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The assumption of independence of irrelevant alternatives in a sequential contingent valuation
format should be questioned. Statistically, most valuation studies treat nonindependence as a
consequence of unobserved individual effects. Another approach is to consider an inferential
process in which any particular choice is part of a general choosing strategy of a survey
respondent. A stochastic model is suggested, consistent with the reflexivity, transitivity, and
continuity axioms of utility analysis. An application of this theoretical model to the valuation
of watershed ecosystem restoration demonstrates that an empirical model recognizing
reflexivity and transitivity, and also allowing for continuity, shows the highest in-sample

predictive ability.
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Modern-day environmental policies or programs,
such as watershed ecosystem restoration, are
designed to improve multiple ecosystem services
and consist of multiple components or parts. The
valuation of such policies or programs should
address the multi-dimensionality of the problem.
A hybrid of the contingent valuation method
(CVM) and attribute-based analysis (Holmes and
Adamowicz 2003) is often used. Several related
policy options are included in the survey, which
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are valued in a sequential manner. An example
of such a sequence may be valuing a bare-bones
policy first and subsequently augmenting it with
more attributes or higher levels of the already
included ones, building up to the most compre-
hensive package of management actions.

When multiple items are valued using the
dichotomous choice format, a binary discrete-
response data set with a sequence of observations
per individual is generated. The sequential nature
of the choice gives rise to concerns that the prob-
ability of observing the choice outcome for a
particular policy option may depend on observ-
able or unobservable components of other choice
options in the survey (Holmes and Boyle 2005).
The dependence due to anchoring and framing
effects, both related to the monetary bid, has
received some attention (Herriges and Shogren
1996, DeShazo 2002). Giraud, Loomis, and
Johnson (1999) provide evidence of sequencing
and instrument context effect in sequential valua-
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tion. Holmes and Boyle (2005) explain the
dependence by generalizing the notion of anchor-
ing to include anchoring to the context of a
specific valuation question, i.c., information in
other choice sets.

In this paper, we argue that, should the econo-
metric investigator choose to adhere to canons of
utility theory, choices in the sequential valuation
format cannot be considered independent if they
are conditioned on concurrent observables only.
Further, a particular composition of the entire
sequence entails a particular pattern of their
dependence. The remainder of the paper is organ-
ized as follows. A general conceptual valuation
model is developed in the next section. On the
grounds of dynamic consistency we argue that, as
long as the commodity information the respon-
dent possesses remains unchanged, the exact,
albeit unobservable, utility levels attainable at all
restoration programs involved should be thought
of as the same throughout the valuation process.
This conjecture leads to the equivalence of the
sequential and simultaneous elicitation formats
and makes the model consistent with the utility
reflexivity and transitivity axioms. We further
build on this reasoning and posit that, for the util-
ity continuity axiom to be maintained, the degree
of dependence between the utility shocks in any
pair of items should increase as the items get
closer together attribute-wise. This constitutes the
main research hypothesis of the study.

Following the conceptual model section, we
introduce the specifics of survey data for the
Little Tennessee River watershed empirical appli-
cation. We provide several alternative stochastic
specifications for our valuation model. Model
parameters estimated by maximum likelihood are
presented and discussed. We discuss empirical
evidence in support of the continuity hypothesis.
Willingness to pay (WTP) values for restoration
program components based on median voter equi-
librium are presented and compared to the results
from an earlier CVM study with the same data.
The paper concludes by discussing the ability of
our model to produce economically and statisti-
cally valid welfare change estimates from data
generated by the sequential, multiple valuation
question per respondent format. Further enhance-
ments are also discussed.
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Conceptual Model

Consider this admittedly contrived example. The
investigator is interested in comparing the
agent’s preferences between three hypothetical
states of the world yielding deterministic utility
levels V; , V; , V, . One way to elicit the prefer-
ences is to let the agent pick the preferred state
from all possible pairs (three in this case). An
alternative is to ask the agent to rank the three
states at once. From an economic theory
perspective, choosing the latter simultaneous
format over the former sequential one or vice
versa is immaterial as long as preferences remain
unchanged. But it is not so when it comes to
empirical modeling. If choices are arranged in
pairs, the following random utility model (RUM)
arises:

My =v+e

Ukr: Vk+ gkt’

where (], k) are (1,0), (2,0), (2,1) respectively for
t=1, 2, 3; V represents the deterministic com-
ponents of the respective random utility levels,
and & represents utility shocks. There are six
random quantities involved in the comparison
and there are eight possible outcomes, of which
two are intransitive. There are two distinct util-
ity realizations for each of the three states, which
means the choice generally is not reflexive.
Meanwhile, there are only three random quanti-
ties in the simultaneous ranking format, and
there are six guaranteed transitive and reflexive
outcomes. As a result, estimates from the simul-
tancous model will differ systematically and to
an unknown extent from those coming from the
sequential model, even if the deterministic parts
are identically specified.

Let us now switch to a choice experiment setup
that has more practical relevance. Consider this
common T-period sequential binary choice
model. A utility maximizing agent i chooses
between two states of the world at each period t;
t =1, .., T, in a sequence. These states are a
period/individual-specific “alternative” (e.g., a
particular environmental policy) and the “status
quo,” e.g., a no-action baseline policy. To simplify
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notation, we will omit the individual subscript i;
however, it is important to keep in mind that we
discuss choosing behavior of the same individual.
These are the utility levels involved in the paired
comparisons at each period t:

@
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where Vj; = V (X;) is the deterministic utility of
the alternative with attributes X ; the deter-
ministic utility of the status quo is zero; and
(eit , €y are the respective error terms. The
above model implies the following marginal
probabilities of choice outcomes:

) Priu, >U,]1=PrlV, >¢,-¢,]
=F, . (V).

where F; . is the distribution function of the
difference of utility shocks at time t.

The standard practice is to use 2 x T independ-
ently and identically distributed (i.i.d.) errors
(Hoehn 1991). As already mentioned, this leads to
the nonequivalence of elicitation formats and
potential problems with transitivity and reflex-
ivity. In their review of statistical methods with
CVM data, Hanemann and Kanninen (1999)
consider a model where ¢, = ¢, Vt. The authors
do not put forward any justification for this
restriction, but technically the restriction means
that an unobserved utility level of the “status quo”
state is the same no matter where in the survey
this state is invoked, i.e., U, = U, Vt. To be
consistent, one should extend this to all states: if
any pair of states (Xjs , Xjt), S # t, are identical so
that these describe the same alternative j that
individual i faces at two different points in time,
then U = Ujt, V(s, 1), s # t. It is apparent that,
if all T alternative states are different, this speci-
fication restricts the number of latent random
quantities to T + 1 and statistically forces the
equivalence of the sequential and parallel choice
representations from our earlier example. We will
term this model the pseudo-sequential choice, to
emphasize its atemporal nature.
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The pseudo-sequential structure of a choice
model makes the latter consistent with the transi-
tivity and reflexivity axioms, so that the agent is
assumed to be able to order her preferences
among policy alternatives in a consistent manner,
with no preference reversal allowed. Another
refinement can make the model consistent with
the continuity axiom as well. Loosely stated, the
principle of continuity postulates that any two
states that are infinitely close cannot be far
apart in terms of their respective utility levels.
Considering environmental policies as bundles of
services to the consumer, continuity is critically
important, for it allows for the possibility of
substitution between policy components, which,
in turn, permits comparing the relative importance
of these components. To deal with continuity
formally, let metric d be the Euclidean distance
between two sets of attributes Xjs and Xy.
Continuity will then require that, as d(Xjs, X)
becomes infinitesimally small, the error terms
should become perfectly statistically dependent,
in order to maintain our earlier assumption
of a single utility level per alternative, U = U, ,
(s, t), s #t. Using Pearson’s product-moment
coefficient (the standard correlation coefficient)
p(gjs, &) to measure the departure of two random
variables from independence, as, d(Xjs, Xt) = 0,
P(gjs, €x) — 1. This should also hold true when
using any other measure of dependence among
random variables. Notably, unlike transitivity, any
sequential model with i.i.d. error terms will
always violate continuity.

The (above) assumptions behind the pseudo-
sequential choice model have an important
consequence. As all utility realizations of an
individual can potentially be interdependent
no matter how they are arranged in choice sets,
the property of independence of irrelevant
alternatives can no longer be maintained.

As far as the conventional utility theory goes,
there does not seem to be a reason not to have the
canons of utility theory enforced, bearing in mind
also that, if the model is supposed to produce
WTP estimates, those can only be considered
valid for as long as the utility theory behind
them can. But it cannot be presupposed that
choosing agents comply with the investigator’s
theoretical assumptions. Relative to the point in
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hand, theories of rational dynamic choice gener-
ally uphold dynamic consistency. The agent
should be dynamically consistent in her actions so
that, if the agent’s present “self” embarks on a
course of action, all later “selves” should abide by
that commitment (McClennen 1990).

Dynamic consistency has a timing invariance
property: a sequential choice problem and a
planned choice problem should be equivalent to
the agent, given they are strategically equivalent.
Behavioral studies do not seem to offer any defin-
itive results with respect to timing invariance
(Read et al. 2001). Read and Loewenstein (1995)
consider an undesirable “diversification bias,”
referring to a demonstrated excess variety in items
selected in the simultaneous design. In contrast,
Read, Loewenstein, and Rabin (1999) argue that
simultaneous choice enables agents to diversify
their assets to reduce the overall risk, thus giving
preference to the simultaneous choice. Informa-
tion that becomes available in between choices
may also be a factor to consider.

Participants of CVM experiments are likely to
have no experience with programs or policies
to be valued. Different ways of supplying
commodity-related information or different
amounts of information supplied have led to a
significant variation in valuation results
(Bergstrom et al. 1989). Arguably, the time
dimension and sequencing of choice sets can only
be omitted in situations where information about
the programs is supplied to respondents strictly
prior to elicitation, and no additional information
is given in between elicitation questions.

Continuity in an empirical context has its own
fair share of concerns. If a small change in the
scope or attributes of a commodity led to consid-
erable changes in utility, CVM responses would
have tended to demonstrate hypersensitivity to
such changes. However, more studies seem to be
suffering from abnormally low sensitivity, which
has led to a broad scholarly interest in the phe-
nomena of embedding and scope insensitivity
(Kahneman 1986, McFadden and Leonard 1995).
There is also evidence of lexicographic prefer-
ences in environmental amenity valuation; see the
review of studies in Spash (2000).

A pragmatic approach for the investigator, to
address both theoretical requirements and empir-
ical concerns, would be to fit several models (e.g.,
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the standard sequential choice model and a
pseudo-sequential choice model) and then go with
the one that provides the best fit for the data.
Nonetheless, the pseudo-sequential choice frame-
work, as outlined above, has a testable
implication: the investigator should be able to
observe whether the estimated dependence
between error terms increases as the choice
options become more similar, and vice versa.
For the T-period binary choice setup with no
repeated choices, our pseudo-sequential choice
model for actions of individual i is given by:

VRS

U, = ¢,

where t now indexes T alternative choice options,
t=1,2, ..., T, and the joint distribution of
(80, €, ..., e7) may have (T} 1) parameters of
dependence for all possible pairs of shocks. If the
measure of dependence is bounded, as is the case
with the correlation, then normalization is
required. One should select at least one pair, either
actual or imaginary, for which no dependence is
allowed. We suggest setting dependence to zero
for all (Xt, 0) pairs, since the baseline option is by
default most different from the rest of the policies.
This results in the availability of ({) dependence
parameters.

To estimate the model in equation (4) by max-
imum likelihood, one should be able to obtain
probabilities of all 27 choice outcomes. Getting
the outcome probabilities for a two-period model
T =2 is fairly straightforward:

®)

Pr[u,<V,,U, <U,]=Pr[U,= max(U,,U,,U,)]

Pr[U>U, U<V, 1= PrU,< U, ]
- Pr[U, = max(U,,U,,U,)]

Pr[U,<u,,U, >U,] = Pr[U, <u,]
Pr{U, = max(U,,U,,U,)]

Priy,»4y,.U, >U,1=1-Pr[U,<U,,U, <U,]
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-Pr[y, >U,,u, <U,]
-Pr[U, <U,,U,>U,1

For larger numbers of periods, outcome proba-
bility formulae become unwieldy, which implies
having quite a complex likelihood function. While
algebraic expressions for outcome probabilities
grow prohibitively complex, the computation of
those is easily automated, using the fact that the
outcome probability for a subset of

v={y =1lU,>U,1 y,=1[U > U],
wsyr=1lU, > U 1}

can be expressed as a sum of probabilities of the
mutually exclusive joint events that constitute it.
All that is needed is a facility to calculate

Pr[U, = max(U,,U,)],

where U, are the utility levels of options in the
subset A of indices {1, 2, ..., T}. The objective
now is to solve a linear system A, = b of 27
equations. Let T, be a set of [ unique ordered
combinations of subscripts, r&{1,2,..., T}, and
refer to the algorithm presented in the Appendix.
In the next section, we provide specifications for
both deterministic and stochastic parts of the
model. We then fit several alternative specifica-
tions with actual survey data to assess the
reasonability of our conjectures about an agent’s
rationality.

Empirical Application: Estimating WTP for
Little Tennessee River Management Alternatives

The Little Tennessee River (LTR) watershed
is located in Georgia, North Carolina, and
Tennessee. The watershed encompasses 10,783
acres, including eighteen rivers and streams and
twenty-six lakes. The LTR watershed is used by
logging, agriculture, and mining industries; how-
ever, the aesthetically pleasing environment in
the basin has brought about a tremendous
increase in the population of people who visit or
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live within the watershed. In the last twenty years
the population has doubled, leading to concerns
about the future health of the watershed and the
ecosystem services the watershed provides. The
majority of land within the watershed is privately
owned, and private land use decisions have
a major impact on ecosystem functions and
services. For example, agricultural activities such
as watering cattle in streams, as well as housing
and commercial developments along the streams
and creeks, influence water quality, a key deter-
minant of ecosystem health and services.

The objectives of a recent CVM study by
Holmes et al. (2004) were to develop and test a
general methodology for valuing ecosystem
services and to identify and value particular
ecosystem services present in the Little Tennessee
River watershed. To place a value on ecosystem
services, a computerized CVM survey instrument
was designed and implemented. The present
study uses the data set obtained through the above
survey.

Four focus group sessions were conducted in
the study area to facilitate the development of the
computerized survey instrument. Concern about
the ability of respondents to distinguish between
different restoration programs led to the develop-
ment of a matrix showing the level of ecosystem
services associated with each program. The com-
puterized survey format also permitted the
extensive use of photographs and diagrams
demonstrating restoration activities, as well as
land use maps depicting land use change and the
proximity of economic development to the LTR
and its tributaries.

Survey panels were held in the study area
using locally available computer labs, and each
individual who participated in the final survey
received an incentive payment. The citizen valua-
tion panel was a non-probability sample made
up of recruits from local civic organizations.
Although a quota system was not used for recruit-
ing, an attempt was made to recruit a diverse set
of citizens to make up the panel. A comparison of
socio-economic characteristics of the sample and
the county showed that the income and education
of the sample were higher than the values for
the population (which is not uncommon for prob-
ability samples). The age and gender of the
sample were quite similar to population values.
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The sample included a larger proportion of peo-
ple who owned property along the LTR than
occurred in the general population.

The survey followed a close-ended, single-
bounded format. Valuation questions were posed
in the “take it or leave it” way: “If a local county
sales tax were to reduce your annual household
income by $BID each year for the next ten years
to support Program t, would you vote in favor of
it?” Fifty-eight respondents (N = 58) provided
complete sequences of votes in the survey.

The survey included four different programs
(T =4). Program 1 offered an overall watershed
protection plan, whereby buffer strips along all
small streams and creeks running into the LTR
would be created. Programs 2—4 included partial
restoration of the stream bank along a 20-mile
stretch of the LTR, in addition to the omnipresent
watershed protection plan. The suggested scope
of the restoration was 2 miles in Program 2, 4
miles in Program 3, and 6 miles for Program 4.

The computer-assisted bidding followed a sim-
ple adaptation structure. If the respondent had
voted in favor of Program t = 2, 3, then the bid
for Program t +1 was increased, otherwise t +1
was offered at the same bid amount as . The ini-
tial bids were randomly selected from the
amounts $1, $5, $10, $50, or $75. Bid amounts
for Program 4 ranged from $1 (resulting from a
string of prior NO responses) to $500 (resulting
from a string of prior YES responses). The pay-
ment vehicle used represented an increase in the
local sales tax (in the study area, local sales taxes
must be approved by a public referendum and are
a common means of financing local public goods
and services).!

The conditional indirect utility function we use
for this study is a linear combination of weighted
policy attributes and the bid:

(6)
Vir ==Y BIDir + ﬁwpwpt + ﬁ2m2mr

+ ﬁ4m4mr + ﬂ6m6mt !

where BIDj; is an amount in $100s, asked from
respondent i for Program t, and (Wpt, 2mg,
4mt,6mt) are indicators for attributes of the
program. wWp; = 1 indicates the presence of the

! For an additional description of the survey, see Holmes et al. 2004.
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watershed protection plan, and gm; = 1 indicates
that the program provides for the restoration of a
g-long stretch of the river, = 2, 4, and 6 miles.

This specification admits an arbitrary depend-
ence of utility on miles restored. To account for
heterogeneity amongst respondents, we allow the
coefficient t on bid, vj, to be varying across the
panel. It is assumed to follow log-normal distri-
bution with parameters u and o2 to be estimated.
Solving Vi = 0 for the bid value yields the
compensating surplus welfare change measure for
Program; as the ratio of the implicit price of
its attributes to that of $100 of extra income
(Hanemann 1984):

7
i< PP By 24 By B o

v,

One option for estimating the four-period
system is a multivariate normal distribution of
utility shocks. It offers a general covariance struc-
ture and, accordingly, a full range of values for the
dependence parameters, from independence to
the perfect positive/negative correlation. Unfortu-
nately, choice probabilities from a probit-type
model are not closed-form expressions and must
be simulated. Simulation is very computationally
expensive and may result in a large variation of
likelihood values when the sample size is small.
Another candidate is a generalized extreme value
(GEV) distribution. Despite being more restrictive
in comparison with multivariate probit models,
GEV models still allow sufficient flexibility.
More importantly, GEV choice probabilities are
directly computable, which substantially reduces
the computational load and saves one from
other problems related to simulation-assisted
estimation.

Consider a GEV distribution that underlies the
paired combinatorial logit (PCL) (Chu 1989):

®)
F (s,,sz,...,ej) =exp [—G (e's‘, e %, ...,e‘”)]

=exp [_G (al,az,...,aJ)] )

J-1 J 2
_ 1/ Ny 1/ kg \ Mu

G=3 3 [aea )",
k=1 l=k+1
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where J is the total number of options. Each
(k, 1:k # 1) pair of error terms in this distribution
forms a nest, with the total number of nests equal
to (“2‘) and Ay being a measure of independence for
the members to the respective nest. When A =1,
members of the nest do not exhibit any depend-
ence; when Ay — 0, the dependence becomes
perfect. The distribution thus provides the
dependence parameters that meet our needs.
Besides, if one set A, =1, V&, [, this GEV model
reduces to a multinomial logit (MNL).

In our case J =T +1. Since the status quo option
is assumed to be different from the others to the
utmost extent, we restrict Ayy=1, t=1, ..., T; that
is, we will not allow any covariation between the
error term of the status quo and those of the alter-
native options. This restriction conforms with a
PCL identification requirement to have at least
one A set to unity. The option of “no action”
appears to be the most different from any avail-
able course of action (i.c., restoration) because of
its very nature. Human decision-making is often
done in stages. A decision whether or not to act,
to intervene, normally precedes any choice of the
way to act. A brief analysis of the Little Tennessee
River data shows that more than 50 percent of
subjects either supported all programs or rejected
them all. It would then be reasonable to speculate
that a significant percentage of the sample was
eager to contribute to the restoration—they may
have made a choice to intervene—while a signif-
icant percentage of our respondents simply might
have been not interested in restoring the water-
course at all. Hence the “no action” option being
different from all, as one may speculate on similar
courses of action. The restriction also has a use-
ful consequence: the model becomes the standard
binary logit for any cross-section.

Table 1. Three Model Specifications
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Using the PCL choice probability formula,
©
PriU, = max (U,)] =
Iy

A
T-1 T Vil 2, Vit 2\ M
k=0 Zl:k+1 (e ‘e “)

where Uj is a collection of the individual i utility
realizations, and the algorithm in the Appendix,
one can apply the regular maximum likelihood
to estimate parameters in Vi; and all A.

The adaptive nature of the bid generation leads
to the endogeneity of BID for Programs 2 and 3. It
is important to emphasize, however, that since
outcome probabilities are obtained in the simulta-
neous choice framework, it is equivalent to
conditioning the probabilities on all values of BID
for a given individual, which makes the endo-
geneity of BID immaterial.

Table 1 summarizes the three versions of the
model that we estimated with the specification of
Vi given by equation (6). The PCL specification
applies no restrictions to the model in equations
(4) and (9); that is, the pseudo-sequential choice
framework is used to ensure transitivity, and six
dependence parameters are estimated to see
whether they are related to changes in the mileage
of riverbank restoration in the manner hypothe-
sized in the previous section. The MNL
specification is also built on the pseudo-sequen-
tial choice framework but it excludes any
dependence amongst utility shocks, so that choice
probabilities are obtained from MNL. This model
roughly corresponds to the one suggested by
Hanemann and Kanninen (1999). Finally, the logit

Mnemonic Description
PCL PCL choice probabilities; As unrestricted
MNL

PCL/MNL choice probabilities; Ast = 1, V(st)

Logit

All errors are i.i.d. standard Gumbel
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specification is simply a panel logit model with a
random price coefficient, which addresses neither
utility theory axiom. There are 8 i.i.d. standard
Gumbel errors in this specification, 2 for each of
4 pairs of choices. Logit was chosen as a main-
stream discrete-choice model. All three models
reduce to binary logit for any cross-section.

Table 2 summarizes model parameter estimates
for all specifications. Comparing the estimates,
one can notice that respondents did not quite
distinguish between Programs 1-3.

Estimated coefficients f,, and S,y are not
significantly different from zero in all specifica-
tions. The restoration of 6 miles of the river
produces a spectacular effect. A possible cause of
such a dramatic increase may be the “bet big, win
big” maxim. In each management program, the
survey identified category values for a set of
ecosystem services, such as habitat for fish,
wildlife, water purity, etc. Levels of those services
were defined as “low,” “moderate,” or “high.”
While other programs featured differing service
levels, Program 4 has all levels at “high.” It seems
to be likely that the maximum improvement
was the threshold to trigger both attention and
considerable spending.

Table 2. Estimated Coefficients
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To assess in-sample predictive ability of the
three models, we used the percentage of correctly
predicted sequences on 1,000 draws with replace-
ment from the sample. The results were compared
to a benchmark success rate of 17 percent attain-
able by indiscriminately guessing the outcome
on each trial, solely based on the proportions of
outcomes in the sample. Notably, three outcomes
out of the possible sixteen make up 68 percent of
the sample. These are: “yes” to all programs (29
percent); “no” to all Programs (22 percent); and
“yes” only to Program 4 (17 percent). The PCL
specification performed the best, marginally
improving on the MNL results. At the same time,
the logit specification proved to be falling short of
the results of simple guessing.

The estimation of a PCL model is an intricate
process because of the possibility of corner solu-
tions: A — 0 or Ay — 1. The logistic transform
was used with all lambdas; i.e., the optimization
was performed on

Ikza )“kl = Ik/(l + Ik/)_l .

Estimate (estimated standard deviation)

PCL MNL Logit

Watershed protection, ﬂwp **0.8973 (0.4368) **1.0687 (0.4206) ***1 6371 (0.1537)
2 miles of restoration, ﬁ2m -0.1078 (0.4680) -0.1390 (0.54005) -0.2602 (0.4743)
4 miles of restoration, 54m 0.0934 (0.4876) 0.0959 (0.4434) 0.1196 (0.3755)
6 miles of restoration, 3, **1.8613 (0.7908) ***1.9798 (0.5567) ***2.9450 (0.2538)
Distribution of In (i)

v **1.1751 (0.5462) ***1.3838 (0.4101) ***1.3134 (0.3488)

o2 ***4.4105 (0.5652) **%4.0044 (0.3877) **%0.7121 (0.1963)
Predictive ability, % 20 18 16

Significance level: *** 99%, **95%, *90%.
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Three corner solutions were encountered, A5, A4,
and Ag,. To avoid numerical problems, the opti-
mization program (written in SAS [IML)
was set to fix any lambda at 0.01 or 0.99 if the
optimization algorithm attempted to go beyond
the boundaries of the [0.01, 0.99] interval after 50
iterations.

Estimated A are presented in Table 3. These are,
at a glance, consistent with our hypothesis that the
dependence between unobserved utility levels
decreases as the items grow farther apart with
respect to attributes.

Table 3. Estimated PCL Dependence Parameters

Program 2 3 4
1 <0.01 0.78 >0.99
2 0.05 0.98
3 <0.01

Estimates of A for neighboring programs are
very close to zero; in other words, the respective
utility shocks are highly dependent. The degree of
dependence plummets to almost nothing for non-
adjacent options. The result is peculiar yet not
necessarily puzzling. Consider the following
parable. A group of people was asked to pick two
cities that are closer to each other geographically,
with the options being Washington, DC; New
York; and Boston. We can reasonably expect
people to pick Washington, DC-New York and
New York—Boston pairs. Hardly anybody will
choose Washington, DC and Boston. So, by a pre-
ponderance of evidence, the investigator will
probably conclude that while Washington, DC
and New York, and New York and Boston are
“similar,” Washington, DC and Boston are not.
The peculiar aspect is that it seems respondents
considered adjacent programs to be a sort of “Red
Bus/Blue Bus” tradeoff. Note from Table 3 that all
lambdas but one (Programs 1 and 3) are either
corner solutions or very close to being such. This,
per se, is still consistent with the hypothesis of the
paper, but this makes the proportionality work in
a highly nonlinear fashion. The dependence
between the difference in miles restored and
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estimated A was tested with Kendall’s Tt nonpara-
metric test. The value of the statistic was 0.77,
which has a p-value less than 0.01. This provides
a statistical confirmation to the observed pattern.

Since the coefficient on bid is assumed to be
following a log-normal distribution, WTP calcu-
lated according to equation (7) is distributed as a
weighted reciprocal of this log-normal variate.
Table 4 presents selected WTP quantiles for all
models. We report the single WTP value for
Program 1, assuming the insignificant estimates
of B,m and B4, to be zero and, thus, a difference
in WTP for these Programs to be undetectable.
The WTP distributions in Table 4 were obtained
through Monte-Carlo simulation, using the
sampling distribution of (3., /i, 52). The distri-
bution is (asymptotically) normal with the mean
(Bens i162) and the variance =. Draws from the
distribution of (3;,,, /i, 52) were made first; then,
draws from N (z,42) were made to obtain In(y).
Lastly, WTP was calculated as

WTP =73,

The process was repeated many times to obtain a
sufficiently large number of draws from the WTP
distributions. WTP values therefore come from
the distribution of a nonlinear, stochastic function
of (3, i1,62); the variability in the estimated
WTP is driven by all parameters in the distribu-
tion of (3,,,, 5%,

m "

Table 4. Estimated WTP

Specification WTP Quantile, $

25% 50% 75%

PCL:

Programs 1-3 7 31 128
Program 4 20 86 361
MNL:

Programs 1-3 9 25 74
Program 4 30 80 229
Logit:

Programs 1-3 10 41 147
Program 4 34 121 452
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There are no large differences between the
WTP values resulting from the three model
specifications. Yet the differences of 20 percent
to 50 percent of the values’ magnitudes are in
no case trifling, either. Parenthetically, the
obtained WTP estimates are several times higher
than estimates arising from the random-effects
probit model by Holmes et al. (2004), while the
conclusion with respect to the WTP overall super-
additivity remains. The results do not quite satisfy
the scope test (Arrow et al. 1993), since WTP
values do start increasing until the program size
reaches 6 miles of river restoration. However, the
triggering effect of the maximal action package in
Program 4 makes this result fairly logical. The
individual demand therefore appears to be more
of a step-function rather than a conventional
downward-sloping schedule.

Discussion and Conclusions

Listed below are three net results from the empir-
ical part of the study:

(a) The PCL specification that enforces
transitivity and allows for continuity
provides a moderately better fit, ceteris
paribus, than others that exclude either or
both continuity and transitivity.

(b) Whatever specification is used, Program 4,
being the most extensive management
package, has a super-additive effect on WTP.

(c) Estimated dependence parameters from the
PCL specification appear to exhibit the
pattern that the continuity hypothesis
suggests: when the difference between
values of an attribute increases for two
policy options, the dependence between the
respective utility levels diminishes.

The immediate implication of the results (a)
through (c) for WTP estimates is that a model that
adheres to the principles of utility analysis is
capable of providing more reliable WTP estimates
both economically and statistically. Even though
no dramatic differences between estimates from
different models have been found, these differ-
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ences are still non-negligible and may be impor-
tant for policy decisions.

Why do PCL and MNL specifications do a
better job of predicting choice outcomes for
the Little Tennessee River data set as compared
to logit? As mentioned earlier, more than half of
all observations in the data set are invariable
sequences of “yes” and “no” votes given for all
the alternatives. Roughly 50 percent of respon-
dents had not changed their mind with respect to
whether or not they would want any restoration of
the Little Tennessee River watershed. The utility
from the status quo level of the river’s protection
had a great deal of influence on people’s choices.
Knowing the respondent’s vote for any given
program, one could flip a coin to predict the
voting outcome for another program without any
valuation model. The logit specification totally
disregards this fact. It allows the utility of the
baseline state to change so that, after conditioning
on the person-specific marginal utility of income,
any previous or subsequent choices bear no addi-
tional information. Meanwhile, PCL and MNL
specifications anchor the utility from the alterna-
tives to the unvarying individual point of
reference and thus make use of this information.
These specifications provide a better control for
individual heterogeneity rather than imputing
the series persistence to the “warm glow” or
protest voting phenomena. The PCL specification
goes further and reaps a reward. Based on utility
continuity, it allows the utility levels from similar
states to be also similar. This lets the model
extract even more information from the unob-
served utility components, while doing so in a
manner consist with utility theory.

We do not intend to promote the use of paired
combinatorial logit or any other particular distri-
bution of utility shocks. For example, a general
mixed logit model may be a more general way to
handle the problem, since the PCL specification
can be easily mimicked using mixed logit. One
(seeming) advantage of the mixed logit model is
that the dependence is modeled explicitly as
correlation. Yet, the fact that a correlation matrix
must be non-negative definite is a restriction that
may turn the above advantage into a disadvan-
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tage. The matrix of lambdas (see Table 3) is in no
way non-negative definite. If a mixed logit model
were used to obtain a correlation matrix, it would
probably have produced a matrix with correla-
tions decreasing in magnitude as we go away
from the main diagonal. On one hand, this would
be even more consistent with the hypothesis of
the paper. On the other hand, this might actually
force the compliance. Thus, a mixed logit model
is unlikely to have caught the aforementioned
“Red Bus/Blue Bus” peculiarity for adjacent pairs.

The message of our entire exercise is simple.
We would want to stress the importance of speci-
fying a stochastic CVM model in such a way that
the investigator can attach theoretically based
meaning to all parameters in the empirical model.
Modern statistical software allows fitting a
variety of flexible probabilistic choice models.
But if a particular chosen model accounts for
unobserved phenomena only mechanistically,
then the researcher is left with the need for ex post
facto interpretation of estimates. This limits the
extent of quality control, since one would never
know whether the observed pattern in estimates is
what one should reasonably expect or is a mere
sporadic occasion. The mechanism of a dose-
response statistical model ultimately reflects on
the welfare estimates. If utility shocks are allowed
to follow whatever process, then welfare change
estimates have whatever meaning. This is defi-
nitely not what a CVM investigator would intend
to produce.

Much further research needs to be done in the
valuation of multiple environmental policies. A
rigorous testing of the timing invariance property
in CVM applications is particularly desirable.
An in-depth inquiry on specifications for the
stochastic interaction of utility would be instru-
mental for the practitioner’s needs. Considering
similarities between the utility space and a
geographical one, a direction for research can be
spatial statistical models (Besag 1975). Those
models adopt a conditional probability approach,
the spatial Markovity, in formulating entire spa-
tial systems and provide holistic schemes where
deterministic and stochastic components are
inherently interrelated.
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Appendix: Obtaining Outcome Probabilities

Data: T, Y; T
Result: p;
begin
list all possible 2" outcomes for Y; :
/* probabilities of outcomes are the unknowns in p */
Arrange all tsfromall T,, r =1,2,..., Tinany array of sets A;

_ T

/*Awill thenhave y» [T ]: 2T _1 elements of A; */
r=1"T

*whenT=3 A={{1}, {2}, {3}, {1.2}, {1,3} {2,3}, {1,23} } */

for each A; do

Calculate b; = Pr (YAj =0);
end
/* For the T = 3 example */

[*b =Pr(Y =0)=P =0 =0) */
, r( A, ) r(yi1 Y )

for j=1to2" —1do
fork=1to2"-1do

if (Y, =o0)eventcontains k-th outcome then
J

a =1
jk
else
a, = 0;
end

end

end

A =0;
3T

b == 07
3T

/* put 1 in all cells of the last row of A */

/* and last cell of b - - - the sum of outcome probabilities must be one */
Solve Ap=b for relevant outcome probability p; with Cramer’s rule;

I* the determinant of A will be either 1 or -1, */

/* which further simplifies calculations */
end





