographic class 
or latitude) and individual species attributes (e.g., CWD 
species) (Yin 1999).

Flooding can either deposit or remove CWD. While intense 
fires will consume CWDc, fires can kill standing trees, 
creating an influx of CWDc at a later date (Kashian and 
others 2006). In addition to wildfires, varying utilization 
rates at harvest sites will in turn result in varying resultant 
CWDc stocks (Radtke and others 2004). However, if 
intense harvesting methods like chip milling are used, the 
remaining amount of CWDc may be small. In the P2 data-
base, wildfires are classified as a disturbance and harvesting 
is classified as a treatment, as is prescribed burning. 

Expected Effects

Stand age is expected to be among the most important vari-
ables in the prediction of CWDc, with the amount expected 
to increase with stand age (Radtke and others 2004). 
Increased stand density in terms of either basal area and/or 
stocking is expected to create increased inputs to CWD

c
, but 

minimally affect the decomposition rate. Therefore, basal 
area is expected to be positively correlated with CWDc. 
Site index is the expected height of the stand at a given 
‘base’ age. The larger the site index, the faster the stand is 
expected to grow. Faster tree growth is an indicator of more 
rapid stand development with resultant increased rates of 

Chapter 1: Reviewing Knowledge of the Biology
David Gartner, Christopher Woodall, and James Westfall
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branch loss and tree mortality due to self-thinning (Oliver 
and Larson 1996). Therefore, site index is expected to be 
positively correlated to CWD

c
. 

Species composition, as denoted by forest type, might 
affect both the amount of CWD due to differences in 
branching patterns and the effects of different lignin 
contents on decomposition rates (Harmon and others 1986). 
Dry physiographic classes are expected to have more CWDc 
than mesic physiographic classes with the same site index 
(Woodall and Liknes 2008). Hydric physiographic classes 
are also expected to have more CWDc than mesic physio-
graphic classes with the same site index, with the caveat 
that stands on riverine floodplains are expected to be highly 
variable (Woodall and others 2012). Since both dry and 
hydric physiographic classes usually have lower site indices 
than mesic physiographic classes, care will need to be taken 
to remember this relationship when investigating the effect 
of physiographic class on CWDc stocks.

The objective of this initial analytical step is to create a 
short list of variables for further data exploration. There is 
a tenuous balance between including too few predictor vari-
ables in the data exploration that results in correspondingly 
weak models, and including too many predictor variables 
which increases the probability that the data explora-
tion process will identify spurious relationships between 
predictor and target variables (Woodall and Westfall 2012). 
Although, there is no strict rule for determining which 
variables to include in the data exploration, suggestions 
from ecological literature can often provide direction. From 
our process of describing the biological effects of P2 vari-
ables on the volume of CWD, we have decided to include 
the following variables in our analyses: stand age, basal 
area per condition acre, forest type, site index, disturbances, 
harvesting, fire, site preparation, volume of dead trees, 
physiographic class, and decomposition season length. 
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Almost all large datasets will have either data errors or 
highly unusual observations (outliers). People will occasion-
ally make measurement errors and typos, and electronic 
recording devices will go out of calibration. Occasionally, 
stochastic disturbances can greatly affect the data, such as 
the July 4, 1999 downburst that flattened trees in large areas 
of the Boundary Water Canoe Area (bwcawiki.org 2009). 
Both errors and highly unusual observations can cause prob-
lems for statistical analysis. Therefore, as a general rule, you 
should check your data for these potential problems. 

Understanding the data entry process will help recognize 
types and sources of data entry errors. The first step to 
understanding the data entry process is understanding what 
variables are being entered, and how each variable is used. 
Coarse woody debris carbon (CWDc) is recorded in one of 
two ways: either as single pieces of coarse woody debris 
(CWD), or as CWD piles. No CWD piles were recorded in 
our example dataset. The single pieces of CWD are sampled 
using a line transect method. Three transects radiating 
from the center of each subplot are used to sample CWD. 
Each piece of CWD that crosses one of the transects has 
the following measurements recorded: small end diameter 
(down to 3 inches), diameter where the CWD intersects 
the transect, the large end diameter, the length between the 
small end diameter and the large end diameter, and the loca-
tion on the transect. The volume and mass of each piece is 
calculated from the small end diameter, the large end diam-
eter, and the length. Therefore, the variables whose data 
entry errors that are most likely to cause spurious CWDc 
values are the small end diameter, the large end diameter, 
and the length.

The data entry program used in our example CWDc dataset 
is called Mobile Integrated Data Acquisition System 
(MIDAS). MIDAS requires that all of the relevant variables 
have been entered before the observation is transmitted. 
For example, if the field crew enters a tree with a diameter, 
MIDAS will require that a height and a species code, etc., 
are also entered. Therefore, MIDAS will make sure that 
all CWD pieces have a small end diameter, a large end 
diameter, and a length. For a complete description of these 
variables see the Down Woody Materials (DWM) Field 
Manual 4.0 at http://www.fia.fs.fed.us/library/field-guides-
methods-proc/. MIDAS will also make sure that the data 
entered are within the acceptable range for each variable. 
However, MIDAS does not check for the relationships 

Chapter 2: Data Screening
David Gartner, James Westfall, and Christopher Woodall

between two variables. For example, MIDAS will not check 
for problems in the relationship between tree heights and 
tree diameters. Therefore, we will concern ourselves with 
measurement errors and typos, and unusual observations. 
Because the data is entered for each piece of CWD which is 
used to calculate a volume and then summed by condition, 
the measurement errors and typos will be found by looking 
at the CWD piece data and the unusual observation will be 
found by looking at the condition totals. We will start with 
the CWD piece data.

Checking for Measurement Errors and 
Typos

The easiest method for detecting potential problem obser-
vations are graphs. There are also statistical tests to detect 
potential problem observations. While these methods detect 
possible errors, they will, at best, produce probabilities that 
the observation is an error. Proving that an observation is an 
error is very difficult. Usually, either a probability threshold 
is used or a subjective decision is made for each observation. 

For continuous variables, scatter plots of two variables are 
a good place to start. We have included graphs of small-end 
diameter versus large-end diameter (fig. 2.1), length 
versus large-end diameter (fig. 2.2), and length versus 
small-end diameter (fig. 2.3). The scatter plot of large-end 
diameter versus small-end diameter (fig. 2.1), in addition to 
showing two extreme points (one with a large-end diam-
eter >30 inches, and the other with a small-end diameter 
of 21 inches), shows several observations with large-end 
diameters that are larger than most of the rest of the obser-
vations with the same small-end diameters. However, those 
observations do not fall as far out of the range of the rest of 
the data as some of the lengths found in the scatter plots of 
large-end diameter versus length (fig. 2.2) and small-end 
diameter versus length (fig. 2.3) which show a group of 
observations with very large lengths. 

Two dimensional graphs limit your view to two variables 
at a time. Alternatives that allow for more information per 
graph include 3-D graphs, and methods that graph each 
observation such as star graphs and Chernoff face graphs 
(Chernoff 1973). Since Chernoff face graphs and star graphs 
create a graph for each observation, they are not practicable 
for large datasets.

“A statistical analysis is only as good as the data being analyzed. . . . It has been said that one should never 
trust a large dataset to be correct. Errors are unavoidable and steps must be taken to deal with them. A few 
unfortunate errors may cause a statistical analysis to be worthless or, even worse, misleading.” (Johnson 1998)
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Since the CWD diameters are measured in inches and the 
CWD length is measured in feet, several observations can 
fall on the same graph symbol on the scatter graphs. To 
help differentiate between the graph symbols with multiple 
observations and those with only one observation, we 
created a box graph (Tukey 1977) of length by large-end 
diameter (fig. 2.4). The line in the middle of the box is 
the median. The top of the box is the 75th percentile. The 
bottom of the box is the 25th percentile. The whiskers 
extend out from the box to the last observation that is <1.5 
times the interquartile range from the end of the box. The 
circles represent observations outside this range, that need 
to be considered as potential errors or unusual observations.

Dealing With Potential Measurement 
Errors and Typos

Once an observation is determined to be a problem, there 
are five main possible actions: 1) leave the observation in 
the dataset unchanged, 2) remove the observation from the 
dataset, 3) replacing the erroneous value with what you 
think is the proper value based on the erroneous value (data 
editing), 4) replace the erroneous value with what you think 
is the proper value based on the values of the other variables 
(single imputation), and 5) replace the erroneous value with 
several different potentially proper values, rerunning the 
analysis with each different potentially proper values using a 
method called multiple imputation (Rubin 1987). 

Figure 2.2—Length versus large-end diameter.

Large-end diameter (inches)
10 15 20 25 30 35

Le
ng

th
 (

fe
et

)

0

30

60

90

120

150

180

210

240

270

0 5

Small-end diameter (inches)
10 12 14 16 18 20 22

La
rg

e-
en

d 
di

am
et

er
 (

in
ch

es
)

0

5

10

15

20

25

30

35

2 4 6 8

Figure 2.1—Large-end diameter versus small-end diameter.

Figure 2.3—Length versus small-end diameter.
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Figure 2.4—Initial box plot of length by large-end diameter.
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Your options for dealing with problem observations are 
affected by how sure you are of your ability to determine 
the correct values. If you are not sure that the value is an 
error, leave it in the dataset. If you have few errors and very 
little information as to what the correct value is, consider 
deleting the observations. If there exists a procedural 
problem that causes some observations to have errors in a 
systematic manner, use the data editing approach. If one 
of the values in the observation appears to be an error, but 
the other values are not, you might want to use one of the 
imputation methods. Examples of this type case appear in 
figure 2.4, where the values for large end diameter look 
reasonable, but the values for some of the length values 
do not look reasonable. Imputation would be choosing a 
reasonable length value based on the length values for other 
observations of the same large end diameter. Single imputa-
tion consists of choosing one reasonable length value, while 
multiple imputation consists of choosing several reasonable 
length values based on the large end diameter value. The 
more observations with erroneous values and the greater the 
variation in the reasonable replacement values, the greater 
the need to use multiple imputation. Unfortunately, multiple 
imputation procedures are complex and a good knowledge 
of multiple imputation is needed before using them.

In the case of CWD, removing an observed piece of CWD 
from the dataset due to an erroneous length value affects 
the condition level summed CWD volume. Therefore, if we 
deleted individual CWD piece observations, we would affect 
the condition level values. So, we wanted to avoid deleting 
CWD piece observations. There is a CWD protocol that 
occasionally causes systematic errors. For CWD, lengths are 
measured in integer feet. For the mensuration data, lengths 
are measured in tenths of feet. The portable data recorder’s 
mensuration data entry screen does not show the decimal 
point. Therefore, while the mensuration data entry screen 
interprets a tree height value of “100” as 10 feet, the CWD 
data entry screen interprets a CWD length value of “100” as 
100 feet. The cruisers are required to remember which data 
measurement uses which data format. If the cruiser uses 
the phase 2 data format for entering the DWM data, then 
their recorded lengths should be 10 times the correct length. 
We decided to assume that the large observed lengths were 
probably due to this error. Therefore, we adjusted these 
lengths by dividing them by 10 and then rounding to the 
nearest integer. After adjusting the largest lengths, the new 
box plots (fig. 2.5) looks much more reasonable. There are 
still a few observations that look questionable, and could 
also be adjusted. However, the actual cutoff point between 
lengths that are adjusted and those which are not adjusted is 
subjective.

We also looked into the observation with the largest large 
end diameter (31 inches). While this diameter was larger 
than any of the diameter at breast height (d.b.h.) of any of 
the living trees, it was close to the size of the largest trees. 
Since we were not sure that this measurement was actually 
an error, we left the observation unchanged in the dataset.

Checking for Condition Level Outliers

If the forest health indicator has individual observations that 
are used to calculate a plot or condition level value, then the 
condition level values should be checked for unusual obser-
vations. For CWD, this would mean checking for conditions 
with very large CWD volume values that might have been 
caused by a rare disturbance like a major windstorm. The 
methods for checking unusual condition level values are the 
same as checking for unusual measurements. 

The options for dealing with the unusual condition level 
values are limited. Since the measurement errors and typos 
have been removed, the data editing option doesn’t truly 
exist. If the unusual values are sufficiently rare, then very 
little will be gained by using the imputation methods. The 
main options are leaving the value in and deleting the obser-
vation. The main consideration in this decision is whether 
or not the cause of the unusual value is to be considered 
as part of the population. For instance, if you are working 
with crowns and a few plots have experienced a crown fire, 
you might want to get the Forest Service maps of crown 
fire areas and treat them as different population than the 
areas without crown fires. In this case, you would separate 
the plots that have experienced crown fires from the main 
dataset.
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Figure 2.5—Box plot of lengths by large-end diameter after data editing.
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To determine if there were any unusual condition level 
observations in the CWD dataset, we generated a histogram 
of the amounts of CWDc (fig. 2.6). At the larger amounts of 
CWD, the number of plots gets very sparse. However, there 
do not appear to be any observations that appear to have 
been caused by catastrophic disturbances. So, we decided to 
not delete any of the condition level observations. Now that 
we have a cleaned dataset, we can feel more confident about 
any analysis we perform. 
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Now that the example dataset has been screened, the 
possible relationships suggested in the analysis in chapter 1 
can be tested against the data. If both the predictor and 
target variables are continuous, then scatter graphs will 
show the relationship better than correlations because 
correlations are restricted to linear relationships. For very 
large datasets, there may be so many observations that the 
symbols blend together and hide the differences in densities 
within the graph. This is not likely to happen with forest 
health indicator data. For continuous target variables and 
categorical predictor variables, box and whisker graphs 
work well.

Univariate Relationships

Only three stands recorded fire as a disturbance, which is 
not enough to test for the effects of fire. The scatter graph 
of coarse woody debris carbon (CWDc) versus age (fig. 3.1) 
shows three observations with unusually high levels of 
carbon. For plots >30 years old, there is a weak general 
tendency for older plots to have more carbon. For plots <30 
years old, there is a tendency for older plots to have less 
carbon. This corresponds well to the assumption in chapter 
1 that, while a new stand may have varying amounts of 
CWDc leftover from the previous stand, this initial amount 
of CWDc will decompose over time. Harvested stands had 
more CWDc than unharvested stands (fig. 3.2). An analysis 
of variance (ANOVA) showed that the difference between 
harvested stands and unharvested stands was statistically 
significant. The volume of live trees (fig. 3.3) does not show 
a relationship with CWDc, while the volume of dead trees 
does (fig. 3.4). Since there are several physiographic classes 
with only one stand, the classes were collapsed to the main 
soil moisture classes of xeric, mesic, and hydric. While an 
ANOVA showed a significant affect of soil moisture class 
on CWDc, the xeric mean was significantly different from 
the mesic mean, but neither the xeric nor the mesic mean 
were significantly different from the hydric mean (fig. 3.5). 
The graph of CWDc versus latitude (fig. 3.6) suggests an 
increase in latitude is related to an increase in CWDc. Since 
an increase in latitude corresponds with a decrease in the 
decomposition season, this observed relationship conforms 
to biological theory. There is no apparent relationship 
between CWDc and either site index or elevation. 

Chapter 3: Data Exploration
David Gartner

Figure 3.1—Coarse woody debris (CWD) carbon versus stand age.
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Figure 3.2—Coarse woody debris (CWD) carbon by stand harvesting.
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Figure 3.3—Coarse woody debris (CWD) carbon versus live-tree volume.

Live-tree volume (thousand cubic feet per acre)
9

C
W

D
 c

ar
bo

n 
(t

on
s 

pe
r 

ac
re

)

0

2

4

6

8

10

12

14

16

0 1 2 3 4 8765

11



Multivariate Linear Data Exploration

Looking for the relationship of several predictor variables 
and the target variables can be difficult to do graphically. 
One method for looking at relationships between the target 
variable and several predictor variables is linear regression. 
While linear regression is designed for target variables that 
are normally distributed, the lack of normality will cause 
the parameter estimates to have larger variances and cause 
the distribution for testing the parameters to change. Since 
the current goal is to determine if the data conforms to 
our analyses of the literature from chapter 1, as opposed 
to formal model development, we are not going to concern 
ourselves with the lack of normality.

Since the relationship between CWDc and the stand char-
acteristics in harvested stands is expected to be different 
from unharvested stands, we put the harvested stands into a 
separate group. Since the CWDc in young stands is assumed 
to have originated with the previous stand, we separated 
them from the older stands that generate their own CWDc 
inputs. There are 15 stands in the harvested stand group, 
29 stands in the young unharvested stand group, and 204 
stands in the older unharvested stand group. Each group was 
analyzed using SAS’s (SAS Institute Inc. 2003) PROC REG 
using the stepwise model selection procedure. The stepwise 
model selection procedure finds the best predictor variable 
and adds it to the model if the predictor variable’s parameter 
is significantly different from zero. If, as new predictor vari-
ables are included, one of the predictor variables’ parameter 
becomes nonsignificant, that predictor variable is dropped 
from the model. We used 0.05 for the required significance 
level when interpreting the results. The predictor variables 
used in the analysis are age, volume of dead trees, volume of 
live trees, latitude, a variable indicating mesic sites, and an 
indicator variable for hydric sites.

Results of Stepwise Regression

No predictor variables were selected during the SAS 
stepwise regression for the amount of CWDc in harvested 
stands. The theoretical model for young unharvested stands 
is that the CWDc pieces are remnants from the previous 
stand that decay with time. The only predictor variable with 
a significant parameter is age (table 3.1). Since the param-
eter is negative, the data supports the theoretical model. The 
first predictor variable to enter the linear model of CWDc 
for older unharvested stands is the volume of dead trees, 
followed by age, and followed by the indicator variable for 
mesic soil conditions (table 3.2). All three parameters are 
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Figure 3.4—Coarse woody debris (CWD) carbon versus dead-tree volume.
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Figure 3.6—Coarse woody debris (CWD) carbon versus latitude.

Figure 3.5—Coarse woody debris (CWD) carbon by soil moisture class.
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positive. The positive parameter for mesic sites suggests that 
the mesic sites are expected to have more CWDc than xeric 
or hydric sites. However, we were not able to separate the 
effects of soil moisture from the effects of site index, so the 
increased amount of CWD on the mesic sites might be due 
to increased site quality on mesic sites. 

Using Random Forest for Data Exploration

Random Forest (Breiman 2001) is a relatively new method 
for data exploration. Random Forest combines Classifica-
tion And Regression Trees (CART) (Breiman and others 
1984) with resampling methods. The CART process creates 
partitions in the axis of the predictor variables that split the 
target variables into similar groups. By creating enough 
partitions the CART process can handle nonlinear responses 
to the predictor variable. Random Forest takes a subsample 
of the data and of the parameter list and runs a CART. This 
process is repeated a large number of times with a different 
subsample each time. At the end of each tree, Random 
Forest predicts the value of the target variable for each 
observation not included in the subset. Random Forest has 
two different types of outputs. The Random Forest outputs 
with which people are most familiar are predicted values. 

Table 3.2—Linear regression results 
for older stands

Variable 
Parameter 

estimate p-value

Intercept -1.08049 0.0144
Dead volume 0.00589 0.0001
Stand age 0.02508 0.0001
Soil2 (mesic) 0.64569 0.0146
MSE 3.13827

MSE = mean squared error.

Table 3.1—Linear regression 
results for young stands

Variable
Parameter 
estimate p-value

Intercept 3.06032 0.0009
Stand age -0.10285 0.0187
MSE 2.4911

MSE = mean squared error. 

When making final predictions for an observation, Random 
Forest averages the predictions for each observation from 
the trees which did not include that observation in the 
subset. However, Random Forest also outputs a predictor 
variable importance metric. This metric is a comparison 
between the mean square error for the individual tree’s 
predictions for the observations not used for trees with the 
variable and the same for trees without the variable. The 
actual variable is the difference between the two mean 
square errors as a percent of the mean square error from the 
trees that included the variable. 

The predictor variable with the greatest effect on predicting 
CWDc is dead-tree volume, followed by latitude, harvesting, 
stand age, live-tree volume, and soil moisture indicators 
(table 3.3). The only predictor variable to appear on this 
list that did not appear in the linear regression section is 
latitude. This suggests that the affect of latitude may not be 
linear. 

Ordination 

Some target variables, such as species distributions, are not 
expected to be linearly related to the predictor variables. 
For target variables that are expected to have a symmetric 
unimodal response to the predictor variables, consider 
using canonical correspondence analysis (CCA) (ter Braak 
1986). CCA is a descendant of correspondence analysis. 
Correspondence analysis (Hill 1974) originated from the 
analysis of tabular data that consisted of counts of different 
target variables, such as number of trees of each species, by 
site. The objective is to order both the sites and the species 
by giving them “scores” such that the highest counts for 
each species will occur on sites that have a score similar 

Table 3.3—Random Forest variable 
importance results

Predictor variable

Percent 
increase in mean 

square error 

Dead-tree volume 21.1
Latitude 12.7
Harvesting 8.9
Stand age 5.7
Live-tree volume 4.9
Mesic soil indicator 3.6
Hydric soil indicator 1.1
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to their own (Hill 1974). Each additional set of scores are 
designed to be perpendicular to the original set of scores. 
While correspondence analysis does not require that the 
target variable be a symmetric unimodal response to the 
predictor variables (Greenacre 1984), ter Braak (1985) 
showed that assuming a symmetric unimodal response gives 
rise to correspondence analysis. ter Braak (1986) created 
CCA by regressing the site scores on a separate dataset of 
environmental variables gathered at each site. This allowed 
the species scores to be directly related to the environmental 
variables. 

Correspondence analysis is designed for datasets with 
multiple target variables. Therefore, we included understory 
aboveground carbon, litter carbon, and duff carbon into the 
analysis of CWDc. The independent variables used in the 
analysis are age, harvesting, volume of dead trees, volume 
of live trees, latitude, and indicator variables for xeric, 
mesic, and hydric soil moisture regimes. We realize that 
expecting the carbon variables to have smooth, unimodal, 
bell-shaped response to the stand variables is unrealistic. 
However, the main intent of this section is to demonstrate an 
ordination, rather than choosing ordination as a method to 
analyze the CWDc data. Because correspondence analysis 
and CCA can create nonlinear effects in the axes, called the 
arch effect (Gauch and others 1977), we used detrending by 
segments (Hill and Gauch 1980; ter Braak 1986) in a variant 
called detrended canonical correspondence analysis or 
DCCA. CANOCO (ter Braak and Smilauer 2002) was used 
to run the analysis.

Results

The scores for the carbon pools (table 3.4) show that the 
scores for the understory carbon pool and the litter pool are 
very similar, which means that sites with large amounts of 
understory carbon are likely to have large amounts of litter 
carbon. The scores for CWDc and duff carbon are both 
in different directions. The scores for the environmental 
variables in table 3.5 are graphed together with the carbon 
pool scores in a type of graph called a biplot (fig. 3.7). 
Because some of the environmental variable scores are 
so close together, the variables in table 3.5 are ordered by 
their score’s position in the biplot clockwise starting with 
directly above. The biplot shows that xeric soil site score 
stands apart from the environmental variable scores in the 
direction of both understory aboveground carbon and litter 
carbon. The mesic soil site score is about midway between 
litter carbon and CWDc. There are two clusters of environ-
mental variable scores that point in the general direction 

of the CWDc score: live-tree volume, harvesting, latitude, 
dead-tree volume, and stand age. These two clusters along 
with mesic soil conditions are the environmental variable 
scores that are closest to the direction of CWDc, which 
corresponds well with the Random Forest results. The 
closest relationship between the carbon pool scores and 
the environmental variable scores are hydric soils and duff 
carbon. This means that the highest levels of duff carbon are 
expected to be found on hydric soils. 

While many versions of detrended correspondence analysis 
and CCA exist, currently the detrended CCA algorithm is 
proprietary to CANOCO (ter Braak and Smilauer 2002). 
Therefore, whether or not researchers use detrending may 
depend on whether or not they have the CANOCO software.

Conclusion

This step is not designed to be the end point of the analysis 
process, but rather the intent of the data exploration step 
is to take the variables from the theoretical analysis from 
chapter 1 and determine which variables warrant being used 
in a more formal analysis. 

Table 3.4—DCCA scores for carbon pools

Variable 
name Variable defi nition Axis 1 Axis 2

CWD Coarse woody debris 
carbon 1.4221 -0.1474

Understory Aboveground 
understory carbon 1.1949 1.5806

Litter Litter carbon 1.3096 1.7653
Duff Duff carbon -0.0039 0.8795

Table 3.5—DCCA scores for environmental variables

Variable 
name  Variable defi nition Axis 1 Axis 2    

xeric Xeric soil condition 0.3017 0.1962    
mesic Mesic soil condition 0.56220 -0.0372
livevol Volume of live trees 0.1956 -0.0833
harvest Presence of harvesting 0.2207 -0.1175
latitud Latitude 0.1710 -0.1502
deadvol Volume of dead trees 0.0964 -0.3114
age Stand age 0.0353 -0.1482
hydric Hydric soil conditions -0.6952 -0.0528

14



Literature Cited

Breiman, L. 2001. Random forests. Machine Learning. 45: 5–32.

Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. 1984 Classifi cation 
and regression trees. Boca Raton, FL: CRC Press. 368 p.

Gauch, H.G., Jr.; Whittaker, R.H.; Wentworth, T.R. 1977. A comparative 
study of reciprocal averaging and other ordination techniques. Journal 
of Ecology. 65: 157–174.

Greenacre, M.J. 1984. Theory and applications of correspondence analysis. 
London: Academic Press. 364 p.

Hill, M.O. 1974. Correspondence analysis: a neglected multivariate method. 
Applied Statistics. 23: 340–354.

-0.5

-0
.5

1.5

2.
0

duff

cwd

litter

undrstry

hydric

xeric

mesic
livevol
harvest

latitudage

deadvol

Figure 3.7—Biplot of results of DCCA of carbon pools on stand variables.

Hill, M.O.; Gauch, H.G., Jr. 1980. Detrended correspondence analysis: an 
improved ordination technique. Vegetation. 42: 47–58. 

SAS Institute, Inc. 2003 SAS/STAT user’s guide, Version 9.1. Cary, NC: 
SAS Institite, Inc. [Pages unkown].

ter Braak, C.T.F. 1985. Correspondence analysis of incidence and 
abundance data: properties in terms of a unimodal response model. 
Biometrics. 41: 859–873. 

ter Braak, C.T.F. 1986. Canonical correspondence analysis: a new 
eigenvector method for multivariate direct gradient analysis. Ecology. 
67: 1167–1179.

ter Braak, C.T.F; Smilauer, P. 2002. CANOCO 4.5 Reference manual and 
canodraw for windows user’s guide: software for canonical community 
ordination. Version 4.5. Ithaca, NY: Microcomputer Power. 500 p. 

15





Section 2—Estimation

17



18



Chapter 4: Condition Level Estimates
David Gartner

The Forest Inventory and Analysis (FIA) mapped plot 
design can create problems not normally encountered in plot 
designs that limit the plot to a single stand. Two problems 
can occur because of the mapped plot design: some biolog-
ical effects of mapped plots might affect your analysis, 
and the values from different stands on the same plot can 
be correlated. In addition, the values for your predictor 
variables on the phase 2 (P2) plots may be different from 
the range of values found on the phase 3 (P3) plots. These 
problems are easily overlooked and can cause unexpected 
consequences. If these problems can be resolved, then stand 
level estimates can be used in estimates of population totals, 
otherwise plot-level values may need to be used.

Theoretical Considerations

Possible Causes of Within-Plot Correlations

Most biological field plots are designed to be completely 
within a single stand. However, FIA plots are designed to 
allow multiple stands on a plot which can create complica-
tions. Some variables will be related to condition propor-
tion such as the number of understory species. The number 
of species found in a sample area will increase with the 
size of the sample area, but the number of species per area 
will be highest for small plots and decrease as sample area 
increases (Barbour and others 1987). Therefore the number 
of species per unit area will depend in part on the size of 
the sample unit. When working with stand-level data, the 
sample area for that stand is the plot area within the stand, 
which can be calculated as the plot area times the condition 
proportion. Therefore, the condition proportion will affect 
the expected number of species found within a stand. Some 
variables will be affected by forest/nonforest boundaries. 
For example, a forest stand adjacent to a human-induced 
nonforest condition such as an agricultural field will get 
extra light in the understory which will affect the amount of 
understory cover and probably the species count and compo-
sition. The relationships between different stands on the 
same plot may also be affected by the form of the boundary. 
While some stands gradually merge from one forest type 
into another along an ecological gradient, other stands have 
distinct boundaries created either by water or by human 
intervention. How these differences affect an analysis will 
depend on the target variables and the predictor variables 
involved.

Data Ranges

The standard double sampling methods assume that the 
subsample (P3 plots) is a random sample of the original 
sample units (P2 plots). This leads to an assumption that 
the range of the P2 predictor variables (age, longitude, and 
volume of dead trees) on the P3 plots is about the same as 
on the P2 plots, and therefore the relationship between the 
P2 predictor variables and coarse woody debris carbon 
(CWDc) on the P2 plots is the same as on the P3 plots. In 
order to test this assumption, we created side-by-side box 
plots of each of the P2 variables used in the linear regres-
sion model. While the ranges for stand age and plot latitude 
on the P2 plots are similar to the ranges for the P3 plots 
(figs. 4.1 and 4.2, respectively), the ranges for the volume of 
live trees per acre and the volume of dead trees per acre for 
the P2 stands are clearly different than the ranges for the P3 
plots (figs. 4.3 and 4.4). Taking a subsample of a variable 
with a long-tailed distribution, such as live-tree volume per 
acre and dead-tree volume per acre, will usually cause the 
range to decrease. The decreased ranges found on the P3 
plots do not necessarily indicate that the P3 plots are not 
a random subsample of P2 plots. The effect of this differ-
ence in ranges of predictor variables depends on whether 
the approximation to the relationship between the predictor 
variables and the target variables found within the range 
found on the P3 plots holds throughout the range found on 
P2 plots. 

Figure 4.1—Stand ages for phase 2 and phase 3 plots.
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Figure 4.2—Latitudes of phase 2 and phase 3 plots.
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Figure 4.3—Live-tree volume for phase 2 and phase 3 plots.

0

1

2

3

4

5

6

D
ea

d-
tr

ee
 v

ol
um

e 
(t

ho
us

an
d 

cu
bi

c 
fe

et
 p

er
 a

cr
e)

FIA plot phase
Phase 2 Phase 3

Figure 4.4—Dead-tree volume for phase 2 and phase 3 plots.

Using the target variable mean to estimate the total assumes 
a horizontal relationship between the target variable and 
the predictor variables, the ratio estimator (Cochran 1977 
chapter 6) and the regression estimator (Cochran 1977 
chapter 7) both assume a relatively linear relationship 
between the target variable and the predictor variables. 
The only way to know with certainty which assumption is 
correct would be to implement the P3 protocols on some of 
the P2 plots with predictor variable values outside the range 
found on the P3 plots, which may be outside the capabilities 
of most data users. 

Within-Plot Correlation

Why it is a problem

FIA’s estimation procedures assumes that a systematic 
sample of P2 plots can be treated as a simple random sample 
(Reams and others 2005), and therefore plot-level values 
can be treated as independent. But the stand-level variables 
cannot be assumed to be independent a priori. Because 
the variance of the sum of two variables is the variance of 
one variable plus the variance of the second variable plus 
two times the covariance, if the target variable values are 
uncorrelated then the covariance term drops out. However, 
having correlated target variable values causes calculating 
the correct variance term to become difficult. Therefore, 
having uncorrelated stand-level target variables is strongly 
recommended before using the stand-level values to esti-
mate population values. There are a sufficient number of 
ways that two stands on a plot can interact, that an a priori 
assumption that the target variable values of the two stands 
on a plot are uncorrelated is inappropriate. 

Stand-Level Approaches

One of the standard ways of handling the potential correla-
tion between stands is to use plot-level values. For example, 
Woodall and Monleon (2008) used plot-level values for their 
population estimate of CWDc using just P3 plots. The basic 
component they use in their population estimation equations 
for CWDc (yhid

) is calculated in their equation 3.1.

where

y = the attribute of interest,
l = the length of the CWD piece,

y
c

Lp
y

lhid
h

CWD
j m t

hijmt hijmtd

hijmt

/ 2
12 1

4

1

3
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δ = an indicator variable for the domain of interest, c is a 
constant used to convert to the proper units,

L = the length of a transect in feet (24), and

adjusts for parts of plots being outside the population of 
interest, with the following subscripts: h indicates stratum, 
i indicates plot, j indicates subplot, m indicates transect, t 
indicates coarse woody debris piece, and d indicates domain 
of interest. Using the plot-level values, such as y

hid
, in the 

equations for estimating population values allows Wood-
all and Monleon to avoid having to deal with the issue of 
within-plot correlations.

If both the target variable and the predictor variables 
have reasonable plot-level summaries, then conducting 
the analysis on the plot-level summaries is recommended. 
Chapter 5 has some suggestions on possible approaches. 
However, some variables don’t lend themselves to a plot-
level summary. One example is stand age. The main plot-
level summary and average stand age, might not convey the 
information you wish. Other examples of predictor variables 
that might not be conducive to plot-level summary values 
include the presence of harvesting and forest type. When 
either the target variable or one of the predictor variables 
does not lend itself to a plot-level summary variable, using 
stand-level variable may have to be used and the problem 
of correlations between values from different stands on the 
same plot will need to be addressed.

Testing for Correlated Stand Values

The main tests for correlation between two variables are 
the Pearson’s correlation coefficient, and the Spearman’s 
rank correlation coefficient. The formula for the Pearson’s 
correlation coefficient is 

For the purposes of testing for correlations between target 
variable values of different stands on a plot, x is the target 
variable value for one stand on plot i and y is the target 
variable value from a different stand on plot i. The signifi-
cance tests for Pearson’s correlation coefficient is designed 
for target variables that are normally distributed. Since 
many target variables have skewed distributions, most target 
variables should not be assumed to be normally distributed. 
Spearman’s rank correlation coefficient uses the same 
formula as the Pearson’s correlation coefficient, except that 
instead of using the target variable values, the ranks of the 

ph
CWD

r
x x y y

x x y y
i i

i i
2 0 5 2 0 5. .

target variable values are used. Under the hypothesis that 
the true correlation is zero, for both correlation 

coefficients follows a t distribution with (n-2) degrees of 
freedom. Most statistical software packages will calculate 
the p-values.

This significance test is different from the significance 
tests usually run during statistical analysis. The usual null 
hypothesis is that the correlation is zero and the usual objec-
tive is to prove that the correlation is not zero. However, in 
this case, the null hypothesis is that the correlation is not 
zero and the objective is to prove that the correlation is zero.
Usually the goal is to find a p-value of ≤0.05. In this case, 
the goal is to find both p-values >0.20.

Example 1: Linear Regression

The segmented linear regression model in chapter 3 gener-
ates a set of issues beyond the correlation problem. To be 
able to concentrate on the correlation problem, another 
linear regression was run without any segmentation. The 
target variable is CWDc in tons-per-acre and the predictor 
variables are stand age, harvesting, volume of dead trees, 
volume of live trees, latitude, and soil moisture class 
indicator variables. The predictor variables with param-
eter estimates that are significantly different from zero 
are stand age, volume of dead trees, harvesting, and the 
mesic soil moisture indicator. This regression equation has 
an R-squared value of 0.287 and a mean square error of 
3.649. The variables with their parameter values are shown 
in table 4.1. 

The values used to test for correlations between multiple 
stands on a single plot are the regression residuals. Of 
the 247 plots with forested stands, 34 have more than 1 
forested stand, with 1 plot having 3 forested stands. Once 
the regression equation was fi t to the full dataset, 2 residuals 
were randomly chosen from the 34 plots with more than 1 
forested stand (fi g. 4.5). The Pearson correlation coeffi cient 

t r n
r
2

1 2

Table 4.1—Linear regression variables and 
parameters

Variable 
Parameter 
estimates p-value 

Intercept -0.18948 0.6031 
Stand age 0.01322 0.0062 

Volume of dead trees 
(cubic feet per acre) 0.00581 0.0001 

Harvesting 1.82534 0.0005 
Mesic soil moisture indicator 0.61513 0.0193 
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is 0.386 with a p-value of 0.024, and the Spearman rank cor-
relation coeffi cient is 0.181 with a p-value of 0.306. Since 
the p-value for the Pearson correlation coeffi cient is <0.20, 
the residuals should not be considered to be uncorrelated. 
Therefore, using the stand-level data to estimate population 
totals using this equation is inappropriate.

If the residuals were uncorrelated the approach would be 
to multiply the regression estimator for CWDc per forest 
acre from the P3 plots by the forest area estimate from the 
P2 plots. Both the estimate for CWDc per forest acre and 
the estimate of forest area are random variables. Goodman 
(1960) derived the formula for the estimated variance of a 
product of two independent random variables as 

where

V = variance, 

n
G
 = number of observations. 

Our first random variable is the regression estimate of the 
amount of CWDc per acre within the whole population. 
The regression estimator does require that the relation-
ship between the predictor variables and the target variable 
is approximately linear and that the variance around the 
regression line is fairly constant across the ranges of the 
predictor variables (Cochran 1977). In this example, both 
requirements are highly questionable. Cochran’s equation 
7.24 gives the formula for the linear regression estimator as 
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Figure 4.5—Residuals from nonsegmented regression equation.
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where

= the mean CWDc per acre from the P3 plots,

b = the vector of parameter estimates, 

X  are the predictor variable means from the P2 plots, 

x = predictor variable means from the P3 plots. The 
means for the CWDc and the predictor variables appear 
in table 4.2.

The regression estimator ylr  is 1.589752 tons per acre. 
Ignoring the finite population correction factor, Cochran’s 
formula for the variance of the regression estimator 
becomes 

For this linear regression example, the variance is 0.014714.

As with the standard population estimation procedure 
for CWDc, the P2 forest area estimation procedure starts 
with calculating plot level totals (Scott and others 2005). 
The forest area estimation procedure starts with Scott and 
others’ equation 4.1,

where a
m
 is mapped area, δ is an indicator function, h is the 

subscript for stratum, j is the subscript for subplot, i is the 
subscript for plot, k is the subscript for condition, d is the 
subscript for domain, and pmh is an adjustment factor for 
portions of plots outside of the population. Scott and others’ 
equation for the stratum mean (4.3) is

and their equation for the variance of the stratum mean (4.4) is 
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Table 4.2—Stand-level means from P3 and P2 plots

Variable P3 mean P2 mean 

CWDc 1.7907
Stand age 61.0645161 56.2802917 

Volume of dead trees 
(cubic feet per acre) 111.21186 86.27300 

Harvesting 0.060484 0.058594 
Mesic soil moisture indicator 0.67742 0.69468 

P3 = Phase 3; P2 = Phase 2; CWDc 
= coarse wood debris carbon.
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Table 4.4—Parameters used to calculate the variance of the linear regression 
estimate of CWDC per acre using Goodman’s formula

Parameter 
CWDc per 

acre 

Variance 
of CWDc 
per acre Forest area 

Variance of 
forest area 

Number of 
“observed” 
estimates 

 - - - acres - - -

Value 1.589752 0.014714 18,359,364.51 2.8109*1013 1

CWD
c 
= coarse wood debris carbon.

ylr
v ylr 

Âd
v dÂ  nG

Segmented Linear Regression

The segments in the segmented linear regression equation 
used in chapter 3 increases the complexity. The segments 
can be treated as a second stratification based on stand 
characteristics. The strata are designed to match the linear 
regression segments. Using the chapter 3 segmented 
regression equation as an example, the three strata would 
be stands that have had a harvesting treatment, stands 
<30 years old that have not had a harvesting treatment, and 
stands ≥30 years old that have not had a harvesting treat-
ment. The sizes of these strata are not known in advance, 
so double sampling for stratification will need to be used. 
Double sampling for stratification will use the P2 plots to 
estimate the proportion of stands within each stratum, along 
with the relationship between P3 stand variables and P2 
stand variables to estimate the average CWDc per acre for 
each stratum. The estimated stratum means are then aver-
aged by weight to create the overall stratified mean and the 
Cochran’s equation for calculating the variance for double 
sampling for stratification. The stratified mean and vari-
ance are then combined with the P2 forest area estimates in 
the same manner as the regression estimator in the previous 
example.

The first step after fitting the initial equations is to test for 
correlations between stands on the same plot. The residuals 
from all of the regression segments need to be calculated. 
Then the residuals from plots with more than one stand are 
randomly divided into two groups and tested for correlation. 
The graph of the pairs of residuals (fig. 4.6) shows a clear 
pattern of correlation. Both the Pearson’s and Spearman’s 
correlation coefficients agree with the visual assessment. 
The Pearson’s correlation coefficient is 0.606 with a p-value 
of <0.0001, and the Spearman’s correlation coefficient is 
0.366 with a p-value of 0.0125. Therefore, this segmented 
regression equation should not be used to estimate the total 
amount of CWDc in Michigan with this data set.

TA

The last parameter in Goodman’s equation for the variance 
of a product of random variables is n

G,
 which is the number 

of joint observations. There is one estimate of CWDc per 
acre, and one estimate of forest area, therefore the number 
of observations is one. The parameter values for Goodman’s 
variance of the product of two random variables appear in 
table 4.4. The estimated total amount of CWDc is 
29,186,836.45 tons. The variance of this estimate is 
V(CWDc 

lr
) = 1.2022*1014.ˆ

 

Since Michigan currently uses satellite imagery to create 
their stratification, the estimate for the total forested area 
(Scott and others 2005, equation 4.5) is 

where is the estimated area in the domain (forested), 
is the total area, are the stratum weights, and Pd is the 
weighted average of the proportion of the area in the domain 
(forest). The estimate of the variance for the estimated area 
in the domain (forested) (Scott and others 2005, equation 
4.6) is 

Table 4.3 contains the values used to estimate the forest area 
and its variance using the P2 data and the results.

Â

hW

A A W P A Pd T
h

H

h hd T d
ˆ

Table 4.3—Parameter values used to estimate 
forest area and its variance using P2 plot data

Stratum

1 0.39784 5,636 0.7485 0.05556
2 0.11982 1,583 0.44816 0.19384
3 0.06562 888 0.72197 0.15401
4 0.16553 2,270 0.85128 0.09843
5 0.25119 3,490 0.88295 0.08495

P2 = Phase 2.

Wh nh Phd v Phd( )

A A
n
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Table 4.5—Linear regression results for young 
unharvested stands: segmented model

Variable 
Parameter 
estimate p-value 

Intercept 3.38914 0.0003 
Stand age -0.11600 0.0088 
Mean square error 2.61452
Number of observations 28

The current objective is to demonstrate how the segmented 
regression equation could be used to estimate the amount 
of CWDc in forests in Michigan. Therefore the segmented 
regression equation will continue, despite the fact that it 
failed the within-plot correlation criteria. Each of the strata 
means CWDc are estimated along with its variance. For 
the harvested stands, the model is the mean (3.282 tons per 
acre) and the variance of the harvested stands is 10.4040. 
Therefore the variance of the mean is 10.4040 divided by 
15 or 0.69360. 

For both the young unharvested stands and the older 
harvested stands, the model is a linear regression function. 
The estimated mean for these strata are found using equa-
tion 4.2, with it variance found in equation 4.3. The param-
eter estimates for the unharvested young stands appear in 
table 4.5, and the variable means for unharvested young 
stands on P2 and P3 plots appear in table 4.6. The estimated 
mean of the unharvested young stands is 1.4283804. The 
variance of the mean CWDc in unharvested young stands 
is 0.09338.

Figure 4.6—Residuals from segment linear regression.
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The results from the 3 segments combined using Cochran’s 
equations for double sampling for stratification. The 
formula (Cochran 1977, equation12.1) for the mean is, 

where hW is the stratum weight for stratum h. In this 
example, I am using the ratio of the number of stands within 
each stratum on the P2 plots to the total number of stands 
on the P2 plots as . Because the true proportion of the 

Table 4.6—Stand level P3 and P2 
means for young unharvested stands

Variable P3 mean P2 mean 

CWDc 1.2721429
Stand age 18.2500 16.9031250 

P3 = Phase 3; P2 = Phase 2; CWD
c 
= coarse 

wood debris carbon.

CWD w CWDst
h

H

h h
1

Table 4.7—Linear regression results for older 
unharvested stands: segmented model

Variable 
Parameter 
estimate p-value 

Intercept -0.84527 0.0769 
Stand age 0.02200 0.0003 
Volume of dead trees 0.00569 0.0001
Mesic soil indicator 0.79980 0.0052
Mean square error 3.81585
Number of observations 220

Table 4.8—Stand level P3 and P2 means for older unharvested 
stands

Variable P3 mean P2 mean 

CWDc 1.8567273
Stand age 66.5136364 63.0324828 
Volume of dead trees 121.8897219 99.6288692
Mesic soil indicator 0.6818182 0.6893124

P3 = Phase 3; P2 = Phase 2; CWDc 
= coarse wood debris carbon.

The parameter estimates for the unharvested older stands 
appear in table 4.7, and the variable means for the unhar-
vested older stands on P2 and P3 plots appear in table 4.8. 
The estimated mean CWDc in unharvested older stands is 
1.660813. The variance of the estimated mean CWDc in 
unharvested older stands is 0.01734. 
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different segments in the population are not known, but 
rather estimated from the P2 plots, the variance formula for 
double sampling for stratification needs to be used. Ignoring 
the finite population correction factor and using the notation 
in this example Cochran’s equation for the variance from 
double sampling for stratification (12.32) is

where is the number of stands on P2 plots in the stratum,  
is the number of stands on P2 plots, and is the number of 

stands on the P3 plots in the stratum. The values used to 
calculate the stratified mean and its variance appear in 
table 4.9.

The estimated CWDc per acre using the stratification base 
on the stand-level data, and its variance can then be 
combined with the P2 forest area estimate and its variance 
to create an estimate of the total amount of CWDc using 
Goodman’s formula for the variance of the product of two 
random variables in the same manner as with the 
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( )CWDcst

non-segmented linear equation example. The values used to 
calculate the total amount of CWDc and its variance using 
Goodman’s formula (equation 4.1) appear in table 4.10.  The 
estimate of the total CWDc is �CWDcst = 3.2408*107 tons of 
carbon. The estimated variance of the total CWDc is 

cst
CWDV  9.3172*1013 tons squared.

Conclusions 

Eventually, a choice has to be made: whether to estimate 
population totals using stand- or plot-level data. While 
there is some instinctive appeal in analyzing the data at 
the stand level, the data range and within plot correlation 
requirements may make analyzing the data at the stand 
level impossible. Within-plot correlations can be created by 
shared local variations in any of a large number of variables, 
such as soil conditions, moisture, or disturbance history. The 
large number of possible causes of shared local variation 
suggests that finding no within-plot correlations unlikely 
and most analysis will have to be done at the plot level.

Table 4.9—Strata values used to calculate stratifi ed estimate of mean 
CWDc and its estimated variance

Stratum 
(Number of P2 
observations) 

(estimated 
mean CWDc ) 

(variance of 
the estimated 
mean CWDc ) 

Harvested 707 3.282 0.69360 
Unharvested young 160 1.4283 0.09338 
Unharvested older 9,759 1.6608 0.01734 

Total 10,626 1.7652 0.01808 

CWDc 
= coarse wood debris carbon; P2 = Phase 2.

n h' CWDch
v CWDch 

( )CWDcst v CWDcst( )

Table 4.10—Parameters used to calculate the variance of the segmented linear 
regression estimate of CWDC per acre using Goodman’s formula

Parameter 
CWD

c
 per 

acre 

Variance of 
CWD

c
 per 

acre Forest area 
Variance of 
forest area 

Number of 
“observed” 
estimates 

- - - acres - - -

Value 1.7652 0.01808 18,359,364.51 2.8109 * 1013 1

CWDc 
= coarse wood debris carbon.

( )CWDcst
Âd

v dÂ  nGv CWDcst( )
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In most large-area forest inventories, sample intensity and 
plot measurement effort must be balanced within the context 
of a finite amount of available resources. For a given allow-
able expenditure, the sample size can be increased if the 
number of attributes measured on each plot is decreased, 
and vice-versa (Kangas and Maltamo 2006). A good 
example is the Forest Inventory and Analysis (FIA) program 
of the U.S. Forest Service. Due to the relatively high costs 
of obtaining forest health indicator information (e.g., down 
woody materials, soil properties, understory vegetation), 
these data are collected on only a small subset of the overall 
sample (Reams and others 2005). As such, analysts are 
faced with reporting estimates of forest health attributes 
at large spatial scales in order to obtain sample sizes that 
provide an acceptable level of precision. 

This limited sample size/plot effort dilemma has resulted in 
the adoption of alternative strategies to improve the preci-
sion of estimates. Double sampling involves measuring 
‘high-cost’ variables on only a subset of the sample plots 
and taking advantage of the correlations between these 
variables and common mensuration variables collected on 
all plots (Schreuder and others 1993). These relationships 
must be developed from the smaller subset of the plots, 
where both the attribute of interest and auxiliary informa-
tion are available. A common technique is to use a simple 
linear regression model, however, multiple linear regression 
models can also be employed. The double sampling estimate 
is equivalent to using the predicted values where the ‘high-
cost’ variable is missing (Chojnacky and others 2004, Coble 
and Grogan 2007). The reduction in the standard error of 
the estimate depends on the strength of the correlation as 
measured by the regression model (R2) (Cochran 1977). 

Another approach to increasing the precision of estimates is 
stratification. In stratified sampling, the units of the popula-
tion are subdivided into strata where the units within strata 
have similar observed values. This often results in precise 
estimates for each stratum that can then be combined into a 
precise estimate for the entire population (Cochran 1977). 
The efficacy of stratification is exhibited by wide use of the 
technique in forest inventory. In the United States, stratifica-
tion has been used for decades by the FIA program (Reams 
and others. 2005). Similarly, national forest inventories in 
Sweden (Nilsson and others 2005), Finland (Katila and 

Chapter 5: Estimation Using Double Sampling for 
Regression
James Westfall

others 2000), Switzerland (Köhl 2001), and Canada (Gillis 
2001) implement stratification strategies as part of the 
inventory design.

In this chapter, the double sampling for regression tech-
nique will be used to illustrate how sample estimates can be 
improved via incorporation of auxiliary information. First, 
the traditional application of a double sampling regression 
estimator is used to outline the underlying methods and 
evaluate the efficacy of such an approach. However, this 
classical approach is limited in utility due to the simple 
linear model. Thus, a more complex regression model 
that better fits the data is also presented. This increased 
explanatory ability translates into further improvements in 
the precision of the estimate. The effectiveness of stratifica-
tion in conjunction with the regression estimator was also 
evaluated.

Data

The data used in this paper are those described in the intro-
ductory text. As a brief reminder to readers, phase 1 is the 
post-stratification effort where each plot is assigned to 1 of 
5 strata based on mapped canopy cover classes (table 5.1). 
There were 13,274 phase 2 (P2) plots having data on a range 
of tree- and site-level variables such as tree species, tree 
height, site index, forest type, etc. The phase 3 (P3) subset of 
381 plots also contains data for coarse woody debris carbon 
(CWDc). On nonforested areas, CWDc is not measured and 
is assumed to be zero. On forested conditions, CWDc is >0 
when 1 or more CWDc pieces are measured and CWDc = 0 
otherwise.

Table 5.1—Summary of post-
stratifi cation for Michigan

Stratum
Canopy 
cover 

Weight 
(w

h
)

- percent -

1 0–5 0.39784
2 6–50 0.11982
3 51–65 0.06562
4 66–80 0.16553
5 81–100 0.25119
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Estimation of the population total �CWDc  and 
associated standard error �SE(CWDc ) derives from multipli-
cation by the known total area of the population (A

T
): 

Additional precision can likely be obtained by applying the 
double sampling design to a stratified population. For 
typical large-area forest inventories where plot locations are 
fixed in advance, the population is usually post-stratified. If 
the β

1
 estimates differ among the h strata, the appropriate 

methodology is to compute estimates of ( )crCWD  and 
V (CWD  )cr  within each stratum (Cochran 1977). These 
stratum-level estimates are then combined using the stratum 
weight information to obtain the population total �CWDcs. 
The estimated variance �V (CWD  )cs  takes into account the 
additional randomness associated with post-stratified 
stratum sample sizes (Scott and others 2005):

where
W

h
 = weight for stratum h

n
h 
= number of sample plots in stratum h

CWDcrh  
= regression estimate of CWDcr  in stratum h

  = variance of in stratum h.
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Section 1—Classical Double 
Sampling for Regression

Methods

Perhaps the most straightforward method of improving esti-
mates of CWDc via correlations with P2 variables is double 
sampling for regression. In the traditional application of this 
method, the correlation between CWDc and a P2 variable 
is established using the P3 plot data through a simple linear 
regression model:

where: 

 CWD
cj
 = predicted coarse woody debris carbon (tons 

per acre) on plot j
 

x
j
 = P2 variable correlated with CWDc on plot j

 = parameters estimated from the data

Additional information needed to compute the double 
sampling for regression estimates are the mean CWDc from 
the smaller P3 sample,   , the mean of x

j
 from the 

larger P2 sample , and the mean of x
j
 from the P3 sample    

The regression estimate    is the  adjusted for 
differences between the large and small sample means of x

j
:

The estimated variance requires both the large (n’) and small 
(n) sample sizes, the number of units in the population (N), 
as well as other computed quantities (Cochran 1977):

where:
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Results/Discussion

A number of P2 variables were assessed for degree of 
correlation with CWDc, with standing dead tree biomass 
(D

B
)having the highest correlation of those evaluated. 

However, it was noted that there were two values of D
B
 that 

were much larger than the other data points (outliers). To 
minimize the effect of these extreme observations and 
obtain a better model fit, the square root of D

B
 was used as 

the predictor variable in the regression. The relevant 
statistics for CWDc and DB  are reported in table 5.2. Using 
these statistics and the linear regression results (table 5.3), 
the calculated value of �CWDc  was 30,504,473 tons with 

�SE(CWDc ) of 2,658,317 tons. In comparison, the estimate 
using only the P3 plots was 34,628,709 tons with the 
standard error of the estimate being 3,199,258 tons. The 
smaller mean value of D

B
 in the larger sample resulted in a 

decrease in the estimate of �CWDc. Taking advantage of the 
correlation between CWDc and D

B
 produced a 17 percent 

decrease in �SE(CWDc ) .

Using data from post-stratification (tables 5.2, 5.3), the 
regression estimates were calculated independently within 
each stratum. The within-strata adjustments provided 

increases or decreases to having direction and size 
depending on the sign and magnitude of the difference 
between DB Band D' .  The estimates were then combined 
across strata for an estimate of the population total �CWDcs  
of 31,391,701 tons with an associated �SE (CWDcs) of 
2,615,489 tons. The combined effect of post-stratification 
and the use of D

B
 information resulted in a decrease in the 

standard error from 3,199,258 to 2,615,489 tons (18 percent). 
The use of post-stratification alone resulted in a modest 
1-percent decrease relative to the standard error obtained 
using the regression estimator. The ineffectiveness of the 
stratification was mostly due to several within-stratum 
variances being higher than that of the unstratified sample. 
This was likely due to the stratification being based on 
remotely-sensed canopy cover information, which may not 
correlate well with amounts of CWDc on the ground. 
Further increases in precision could be obtained using an 
alternative source of stratification information that better 
categorizes plots having similar amounts of CWDc.

Readers may have noted that in addition to the changes in 
standard error resulting from the various techniques, the 
estimated values of population total also fluctuate. While 
the estimators used in this study are unbiased, differing 

Table 5.3—Parameter estimates (with standard errors) and fi t 
statistics for simple linear regression of CWDc on DB  for entire 
sample and by stratum

Stratum β0 β1 R2 RMSE

All 0.2450 (0.0890) 0.01784 (0.0014) 0.308 1.954
1 0.0258 (0.0640) 0.02457 (0.0023) 0.412 0.635
2 0.0469 (0.1845) 0.01454 (0.0035) 0.332 0.857
3 -0.3971 (0.4773) 0.02400 (0.0059) 0.417 1.507
4 0.7945 (0.3610) 0.01245 (0.0043) 0.119 2.913
5 1.1821 (0.3179) 0.00971 (0.0035) 0.075 3.643

Table 5.2—Summary statistics for entire sample and by stratum

Stratum N

All 0.931 2.818 1.954 38.5 32.2 381 13,274 223,189,644
1 0.144 1.073 0.635 4.8 2.9 160 5,537 88,793,768
2 0.482 1.246 0.857 29.9 24.6 37 1,500 26,742,583
3 1.263 2.476 1.507 69.2 46.2 25 837 14,645,704
4 1.636 3.254 2.913 67.6 65.7 64 2,121 36,944,582
5 1.869 3.896 3.643 70.7 60.2 95 3,279 56,063,007

Note: Population area (A 

T
) = 37,198,274 acres.

n n'CWDc DB BD'CWDc.x
S2

CWDc
S2
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where

Pr(CWDcj = 0) = probability plot j has CWD
c
 = 0 

NF
j
 = proportion of plot j that is nonforest

 = parameters to be estimated from the data

The CWDc values from forested plots were modeled as a 
gamma response. To accommodate the gamma distribution, 
zero values were assigned a value slightly larger than zero 
(1E-8). 

where

= predicted coarse woody debris carbon  
(tons per acre) on plot j

 = P2 variables correlated with CWDc on plot j

= parameters estimated from the data

Note that the parameterization of [5.12] results in the mean 
of the distribution being equal to the numerator of the shape 
parameter. Using the model results, amounts of �CWDcj were 
assigned to plots where CWDc data were not collected. 
First, the probability of CWDcj 

= 0 was assessed using 
[5.11]. Plots having probability of >0.5 were given a value of  

�CWDcj = 0. For the remaining plots, values of �CWDcj based 
on [5.12] were used.

Estimation of population totals—The advantage of using 
auxiliary information is illustrated using the estimation 
procedures described by Scott and others. (2005). In this 
example, an estimate of the total amount of CWDc in the 
population is desired. From the analysis above, each plot has 
a corresponding value of CWDcj. To account for potential 
sampling bias associated with portions of plots that occur 
outside the population boundary, each plot value must be 
divided by the mean proportion of mapped plot area falling 
within the population:
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results can be obtained if different samples are used, e.g., 
P2 vs. P3. This phenomenon is the theoretical basis for 
calculating uncertainty statistics such as standard errors. 
Also, the implementation of stratification can affect results 
depending on the proportional distribution of plots to strata. 
This can be a concern if the number of plots in a stratum 
deviates substantially from the expected number based on 
the stratum area (Coulston 2008); however, there was close 
agreement in this study such that stratification had little 
impact on the estimates of amounts of CWDc. As such, the 
fluctuations in estimates shown here are expected to occur.

Section 2—Double Sampling for 
Regression (Zero-infl ated Gamma)

Methods

A review of the data indicates 168 of the 381 plots are 
nonforest and by definition have CWDc = 0. Thus, the data 
are zero-inflated, i.e., there are multiple data points where 
the value is zero. When this type of data is encountered in 
a regression analysis, a zero-inflated modeling approach is 
often used (El-Shaarawi and Piegorsch 2002). For contin-
uous variables, zero-inflated gamma (ZIG) models are 
usually employed (Feuerverger 1979). These models consist 
of a mixture of two distributions: a point mass distribution 
at zero, and a gamma distribution. 

Gamma distributions are described by two parameters, 

where α is the shape parameter and β is the scale param-
eter. The mean of the distribution is αβ. For more detailed 
information on gamma distributions, see Balakrishnan and 
Nevzorov (2003).

To implement the ZIG model, we differentiate between 
assumed zeros due to nonforest status and observed values 
on forested plots where no CWD pieces were sampled. 
To conduct the analyses, a logistic regression model is 
employed in which the response variable is binary, i.e., 
1 for no CWD pieces and 0 when one or more CWD pieces 
sampled. The purpose of the logistic regression model is to 
estimate the probability that a given plot has CWDc = 0. 

X ~ Gamma(α, β)

[5.11]
ˆ

Pr(CWDcj = 0) 

1 + exp(–(NFj))ˆ
1

=
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where 

p = number of auxiliary variates used in the 
regression model

R2 = proportion of variation in CWDc explained by 
the regression model

others = as previously defined

If it is reasonable that n is large, n ≈ n’ or p is small in 
relation to n such that the second term within brackets ≈ 0, 
[5.17] can be simplified to: 

This estimator has desirable properties in that 1) when 
model R2 = 0, no new information has been provided by the 
model and the estimator reduces to that of the P3 sample, 
and 2) when model R2 = 1, there is no model error and the 
estimator reduces to that of the P2 sample.

Estimation on a per-acre basis—While estimates of 
population totals are informative, it is often of interest to 
compute estimates on a per-acre-of-forest land basis. This is 
more complex than estimating a total because an estimate of 
the area of forest land F�( ) is also needed. Additionally, both 
the estimates of CWD�

c and F�  are derived from the same 
plots, so the covariance between the two attributes of 
interest must be accounted for.

To obtain an estimate (and associated variance) of forest 
land area, the analyst would use [5.14] – [5.16] above where 
the variable of interest would be proportion of forest land on 
each plot (Fi). Given that forest land area proportion is 
collected on all P2 plots, the entire sample of 13,274 plots 
can be used to compute the estimate. Using the same 
assumption as above for [5.14], i.e., pm = 1, the total area of 
forest land F�( ) is obtained from [5.15] and the variance of 
the estimate ( )F̂V is calculated from [5.16].
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where 

a
mj

 = area of plot j within the population
a

j
 = total area of plot j  

CWDcj = CWDcj per acre adjusted for plots that 
overlap the population boundary
  = mean proportion of mapped plot area falling 
within the population

In the context of this example, the only plots that may 
straddle the population boundary would occur at the state 
borders. It is likely that relatively few plots would meet this 
criterion, so it will be assumed that  ≈ 1 and therefore 
CWDcj, = CWDcj. It should be noted that this assumption 
may not hold for other populations that may be either small 
or fragmented.

To estimate the population total CWDc, the average of 
the CWDcj is calculated and multiplied by the area in the 
population:

where
= estimated total CWDc in the population (tons)

n = number of plots in the sample
A

T
 = known area of the population (acres)

If only the observed data points (381 independent plots) 
were used for estimation in [5.15], the variance of the total 
would be computed from:

To take advantage of the auxiliary information, it is desir-
able to use all 13,274 plots in the sample. However, this 
complicates the computation of the variance as plots having 
predicted values from the ZIG model are not independent 
observations and the use of [5.16] would provide an estimate 
that is too small. Double sampling for regression estimators 
can be employed when only a subsample of data points have 
the attribute of interest but the entire sample has useful 
auxiliary information (Cochran 1977). Khan and Tripathi 
(1967) provide the variance estimator when multiple linear 
regression is employed:
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Estimates with post-stratification—Estimation proce-
dures for a post-stratified population are similar to those for 
a stratified population (Cochran 1977), except that addi-
tional estimator variance is incurred due to random sample 
sizes within strata (Scott and others 2005). For instance, the 
equations for estimating the population total would be:

where

CWD�
cS  = post-stratified estimated total CWDc in 

the population

V(CWD   )�
cS  = variance of post-stratified estimated 

total CWDc in the population

w
h
 = weight for stratum h

CWDcjh = CWD
c
 on plot j in stratum h

n
h 
= number of plots in stratum h

As shown by Scott and others (2005), the variance of the 
per-acre estimate requires that the covariance between 
CWD�

c  and F�  be computed. This is accomplished via:

  

Now the estimate of CWDc per forest land acre, CWD�
ca , and 

associated variance V(CWD  )�
ca  are respectively calculated as
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The within-stratum covariances ˆCov(CWD
ch

, F
h
)ˆ  would be 

computed using the formulation of [5.19]. For all estimates, 
the standard error is calculated by taking the square root of 
the estimated variance. 

Results

Estimation of total amount—A large number of metrics 
from P2 data that were possibly correlated with CWDc were 
computed. These included various measures such as stand 
age, stocking, basal area, live- and dead-tree biomass, 
treatment and disturbance indicators, and site index. 
Location variables of latitude, longitude, and elevation were 
also considered. Generally, correlations between these 
explanatory variables and CWDc were low, however, BD   
and latitude (decimal degrees) were significant predictors of 
the gamma distribution parameters for CWDc on forested 
plots.

Simultaneous fitting of [5.11] and [5.12] as a system of 
equations to the 381 P3 plots resulted in an R-squared (R2) 
statistic of 0.358 and a root mean-squared error (RMSE) 
equal to 1.35 (tons per acre). Parameter estimates and their 
standard errors can be found in table 5.4. For this analysis, 
model predictions were made for an additional 12,893 plots 
in Michigan. A comparison between the distributions of 
the observed and predicted distributions of CWDc is given 
in table 5.5. Generally, it is shown that the distribution 
of predicted values have less variation than the observed 
data due to the regression model. For instance, both the 
maximum value and the standard deviation are decreased 

Similarly, a post-stratified estimate on a per-acre basis 
would be calculated from:
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Table 5.4—Parameter estimates and standard 
errors for the ZIG regression model using 
[5.1] and [5.2]

Parameter Estimate
Standard 

error Pr > |t|

φ0 -2.58670 0.2711 <0.0001

φ1 5.80290 0.4803 <0.0001

β0 -8.14840 2.6478 0.0022

β1 0.00920 0.0022 <0.0001

β2 0.20750 0.0596 0.0006

Θ 1.19370 0.1110 <0.0001

ZIG = zero infl ated gamma.

Table 5.5—Comparison of distributions of observed 
CWDc and predicted CWDc from the ZIG regression 
model

Data n
Mini-
mum Mean

Maxi-
mum

Standard 
deviation IQR

Observed 381 0 0.93 11.19 1.68 1.28
Predicted 12,893 0 0.87 5.30 0.92 1.58

CWD
c
 = coarse woody debris carbon; ZIG = zero infl ated gamma; 

n = number; IQR = interquartile range. 

considerably. However, the interquartile range (IQR) of the 
predicted values was larger than for the observed data. This 
was due to less skewness in the distribution of predicted 
values, which resulted in a wider range of values between 
the 25 and 75 percent quartiles. 

Obtaining predicted values of �CWDcj from [5.11] and [5.12] 
for the remaining 12,893 plots where CWD

c
 was not 

measured allows for an updated estimate that takes 
advantage of the correlation between the P2 variables and 
CWDc. Using these additional predicted values, the estimate 
of in CWD�

c  Michigan was 32,262,427 tons. The standard 
error of the estimate was 2,583,720 tons. As noted earlier, 
the estimate using only the 381 P3 plots that were sampled 
for CWDc was 34,628,709 tons with a standard error of 
3,199,258 tons. A summary of all the estimates and 
associated standard errors is given in table 5.6.

The inclusion of the predicted values for plots where CWDc 

was not measured resulted in a decrease of 2,366,282 tons 
in the estimate and a reduction in the standard error of 
615,538 tons. Even though the sample size increased 
enormously when the predicted values were included in the 
sample, the standard error decrease was relatively small. 
This reflects the weakness of the relationships described by 
the regression model. Increasing correlations between 
predictor variables and CWDc would result in more 
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Figure 5.1—Relationship between standard error of CWDc and R2 of the 
regression model.

�

substantial improvements in the precision of the estimates. 
As an example, figure 5.1 depicts the relationship between 
regression model R2 and the standard error of CWD�

c . It is 
shown that increases in R2 provide a nonlinear decrease in 
standard error. For a given increase in R2, more decrease in 
standard error is gained at higher values of R2. In cases 
where a number of predictor variables are used, adjusted R2 
may be the appropriate measure of correlation, as R2 will 
always increase when more explanatory variables are added 
to the model.

Estimation of per-acre amount—To establish a baseline 
from the current sample, estimates of CWDc on a per-acre-
of-forest land basis (denoted CWD�

ca) were computed using 
the 381 P3 plots. The estimated population total CWD�

c  and 
the associated variance V(CWD )�

c  based on this sample 
were already computed above. Similar calculations were 
performed to obtain the estimated area of forest land F�( ) and 
the variance of the estimate ( )F̂V . The forest land estimate 

Table 5.6—Estimates and standard errors of CWDc 
population totals and per acre of forest land for 
P3 and P2 plot samples, and these same estimates 
using post-strafi cation (P3s, P2s)

Basis

CWDc Total CWDc per acre

Estimate
Standard 

error Estimate
Standard 

error
tons

P3 34,628,709 3,199,258 1.849 0.144
P2 32,262,427 2,583,720 1.685 0.116
P3

S
34,897,245 2,878,492 1.833 0.143

P2
S

33,095,184 2,324,669 1.686 0.115

CWDc = coarse woody debris carbon; P3 = phase 3; 
P2 = phase 2; P3s = phase 3 stratifi ed; P2s = phase 2 stratifi ed.
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was 18,731,713 acres with a standard error of 908,065. To 
obtain all the necessary components for [5.21], the covari-
ance ˆCov(CWD

c
, F)ˆ  was calculated using [5.19]. Using the 

values for CWD�
c  and F�  in [5.20], the amount of CWD�

ca  is 
estimated to be 1.849 tons per acre. Using the variance 
estimated from [5.21], the standard error of the estimate was 
0.144 tons per acre.

Estimation using all 13,274 P2 plots in Michigan is accom-
plished in a similar manner. While the estimate of CWD�

c  
results from using predicted values for the remaining 12,893 
P2 plots, area of forest land statistics are straightforward as 
the proportion of forested area (F

j
) was recorded on all plots. 

The area of forest land F�  estimated from the larger sample 
was 19,141,841 acres with a standard error of 153,257. An 
estimated CWD�

ca  of 1.685 tons per acre was calculated from 
[5.20]. The standard error of 0.116 tons per acre was 
calculated by using [5.21] to account for use of the 
regression model.

Estimation of total amount with post-stratification—To 
serve as a comparative metric, the post-stratified estimate 
using only the observed data from P3 plots was calculated. 
Using the weights developed for the 5 strata, the estimate of 
CWD�

cS was 34,897,245 tons with a standard error of 
2,878,492 tons. The effect of stratification is seen in the 
reduction of the standard error, which was 3,199,258 tons 
from the unstratified estimate.

Taking advantage of the predicted values of CWDc for 
the 12,893 plots without observed data results in a post-
stratified estimated population total of 33,095,184 tons with 
a standard error of 2,324,669 tons. Thus, the combination of 
obtaining predicted values where data were missing along 
with post-stratification resulted in a decrease in the standard 
error of 874,589 tons (about 27 percent).

Estimation of per-acre amount with post-stratification—
The estimate of CWD�

caS under a post-stratified design using 
only P3 plots should have a smaller standard error when 
compared to the unstratified counterpart (0.144). The 
estimate was 1.833 tons per acre with the standard error 
equal to 0.143 tons per acre, which is only a very slight 
reduction due to the post-stratification.

Post-stratification applied to the sample that includes the 
predicted plot values should also exhibit a decrease in the 
standard error of the estimate. In this case, the estimate 
was 1.686 tons per acre with a standard error of 0.115 tons 
per acre. Again, the post-stratification had little effect in 
reducing the standard error of per-acre estimates.

Discussion

Although the differences in means between the observed 
(P3) and predicted values (P2) were not statistically 
different at the 95 percent confidence level, the slightly 
larger mean value of CWDc from the P3 plots (table 5.5) 
resulted in estimates of population total CWDc being 
slightly larger when compared to the estimates from P2 
plots (fig. 5.2). Given the spatial balance of the sample, 
the smaller mean associated with the predicted values for 
P2 plots likely arises due to less standing dead biomass, 
on average, on P2 plots than on P3 plots. The narrower 
confidence interval for the P2 plots reflects the additional 
information gained by prediction of CWDc for plots where 
it was not sampled. The standard error of the estimates was 
reduced roughly 20 percent due to the use of the regression 
model. Although the P3 and P2 estimates are not entirely 
independent, i.e., the P3 plots are a subset of P2, the wide 
range of overlap of the confidence intervals suggests the 
differences in the estimates are statistically nonsignificant.

Similar results were obtained for estimates of CWD�
ca  

(fig. 5.3). The differences between the P3 and P2 estimates 
arise from both the differences in CWD�

c  and differences in 
estimates of area of forest land F� . The estimated forest land 
from P3 was 18,728,345 acre, while the P2 estimate was 
19,146,841 acres. Thus, CWD�

c  from P2 had to be distrib-
uted over a larger number of acres. Again, the large amount 
of overlap suggests the estimates are not statistically 
different. 

Post-stratification resulted in CWD�
cS being slightly larger 

than CWD�
c  due to all plots not receiving exactly the same 

weight (fig. 5.2). The post-stratification did improve the 
precision of the estimates, as the standard errors were 
reduced by about 10 percent. Overall, the most precise 
estimates were obtained from the P2 sample with stratifica-
tion. The P2 estimate without stratification was more 
precise than the P3 estimate with stratification, indicating 
that prediction of missing values on P2 plots is more 
advantageous than post-stratifying P3 plots.

Post-stratification had little impact on the precision of 
CWD�

caS (fig. 5.3). For both the P3 and P2 samples, applying 
post-stratification had virtually no effect on the standard 
error (reduction of <1 percent). The resultant smaller 
estimator variances ( )F̂V s  and V(CWD   )�

cS  were offset by a 
concomitant decrease in ˆCov(CWDcS , FS)ˆ  such that the 
precision of the per-acre estimate remained essentially 
unchanged. Thus, increased precision of CWD�

caS derives 
almost entirely from the use of the regression model and no 
advantage is obtained via post-stratification.
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Increasing the precision of estimates requires new informa-
tion that almost always comes at some cost. In the context of 
this paper, new information could be gained through 1) 
sampling more plots for CWDc, 2) developing a regression 
model for unsampled plots, and/or, 3) implementation of 
post-stratification. All of these options require additional 
commitments of personnel and equipment. A good starting 
point for analyzing cost/benefit scenarios is to compute the 
number of sample plots needed to match the precision 
obtained via other methods. For instance, the results 
indicate that the effective sample size for CWD�

cS using the 
regression model and post-stratification would be 722 plots. 
This would be 341 more plots in addition to the 381 already 
being sampled—essentially a doubling of the data collection 
effort. Similarly, the use of the regression model alone to 

obtain CWD�
c provides an effective sample size of 584 

sampled plots (203 additional plots). Having estimates of 
operating expenses for the various options will allow 
managers to assess which methods are likely to be the most 
cost effective.

A number of factors must be considered in such an evalua-
tion. First, one must ascertain the actual cost of collecting 
the attribute of interest. If this attribute is the only data 
being collected on sample plots, then all costs must be 
considered (salary, vehicles, equipment, etc.). However, if 
a number of other attributes are being collected, the cost is 
primarily salary (time) as the field crew would be sampling 
that plot anyway, and opportunity costs as the field crew 
could be doing something else during that time. Second, 
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Figure 5.2—Estimates and 95 percent confidence intervals for CWDc using P3 plots, using P2 plots 
with CWDc predicted from the ZIG regression model, and these same estimates using 
post-stratification (P3S, P2S).
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one must have a reasonable approximation of the strength of 
correlations between model input variables and the response 
variable, and the amount of time needed to develop the 
relationships. As shown in figure 5.1, the model R2 has a 
substantial effect on reduction of the standard error (and the 
associated effective sample size). Third, costs involved in 
post-stratification work also need to be assessed. Again, the 
larger context is important as the costs could be negligible 
if the post-stratification will be accomplished anyway as 
part of regular production work (e.g., FIA). Also, peripheral 
issues such as the value of having observed plot data, e.g., 
data that may be useful for other purposes besides estima-
tion of population parameters, should also be accounted for 
in the decision making process.

Conclusion

The use of a regression model to predict values of CWDc 
on plots where CWDc was not assessed had little impact on 
the estimated values, however, the standard errors of the 
estimates were reduced about 20 percent. The effectiveness 
of post-stratification was dependent on the type of estimate. 
For population total CWDc, a nearly 10-percent reduction 
in standard error was obtained. However, for CWDc per 
acre of forest land, the post-stratification was ineffective 
due to offsetting reductions in several terms of the variance 
estimator. The best results were obtained when using both 
the regression model and post-stratification for estimates of 
population total CWDc, where nearly 27 percent reduction 
in standard error was achieved.

In the absence of sampling more plots for CWDc, improve-
ments in the results could be obtained from a better strati-
fication and/or an improved regression model that explains 
more of the variation in CWDc

 (i.e., increase R2). However, 
realization of a better result is uncertain as there is no 
assurance that supplementary allocations of resources will 
provide improved products. Managers should have reason-
able measures for the expected magnitude of improvement 
vs. costs before undertaking the additional work. If needed 
improvements in these areas are not forthcoming, then it is 
likely the best option for increasing precision is to assess 
CWDc on more sample plots.
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Chapter 6: Coarse Woody Debris Carbon Estimation 
Using Nearest Neighbor Methods
Christopher Woodall, Barry Wilson, and James Westfall

Introduction

Although phase 3 (P3) attributes, such as stand coarse 
woody debris (CWD) biomass, may be both correlated with 
and directly modeled from phase 2 (P2) attributes (e.g., 
standing live tree basal area), there are numerous nonpara-
metric methods that serve as an interesting alternative 
(Hardle 1989, Altman 1992). Nonparametric methods may 
predict P3 attributes as a weighted average of the values 
of neighboring observations. In this process, neighbors are 
chosen from a database of previously measured observations 
(known pairs of P2 and P3 attributes). Often these nonpara-
metric methods are referred to as imputation techniques, 
where values are assigned to observations that lack such 
data (Van Deusen 1997) (e.g., P3 variables are imputed 
to P2 plots where P3 data were not collected). Given the 
relatively sparse sample intensity of P3 plots relative to the 
diversity of forest ecosystem components they estimate, 
nonparametric methods may offer several advantages 
compared to using parametric regression models to predict 
mean values. First, nonparametric methods may retain the 
full range of variation of the data as well as the covari-
ance structure of the population (Moeur and Stage 1995), 
depending upon the number of neighbors used. Second, 
because P3 estimates would only be chosen from actual P3 
measurements taken in the field, no unrealistic predictions 
can occur, again depending upon the number of neighbors 
used. This aspect is critical because numerous P3 population 
estimates are not available for some regions of the country, 
so inventory analysts lack the ability to identify unrealistic 
estimates. Finally, P3 estimates could be obtained in all 
situations where at least some P2/P3 measurements are 
available. Disadvantages of these non-parametric techniques 
include requirements of reference material during model 
development and possibilities of a biased estimator (Altman, 
1992). However, given the range of P3 analytical possibili-
ties afforded by nonparametric methods, the techniques of 
k Nearest Neighbor (kNN), Most Similar Neighbor (MSN), 
and Gradient Nearest Neighbor (GNN) warrant exploration.

k Nearest Neighbor

The kNN method uses a neighborhood consisting of a 
constant (k) number of observations, while the size of the 
neighborhood may vary (for early examples see Tomppo 
1990, Nilsson 1997). Additionally, the form of the distance 
measure (e.g., simple Euclidean distance when assuming 
uncorrelated predictor dimensions or Mahalanobis distance 
otherwise) must be specified to define the neighborhood 

at a given point. The distance measure could be based on 
simple geographic space or a “space” of stand-level char-
acteristics. For example, if an analyst wanted to estimate 
the CWD biomass for a P2 plot with 50 ft2 of basal area, 
then a neighborhood might be defined as k = 3 where 3 P2/
P3 plots would be chosen that have a basal area closest to 
50 ft2. In order to reduce the possibility of estimator bias, 
measurements of CWD biomass could be weighted by their 
distance from the 50 ft2 basal area in the kNN estimator. 
The kNN technique is often used to estimate values for 
multiple forest variables for georeferenced raster pixels that 
were not sampled with a field plot. In such cases, values 
for these variables are estimated for unsampled pixels by 
computing the weighted average of k nearby field plots, 
where proximity is based on the specified distance measure 
as applied to the space defined by the predictor variables, 
typically called the featurespace. In such applications, the 
predictor variables typically include data derived from satel-
lite imagery (e.g., spectral data) or other raster data sources. 
Often, plot weights are chosen to be inversely proportional 
to their distances in the predictor featurespace. To date, the 
kNN technique has been demonstrated to be rapid, cost-
effective, and accurate when used in national-scale multi-
resource inventories (for examples see Franco-Lopez and 
others 2001; McRoberts and others 2002; Haapanen and 
others 2004).

Most Similar Neighbor

The MSN method is closely related to the kNN technique. 
The major difference is that MSN uses canonical correlation 
analysis to determine distance function (Moeur and Stage 
1995, Moeur and Riemann Hershey 1999). While the MSN 
was designed to use only one neighbor, larger numbers of 
neighbors can be used to define the neighborhood. We will 
denote using the canonical correlation technique to create 
neighborhoods larger than one observation as kMSN. A 
primary advantage of MSN is that all possible independent 
(e.g., P2 basal area) and dependent (e.g., CWD biomass) 
variables can be used in the calculation of canonical correla-
tion (i.e., accommodation of a multivariate response vari-
able). A possible disadvantage is that canonical correlation 
analysis assumes a linear response function and can perform 
poorly when forest attributes exhibit a nonlinear response 
across long gradients (Ohmann and Gregory 2002). Using 
P2/P3 data as an example, canonical correlation analysis 
may be used to develop a linear model between P2 live-tree 
basal area and P3 CWD biomass. This model would in turn 
be used to weight the P3 observations during the imputation 
process.
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Gradient Nearest Neighbor

The GNN method was first developed by Ohmann and 
Gregory (2002) for producing spatially explicit vegetation 
maps by utilizing direct gradient analysis and nearest-
neighbor imputation to assign detailed ground-forest attri-
butes to every pixel in a map. Ohmann and Gregory (2002) 
describe several steps in order to conduct GNN. First, direct 
gradient analysis is conducted using stepwise canonical 
correspondence analysis (CCA) (ter Braak 1986, ter Braak 
and Prentice 1988) to develop a model that quantifies rela-
tions between ground (response) data and mapped (explana-
tory) data. Unlike canonical correlation analysis, CCA does 
not assume a linear response function. Second, scores are 
predicted for CCA axes for each pixel by applying coef-
ficients from the model developed in step 1 to the mapped 
values for explanatory variables. Third, for each mapped 
pixel a single plot that is nearest in CCA axes dimensional 
gradient space (distance is Euclidean and axis scores are 
weighted by their eigenvalues). Finally, ground attributes of 
the nearest-neighbor plot are imputed to the mapped pixel. 
However, in some variants of the GNN methodology, more 
than one neighbor is used with weightings similar to kNN, 
which we will call kGNN.

Methods

Data

In order to illustrate the application of nearest neighbor 
methods for the mapping and estimation of P3 attributes, 
we utilized the study dataset described in the introduction. 
Briefly, the dataset consists of 381 P3 plots sampled across 
Michigan forest land (2002–06) for CWD with application 
of decay reduction and carbon density factors to produce an 
estimate of CWD carbon (CWDc, tons per acre) for each 
plot. A suite of geospatial data for the entire study area was 
acquired and resampled to a pixel resolution of 250 meters: 
MOD13Q vegetation index data derived from Moderate 
Resolution Imaging Spectroradiometer imagery collected 
from 2001–06, climate data from the Daymet database, 
topographic data from the Elevation Derivatives for National 
Applications database, and Omernik’s ecoregions. Estimates 
of CWDc were only available on a sparse P3 plot intensity 
collected by Forest Inventory and Analysis (FIA) from 
2002–06. 

Analysis

kGNN was used to illustrate the technique of assigning field 
data values to pixels in a raster dataset. A CCA model was 
developed that related the geospatial predictor data to the 

field plot values of interest. The coefficients estimated from 
the model were used to transform the geospatial predictor 
data into a small set of CCA axes (i.e., canonical variates), 
thereby defining a featurespace wherein nearest neigh-
bors could be found using Euclidean distance. In this way, 
every pixel in the geospatial dataset was assigned a value 
for the field attribute of interest (CWDc), by finding the 
nearest k pixels in the CCA featurespace that also contained 
field plots and computing a weighted mean of the k corre-
sponding field values. 

The assignment of imputed values to pixels creates a new 
opportunity for estimation of the total CWDc in the popu-
lation. Instead of employing classical estimation methods 
using the observed data on the 381 P3 plots, the data points 
from all pixels can be utilized to take advantage of the 
auxiliary information provided by the remotely-sensed 
image. While various kNN estimation techniques have been 
proposed in the scientific literature, we chose to use the 
design-based procedures described by Baffetta and others 
(2009) to illustrate general concepts. The proposed estima-
tors for the population total and associated variance are 
respectively:

where: 

�CWDc = estimated population total coarse woody 
carbon
y

j
 = CWD

c
 for pixel j observed at the plot level

j
 = kNN-imputed CWD

c
 for pixel j 

π
j
 = inclusion probability for pixel j

N = number of pixels in population
n = number of sample plots in population
A

T
 = area of population 

The FIA sample design uses a hexagonal grid to spatially 
distribute sample plots (Reams and others 2005). As such, 
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standard error as compared to the P3 sample. However, it 
was also notable that relatively small reductions in standard 
error were achieved beyond k = 15. Using k = 15, reason-
able wall-to-wall estimates of CWDc may be provided for a 
region (fig. 6.1). For k >3, standard errors may be reduced 
due to the additional information obtained from the auxil-
iary data with a “point of diminishing returns” as k exceeds 
15. Analysts will need to balance the diminishing reductions 
in standard errors with longer data processing times due to 
increasing k. 

How do CWDc estimates derived from the kGNN imputa-
tion method compare to simulated CWDc stocks? In the 
past, the U.S. used a model Carbon Calculation Tool, (CCT) 
to simulate CWDc stocks in forests due to the unavailability 
of downed-deadwood field data (Smith and others 2007, 
Woodall and others 2008). The CCT estimates downed 
deadwood carbon as a function of stand age, forest type, 
and live-tree stocking. The CCT modeled (Smith and others 
2007) estimate of downed deadwood carbon was 47,490,809 
tons of carbon for Michigan 2002–06, compared to the 
GNN (k = 15) and simple random sampling estimates of 
34,628,709 and 34,248,000 tons, respectively. As found with 
comparing CCT estimates of standing dead to P2 estimates 
(Woodall and others 2012), there can be many sources of 
estimate divergence, not the least being discrepancies in 
population definitions. CCT estimates of downed dead-
wood carbon include medium and large fine woody debris 
(transect diameter between 1 and 3 inches) while the kGNN 
exercise in this study solely considered CWD. However, 
fine woody debris stocks are generally minimal compared 
to CWDc at the latitudes of Michigan (Woodall and Liknes 
2008). Discrepancies between predicted values of CWDc, 
derived from models and those derived from the kGNN 
imputation procedure will need to be further evaluated and 
refined across regions and forest conditions. 

Conclusion

Nearest neighbor techniques may afford the opportunity to 
produce landscape-level coverage of forest health indica-
tors to inform both landscape-scale monitoring efforts 
and stand-level forest health dynamics research. Given the 
tremendous investment in effort to measure indicators of 
forest health on a few thousand plots across the Nation, 
coupling these field data with extensive geospatial data-
sets using nearest neighbor modeling techniques may be 
advantageous. Although the sparse sampling intensity of 
forest health plots across the nation may lack the certainty to 
inform local efforts to assess and manage local-scale forest 
health issues, the use of nearest-neighbor modeling tech-
niques (e.g., GNN) may leverage field data utility to benefit 
policy makers and scientists alike.

the design fits into the one-point stratified paradigm as 
described by Baffeta and others (2009). While this feature 
has implications for joint inclusion probabilities for pixels, 
the first-order inclusion probabilities are the same as those 
of a random sample (π

j
 = n/N). To evaluate any effects due 

to the value of k, estimates were calculated for values of 
k = 1, 3, 5, 10, 15, 20, 25, and 30. Standard errors for the 
estimates were calculated as the square root of the variance.

Results/Discussion

For comparative purposes, estimates were computed 
assuming simple random sampling using only the 381 P3 
plots that were sampled for CWDc. The estimated total 
CWDc for Michigan was 34,628,709 tons with a stan-
dard error of 3,199,258 tons. Using the kGNN estimation 
procedure described above to determine the values assigned 
to each pixel, estimates for the 8 values of k were calcu-
lated (table 6.1). The estimates from the kGNN imputation 
procedure were slightly less than the estimate obtained from 
the observed data under a simple random sample design. 
However, these deviations were quite small; all being in 
the range of -1.1 to -1.6 percent over the range of k values. 
To put these differences in context, sampling error ranged 
from 8.7 to 10.4 percent. Thus, the kGNN estimates are not 
statistically different from those obtained from the observed 
P3 plots.

The standard errors for estimates using k = 1 and k = 3 are 
larger than the standard error using only the observed data 
(table 6.1), which may be a function of this study’s selected 
estimator in contrast to design-based inference. Standard 
errors for estimates using k ≥5 were smaller than found with 
only P3 plots and standard errors decreased as k increased. 
For k = 30, there was nearly a 6.5 percent reduction in 

Table 6.1—Estimates of CWDc, standard 
error of CWDc, and percent sampling 
error at various levels of k

k CWDc

Standard 
error SE

- - - - - - - tons - - - - - - - %

1 34,082,396 3,551,683 10.4
3 34,141,254 3,233,493 9.5
5 34,132,243 3,107,527 9.1
10 34,155,197 3,044,554 8.9
15 34,226,292 3,011,393 8.8
20 34,248,655 3,008,447 8.8
25 34,247,669 2,999,024 8.8
30 34,221,011 2,992,505 8.7

CWDc = coarse woody debris carbon, k = number 
of nearest neighbors; SE = sampling error.
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Chapter 7: Overview of Data Mining Approaches 
David Gartner

Introduction

It is not within the scope of this publication to determine 
the best method for analyzing the relationship between 
the phase 2 (P2) data and the phase 3 (P3) data for each of 
the P3 variables. That task is larger than can be handled 
in a chapter or even in a single publication. The methods 
mentioned in this chapter are not specifically designed for 
the relationships between P2 and P3 variables and should 
be considered merely as suggestions. Nor is this chapter 
designed to give detailed instructions on any of the data 
mining techniques, but rather give an overview of some of 
the methods currently available.

Most classical statistical methods have been designed using 
relatively small datasets and simple models, such as simple 
linear regression. As computing power increased, more 
complex methods such as nonlinear regression have been 
developed. Nonlinear regression required having knowledge 
of the shape of the expected relationship. This knowledge 
allowed calculating predictive equations with relatively 
small datasets. As computing power continued to increase, 
methods for creating predictive equations assuming no prior 
relationships between the independent and dependent vari-
ables (data mining methods) were created. These methods 
usually depend on generating a large number of trial 
parameters (regression parameters or splitting points) and 
then selecting a small subset. Because of this large number 
of trial parameters, the data mining methods are susceptible 
to overfitting the data. Therefore, data mining methods are 
used on large datasets (>1,000 observations) with relatively 
low expected coefficients of determination (R2 <0.2). These 
methods include: self-organizing maps, neural networks, 
classification and regression trees, random forests, and 
bagging trees.

Besides requiring large datasets, data mining techniques 
often include other methods to help avoid overfitting. These 
methods consist of splitting the dataset into parts, using one 
part to fit the model and the other part to determine how 
well the model performed. One version uses one relatively 
large portion of the dataset (30–50 percent), called a holdout 
or validation dataset, to determine how well the model 
performed. The other version is to repeatedly resample the 
dataset to determine how well the model performed. The 
two main methods for resampling are 1) repeatedly drawing 
full-sized datasets from the original dataset using sampling 
with replacement, called bootstrapping (Efron 1979), or 2) 
by dividing the dataset into equal-sized subsets and leaving 
one subset out each time, called cross-validation.

Five different data mining methods are examined in this 
section: self-organizing maps, neural networks, Classifica-
tion And Regression Trees (CART), bagging trees (boot-
strap aggregating), and Random Forests. Self-organizing 
maps and neural networks are closely related. Bagging trees 
and Random Forests are actually modifications of CART. 
The dataset will be split into a training dataset of 173 obser-
vations used to fit each method, and a holdout dataset of 75 
observations used to determine how well the predictions 
match observed data for each method. The same training 
dataset and test dataset will be used for all five methods. 
The predictor variables from the segmented linear regres-
sion analysis in chapter 3 will be used: stand age, latitude, 
harvesting, dead-tree volume, live-tree volume, and indictor 
variables for mesic and hydric soil conditions. To ensure 
that the same data are used with each analysis method, and 
to avoid quirks of some of the software, the data for each 
variable were scaled to the range [0,1] by dividing by the 
maximum observed value.

Self-Organizing Maps

The intent of self-organizing maps is to organize obser-
vations into groups with similar values along two latent 
environmental axes (Kohonen 1982). It comes in two main 
forms: unsupervised and supervised. For unsupervised self-
organizing maps, the algorithm starts with a grid consisting 
usually of squares or hexagons to which a small subset of 
the observations is assigned. The other observations are 
then placed in the cell with the most similar observation. 
Then the cell centers are modified based on the observations 
in that cell and in the cells in the area around it. Initially, 
the area of other cells considered is fairly large, which 
forces the most dissimilar observations to opposite ends 
of the environmental axes. As the area of other cells being 
considered when creating new cell centers is decreased, 
observations with intermediate dissimilarities end up placed 
in cells along the gradient of the latent environmental 
variable. The end result is a merger of cluster analysis and 
indirect gradient analysis. A final cluster analysis on the 
cells is possible, if a cluster analysis is the final objective. 
This would lead to the possibility of making not only a 
map of the clusters, but also maps of the original variables. 
Comparing the two sets of maps will give the user a better 
understanding of the variables that are driving the formation 
of the clusters than standard cluster analysis. 

For supervised self-organizing maps (Melssen and others 
2006), the process is the same except that the cells for the 
predictor variables are based on observations with similar 
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values of the target variables. The final maps will have cells 
with different levels of the target variable and maps of the 
same cells with the mean value of the predictor variables 
for the same cells. While the cluster analysis capabilities 
of unsupervised self-organizing maps may be of interest to 
the users, this publication is specifically about exploring the 
relationship between P2 and P3 variables. Therefore, only 
the supervised version of the self-organizing maps will be 
demonstrated here. 

Example of Self-Organizing Maps using the 
Coarse Woody Debris Carbon Data

The bidirectional Kohonen routine from the R package 
‘kohonen’ (Wehrens 2012) was used to generate a 
supervised self-organizing map. A 5 x 4 hexagonal grid was 
used. First the training dataset was used to fit the map. Then 
the resulting map was examined for new information about 
the relationship between the P2 and coarse woody debris 
carbon (CWDc). Then the holdout dataset was used to deter-
mine how well the map would predict new data.

The map is displayed in figures 7.1A–7.1H. The cell with the 
highest amount of CWDc is in the lower right-hand corner, 
with the two closest cells having intermediate CWDc values. 
After those cells the amount of CWDc drops off fairly 
quickly. The map layers for stand age, harvesting, latitude, 
mesic soils, and hydric soils don’t show clear relation-
ships between the P2 variables and CWDc. The cell with 
the highest mean dead-tree volume is one of the cells with 
the intermediate CWDc, and the cell with the second most 
dead-tree volume matches the cell with the most CWDc. 
This shows that while there is a relationship between dead-
tree volume and CWDc, the strength of the relationship is 
limited. The cell with the largest mean live-tree volume is 
in the same cell as the largest mean CWDc. However within 
the cells with lower levels of live-tree volume, the relation-
ship disappears. This suggests the possibility that above 
a certain level of live-tree volume, there is a relationship 
between live-tree volume and CWDc, but below that level of 
live-tree volume any relationship between live tree volume 
and CWDc gets lost in the noise.

To determine how well the map was at predicting new data, 
the holdout dataset target variable values were predicted 
using the fitted map and the holdout dataset’s predictor 
variables values (fig. 7.2). Then the sum squared differ-
ences between the observed and the predicted values were 
compared to the sum squared differences between the 
observed values and the training dataset target variable 
mean and the holdout dataset target variable mean. The 

sum of squares for the holdout dataset mean is 1.409, the 
sum of squares of the training dataset mean is 1.414, and 
the sum of squares for the self-organized map predictions 
is 1.718. Therefore, this map does not predict the holdout 
dataset well. This is probably due to the large amount of 
variability in the CWDc data.

Examples of Self-Organizing Maps from the
Literature

Chon (2010) wrote a very good review article of the uses of 
self-organizing maps in ecological papers. While most of 
the studies Chon discusses are unsupervised self-organizing 
maps, Chon talks about supervised self-organizing maps as 
a direction of future development. Giraudel and Lek (2001) 
compare unsupervised self-organizing maps with principal 
components analysis and correspondence analysis. While 
examples of unsupervised self-organizing maps being 
used to analyze ecological data: classification of aquatic 
ecosystems (Park and others 2004), moor and heath vegeta-
tion (Foody 1999), and classification of Landsat imagery 
(Ji 2000); no examples of supervised self-organizing maps 
were found.

Neural Networks

Neural networks were initially designed for pattern recogni-
tion (Bishop 1995). They are designed to mimic the human 
brain. The basic unit, called a node, uses the levels of the 
input variables to calculate an output variable (fig. 7.3). 
Usually the input variables are run through several different 
nodes, with the output signals being used as input variables 
into other nodes. A group of nodes drawing input signals 
from the same variables and sending output signals to the 
same sets of locations are called a layer (fig. 7.4). A neural 
network can have any number of nodes and any number of 
layers. Nodes do not need to connect to all nodes in the next 
layer. 

There are three main types of neural networks: networks 
with fixed weights, supervised networks which have their 
weights determined by fitting the model to a target variable, 
and unsupervised networks which have their weights deter-
mined to create relatively homogenous clusters of observa-
tions (Giudici 2003). For unsupervised neural networks, the 
input variables would be the predictor variables like stand 
age and dead-tree volume, and the output variables would 
be the cells in a self-organizing map. For supervised neural 
networks, the input variables would still be the predictor 
variables, but the output variables would be predictions of 
target variables, such as CWDc.
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Figure 7.1—Resulting Kohonen bidirectional self-organizing map (A) Coarse woody debris carbon, (B) Stand age, (C) Latitude, 
(D) Harvesting, (E) Dead-tree volume, (F) Live-tree volume, (G) Mesic soil, and (H) Hydric soil.
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Figure 7.3—Visual example of a node.

Since our objective is to predict the amount of CWDc on 
P2 plots from the relationship between P2 variables and the 
amount of CWDc on P3 plots, we will be using a super-
vised network, called a multilayer perceptron. The nodes in 
the hidden and output layers starts by creating a weighted 
sum of the input variables with an intercept term, and then 
performs one of the following functions on the sum to 
create the output variable. The functions used inside the 
node to calculate the output signal are ‘sigmoid’ (logistic 
function), ‘purelin’ (linear function), ‘hardlim’ (step func-
tion), and ‘tansig’ (hyperbolic tangent function) (fig. 7.5). 
By combining the several nodes in different layers, these 
node signal equations can approximate complex nonlinear 
equations. The weights and intercept terms are then esti-
mated by an algorithm that tries to find the combination 
that creates the best fit between the output values and the 
target variables. For continuous target variables, the best 
fit criteria is usually the same minimum sum-squared error 
used in nonlinear regression. While nonlinear regression 
algorithms require the user to provide initial parameter 
estimates, neural network algorithms use a different fitting 
algorithm that is supposed to be less sensitive to initial 
parameter estimates to the point that they often use random 
initial parameter estimates. This flexibility with respect to 
initial parameter estimates comes at the cost of needing a 
large dataset.
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Figure 7.2—Self-organized map results: observed versus predicted.
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45



Example of Neutral Network Using Coarse Woody 
Debris Carbon Data

Because we do not have a large number of observations, we 
will keep our network fairly simple to help prevent overfit-
ting. The main objective in this section is to give the reader 
a feel for neural networks, as opposed to publishing an 
actual neural network analysis. We used a neural network 
with two nodes in a single hidden layer (fig. 7.6). Because 
there are 7 prediction variable coefficients and 1 intercept 
term, each of the hidden nodes will contain 8 parameters 
that need to be estimated, and the output layer node will 
have 2 input variable coefficients and 1 intercept term for 

a total of 19 parameters to be estimated. We analyzed the 
data run using an R package called ‘neuralnet’ (Fritsch and 
Guenther, 2012). This package’s input nodes pass the input 
variables straight through without modification. The hidden 
nodes used ‘sigmoid’ functions, with the output node using 
‘purelin.’ The sum-squared error of the training dataset 
(2.120) is smaller than the sum-squared error around the 
training set mean (4.275). However, the sum-squared error 
for the holdout dataset (1.780) is larger than sum-squared 
error around the training set mean (1.414) suggesting that 
the model was overfit. The differences in fit for the training 
and the holdout datasets can be seen in the graph of the 
observed versus predicted values (fig. 7.7).
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Figure 7.5—Activation functions commonly used in neural networks (A) Sigmoid, (B) Hardlim, (C) Purelin, and (D) Tansig.
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Examples of Neutral Networks from the Literature

Neural networks have been used in forest research such as 
classifying regeneration stages (Kuplich 2006), modeling 
deforestation (Mas and others 2004), analyzing bird species 
richness data (Monteil and others 2004), tree-ring data 
(Zhang and others 2000), and tree survival data (Guan 
and Gertner 1991). Guan and Gertner (1991) have response 
surface graphs of some of their neural network models, 
which may help some people understand the capabilities of 
neural networks. 

Classifi cation And Regression Tree 
Methods

The original tree method is called Classification And 
Regression Tree, or CART (Breiman and others 1984). The 
algorithm for creating a CART takes individual predictor 
variables and attempts to find the point that splits the data 
into two or more relatively homogeneous groups. After each 
split, the process is repeated for each of the subgroups until 
either a minimum group size is reached, or no split creates 
more homogeneous groups. The final set of subgroups is 
often called ‘leaves.’ The idea is that as the groups become 
more homogeneous, more of the variation is going to be 
between groups, and thus explained by the CART. For 
categorical target variables, the prediction becomes the 
dominant class in each leaf. For continuous target variables, 
the prediction becomes the mean of the observations in each 
leaf.

Bagging trees applies bootstrapping to the observations of a 
CART to create a set of randomly generated CARTs. Then 
the results from these CARTs are then averaged together. 
Random Forests not only randomly samples the observa-
tions, but also randomly selects a subset of the prediction 
variables to be used in each of the individual CARTs. Prasad 
and others (2006) have written a very good article reviewing 
and comparing these three methods. 
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Figure 7.7—Neural network results.
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Figure 7.6—Neural network predictions versus the observed CWDc data.
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Table 7.1—Resulting Classifi cation And Regression Tree

Split 
number Node description

Number of 
observations SSE Mean

Root 173 4.27500 0.12350

1 Dead-tree volume <0.324412 166 2.42100 0.10570

2 Harvesting <0.51 155 1.71700 0.09588

3 Latitude <0.699627 106 0.86730 0.07396

5 y Dead-tree volume <0.139713 91 0.54140 0.06083

7 x Age <0.244898 39 0.06923 0.03010

7 x Age >0.244898 52 0.40770 0.08388

5 x y Dead-tree volume >0.139713 15 0.21510 0.15360

3 Latitude >0.699627 49 0.68900 0.14330

6 y Live-tree volume <0.213186 28 0.27360 0.11730

8 x Age <0.221939 7 0.11130 0.20820

8 x Age >0.221939 21 0.08507 0.08696

6 y Live-tree volume >0.213186 21 0.37120 0.17800

9 x Latitude <0.812949 16 0.14610 0.14060

9 x Latitude >0.812949 5 0.13140 0.29750

2 Harvesting >0.51 11 0.47940 0.24350

4 x y Live-tree volume <0.249313 6 0.28800 0.32580

4 x y Live-tree volume >0.249313 5 0.10210 0.14480

1 x y Dead-tree volume >0.324412 7 0.54260 0.54760

SSE = sum squared error.
Y denotes end leaf on CART at applying the results of the holdout dataset.

X denotes end leaf on CART created using just the training dataset.

Classifi cation And Regression Tree

The two main methods for making sure that the CART is 
not overfitting the data is to use either cross-validation or 
a holdout dataset. Sometimes the dataset is split into three 
subsets: the first subset is used to create the initial tree, the 
second subset is used to determine if some of the data splits 
should be removed, and the third subset is used to determine 
how well the CART performs.

Example of classification and regression tree using the 
coarse woody debris carbon data—As an example, we 
will run a regression tree on the same stand-level CWD

c
 

data as used for the self-organizing map, including the 
same two subsets: the training and the holdout subset. We 
used the R package ‘tree’ (Ripley 2010), with the default 
minimum of five observations per leaf. The resulting tree 
(table 7.1) from the training dataset has nine splits using 

volume of dead trees, harvesting, latitude, stand age, 
and volume of live trees, but neither of the soil indicator 
variables was used. When the results of the CART were 
applied to the holdout dataset, the lowest sum-squared error 
came from using just the first six splits (table 7.2), which 
explained about 4.4 percent of the variation. Because the 
predicted values are the means of seven subgroups, there are 
only seven different predicted values (fig. 7.8).

Examples of classification and regression trees in the 
literature—CART has been used to analyzed wildfire 
data (Brosofske and others 2007), model tree mortality 
(Dobbertin and Biging 1998), estimate down deadwood 
(Chojnacky and Heath 2002), analyze harvesting and 
land-use conversion patterns (McDonald and others 2006), 
analyze forest bird-habitat relationships (Fearer and others 
2007), and help predict locations of populations of a rare 
herbaceous species (Bourg and others 2005).
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Bagging Trees

Breiman (1996) created the term bagging as an acronym 
for bootstrap aggregating. Bootstrapping creates multiple 
datasets from the original dataset by sampling the original 
dataset with replacement. These created sample datasets are 
then run through the same analysis process as the original 
dataset. In bagging, the predictions are then aggregated 
by averaging. In bagging trees, the bootstrap aggregating 
procedure is applied using CART.

Example of bagging tree using the coarse woody debris 
carbon data—The R-language bagging tree package ‘ipred’ 
(Peters and Hothorn 2009) was used on the same training 
and holdout datasets used as an example in the CART 

section. One hundred randomized trees were used in our 
example. Because of the averaging of the results from 100 
trees, the predicted values are much closer to being contin-
uous than the CART predictions (fig. 7.9). The bagging tree 
predictions explained 8.8 percent of the variation in the 
holdout dataset.

Examples of bagging trees in the literature—Most of 
the examples in the literature are related to analyzing large 
multivariate datasets such as classification of satellite 
imagery and other remotely sensed data (Kocev and others 
2009, Pal 2008, Briem and others 2002, Tzeng and others 
2009) and predicted effects of climate change (Iverson and 
others 2008, Prasad and others 2006). De’ath (2007) wrote 
a review of bagging trees, boosted trees, and random forests 
for ecological modeling.
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Figure 7.8—Classification And Regression Tree results: observed versus 
predicted.
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Figure 7.9—Bagging tree results: observed versus predicted.

Table 7.2—Comparison between training dataset results and 
holdout dataset results for classifi cation and regression tree

Split 
number Split variable

Training 
dataset SSE

Holdout 
dataset SSE

0 All data in one group 100.0000 100.0000
1 Dead volume 69.3188 115.9559
2 Harvest 64.0811 118.1190
3 Latitude 60.3126 102.7378
4 Live volume 58.2237 108.4273
5 Age 55.6303 101.7895
6 Live volume 54.5962 95.6518
7 Age 53.0883 192.0775
8 Age 51.2818 194.6466
9 Latitude 49.0892 198.7355

SSE = sum squared error.
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Random Forests

Breiman (2001) took Random Forests one step further 
beyond bagging trees. At each node of the CART for the 
resampled datasets, Random Forests selects a random subset 
of the predictor variables to be used to create the split. This 
modification is designed especially for datasets with a large 
number of related predictor variables. The default number 
of resample datasets is 100. The results of the different trees 
are then averaged. 

Example of Random Forests using coarse woody debris 
carbon data—Random Forests was run on the same set 
of training and holdout data used for CART. Using one of 
the most obvious differences between CART and Random 
Forests’ predictions is that the Random Forests predictions 
are much closer to continuous than the CART predictions 
(fig. 7.10). This is due to the way that Random Forests 
combines the results from the different regression trees. 
Also, the prediction errors for the holdout dataset are clearly 
larger than the prediction errors from the training dataset. 
The mean square error for the holdout dataset is 1.79, while 
the mean square error for the training dataset is only 0.63. 
Some of this is due to the small size of the training dataset.

Examples of Random Forests from the literature—
Random Forests has been used to predict the effect of 
climate change on bird ranges (Virkkala and others 2010) 
and recent aspen mortality (Rehfeldt and others 2009), to 
analyze factors related to fire severity in the Southwestern 
United States (Holden and others 2009), and to predict 
vegetation communities in Belgium (Peters and others 
2007).

Comments About the Data Mining 
Methods

There is no method that is best for all analysis. Data mining 
is evolving quickly, and new methods are created every few 
years. Therefore, we are not going to make any specific 
recommendations. For those interested in using data mining 
techniques for estimating either P3 values on P2 plots or 
population totals of P3 variables using P2 plot data, we 
will revisit two issues that arose in chapter 4: estimating 
P3 values for observations with P2 values outside the range 
of the training set data and variances.

Extrapolating Beyond the Range of the Training 
Dataset

Since we found that there are several P2 plots with values of 
dead-tree volume that are outside the range of values found 
on the P3 plots (fig. 4.4), we will look at how the different 
data mining methods will handle these values. Since the 
predicted values for CARTs are the mean values of observa-
tions in the training dataset, the CART predictions of the 
target variable (CWDc) has to be within the range of target 
variable values in the training dataset. This means that, even 
though there are P2 plots with volume of dead-tree values 
much larger than those that occur on P3 plots, CART cannot 
predict a CWDc value larger than the largest observed 
value of CWDc found on a P3 plot. Since bagging trees and 
Random Forests are the averages of multiple CARTs, these 
two methods will not make predictions outside the range 
of the P3 target variable values. Since neural networks 
essentially create nonlinear equations, their predicted target 
variable values can be outside the range of values found on 
P3 plots. How self-organizing maps predict new data outside 
the range of the training data is unclear. Unfortunately, the 
only way to tell which method most accurately predicts 
observations outside the range of the training dataset is to 
measure some of the observations outside the range of the 
training dataset, i.e., some of the P2 plots with very large 
values of dead-tree volumes.

Variances 

Deconstructing a CART to determine the variance for each 
predicted value is not very difficult. The other methods 
are sufficiently numerically complex that deconstructing 
them to find the variances to the predicted values is 
daunting. However, resampling methods similar to those 
used in bagging trees and Random Forests are capable of 
creating populations of predictions for each observation to 
be predicted. Theoretically, this population of predictions 
could be used to create not only a mean predicted value, but 
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Figure 7.10—Random Forests predicted versus observed.
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also variance for the predicted value. How the variances for 
individual predicted values should be incorporated to create 
variances for predicted values for population totals, such 
as State totals, has not yet been researched. Because the 
field of data mining methods is still evolving, the possible 
methodology may be derived within the next couple of 
years.
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In addition to its standard suite of mensuration variables, the Forest Inventory and 
Analysis (FIA) program of the U.S. Forest Service also collects data on forest health 
variables formerly measured by the Forest Health Monitoring program. FIA obtains 
forest health information on a subset of the base sample plots. Due to the sample size 
differences, the two sets of variables have traditionally been analyzed separately. 
However, the analysis of forest health indicator data can occur in conjunction with not 
only other stand characteristics (mensuration variables such as live-tree volume), but 
also with a plethora of ancillary information such climate data and satellite imagery. 
This document is designed to help people interested in using auxiliary information in 
the analysis of the forest health indicators. 

Keywords: Analysis, ancillary data, coarse woody debris, estimation, forest health 
data, FIA.
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