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10  Efficiency versus bias: the role of 
distributional parameters in count 
contingent behaviour models
Jeffrey Englin, Arwin Pang and Thomas Holmes1

INTRODUCTION

One of the challenges facing many applications of non-market valuations is 
to find data with enough variation in the variable(s) of interest to estimate 
econometrically their effects on the quantity demanded. A solution to this 
problem was the introduction of stated preference surveys. These surveys 
can introduce variation into variables where there is no natural variation 
and, as a result, natural experiments are not possible. The problem of no 
or insufficient variation in naturally occurring data to estimate the effects 
of interest has led to a large literature on stated preference methods.

Among the methods developed, two can be linked directly to observed 
behaviour. Unlike contingent valuation questions, these approaches key 
off of actual choices that individuals have made in the past or are con-
templating in the future. Consequently, the consistency of these choices 
with the responses to stated preference questions can be examined. The 
two methods are those based upon random utility theory and those based 
upon demand theory. While the two can be linked theoretically in practice, 
one either adopts a random utility framework or a demand framework. 
The demand framework, adopted here, is frequently identified as a ‘con-
tingent behaviour’ approach.

The contingent behaviour method was proposed by Englin and 
Cameron (1996). Their paper suggests focusing on the number of trips 
an individual might make under different situations rather than how a 
single choice might vary (random utility model) under different situations. 
The advantage of the contingent behaviour model is that it includes both 
the intensive and the extensive margin while the random utility approach 
focuses solely on the intensive margin. As a result, the contingent behav-
iour approach can capture improvements with the extensive margin as well 
as quality reductions on the intensive margin.

While considerable effort has been expended examining the functional 
form, parametric specifications and distributional assumptions used in 
contingent behaviour studies, no effort has been spent examining the role 
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of heteroscedasticity. Cameron and Englin (1997) provided the first analy-
sis of the role that systematic differences between respondents may play in 
generating heteroscedasticity in a stated preference analysis. Their work 
examined the role of experience in the variance of dichotomous choice 
WTP survey responses. The analysis in this chapter examines the relation-
ship between demographic characteristics and potential heteroscedasticity 
in contingent behaviour studies.

The analysis is important because of the relationship between distribu-
tional shape parameters and the demand shift parameters. The intuition of 
OLS models fails in the case of many count models. Unlike OLS models 
where simple algebra can be used to calculate the parameters and stand-
ard errors of a regression ex post, count models must be estimated using 
maximum likelihood methods and the distributional shape parameter(s) 
and demand parameters must be estimated simultaneously. If the shape 
parameters are correlated with the demand shift variables and the rela-
tionship is not properly specified, mis-specification has been introduced 
into the model and the demand shift parameters will be biased. This 
results in both a possible bias in the parameter on the travel cost variable 
as well as an inability to recover the mean dependent variable of the data. 
Subsequent estimates of welfare measures will suffer from the effects of 
biased parameters.

In this chapter, these methods are illustrated using data on off highway 
vehicle (OHV) riders in North Carolina, USA. While OHV riding gener-
ates economic benefits for riders, they also generate negative externalities. 
The externalities include smoke, noise, disturbed trail conditions and the 
presence of large machines (Jakus et al., 2008; Priskin, 2003). The combi-
nation of benefits and external costs make OHV riding a useful activity to 
examine. Several studies have applied travel cost models to examine the 
value of OHV riding. Bergstrom and Cordell (1991) apply a national zonal 
travel cost model to examine values and find that daily values of about $21 
in 2005 US dollars. Bowker et al. (1997) suggest that consumer surplus in 
fee based sites in Florida to range between $14.60 and $80.32 in 2005 US 
dollars. Englin et al. (2006) estimated a demand system for the same four 
OHV sites in North Carolina used in this analysis and found consumer 
surplus to be between $25.51 and $131.58.

The remainder of the chapter is structured in the following way. The next 
section presents count models of recreational site demand that are used in 
this study. The third section outlines the data collection procedures and  
the data used in the analysis. The fourth section provides the results,  
and the final section provides a discussion of the limitations of the analysis 
and suggestions for future research.
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COUNT MODELS OF RECREATIONAL SITE 
DEMAND

Count models have become a very popular application of the traditional 
travel cost model. Traditional OLS models suffered from a number of 
issues including negative and fractional trip forecasts. In the last decade 
or so count distributions have been widely applied to model this relation-
ship. Count distributions are attractive because they naturally handle 
both the integer and non-negative characteristics of recreation demand. 
Specifically, the demand for a site is:

	 Y 5 f (tc, d) 	 (10.1)

where f() is the exponential function, Y is the number of trips, tc is the 
travel cost to the site and d is the demographic variables that characterize 
the respondents.

In the case of pooled sites, the demand equation must be expanded to 
include site characteristics. The specification of the demand is given by:

	 Yi 5 f (tcij, di, xj) 	 (10.2)

where f( ) is the exponential function, i denotes individuals and j denotes 
sites, tcij is the travel cost for individual i to site j, di is the demographic 
variables that characterize the respondents, and xj is the characteristics 
of the sites contained in the pooled in the data. The estimated per trip 
consumer surplus for the individual i is simply ∫Q*(.) dp, or 1/bp where 
bp is the parameter on the price variable. This is clearly the ‘average 
site’ in the sample and corresponds to the value at the intensive margin. 
To calculate values at the extensive margin or, more simply, allowing 
the number of trips to change, one needs to estimate the change in the 
number of trips. Quantity demanded for a particular site is simply found 
by substituting the site attributes into the demand equation. Changes in 
quantity that result from changing site attributes is found by substitut-
ing the new site attributes into the demand equation forecasting the new 
quantity demanded. Dividing the change in trips by the parameter on 
travel cost, bp, gives the change in value for the extensive and intensive 
margins. Traditionally this calculation is performed for each respond-
ent and the resulting mean consumer surplus and standard error are 
reported.
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The Poisson Model

The most basic count travel cost demand is the Poisson model. The Poisson 
model provides an excellent reference point because it does not contain 
any shape parameters to be estimated. This makes it one of the distribu-
tions that is a member of the linear exponential family (Gourieroux et al., 
1984)). The Poisson regression model specifies that each yi is drawn from a 
Poisson distribution with parameter, li. The predictive variables are linked 
to the latent l using an exponential link function, li 5 exp(tcij, di, xj) where 
i denotes individuals and j denotes sites. The probability mass function for 
the Poisson is

	 Prob(Yi 5 yi 0xi) 5
e2lili

yi

yi!
, yi 5 0, 1, 2, . . .	 (10.3)

where xi now includes both demographic and site variables. The expected 
number of yi (trips) and the variance of trips are both given by

	 E [yi 0xi ] 5 Var [yi 0xi ] 5 li 5 exirb	 (10.4)

While the Poisson has the unattractive property that the mean equals 
the variance, it does retain the attractive linear exponential property that 
the parameters are unbiased as long as the underlying relationship is linear 
exponential. One way to address the heteroscedasticity that is usually 
inherent with the Poisson is to use White’s (1982) standard errors with the 
Poisson parameter estimates. Another approach is to adopt a distribu-
tional specification that allows for more heterogeneity in the variance and 
presumably provides more efficient estimates.

The Negative Binomial Generalization

A popular generalization of the Poisson is the negative binomial. The 
negative binomial is found by mixing a gamma density with mean 1 and 
variance 1/a with the Poisson. The likelihood for the negative binomial 
distribution is:

	 Prob(Yi 5 q) 5
G(q 1 1

a)
G(q 1 1)G(1

a)
(ali) j [1 1 ali ]

2aq1
1

a
b
	 (10.5)

where q is the number of trips taken by individual i and a is the over-
dispersion parameter. Notice that this likelihood collapses to the Poisson 
if a equals zero. An important point to notice is that in empirical work 
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the a parameter is estimated from the data. As a result the distribution 
loses the attractive linear exponential properties held by the Poisson. The 
expected number of yi (trips) is given by

	 E [yi 0xi ] 5 li 5 e 
xri b	 (10.6)

while the variance of trips is given by

	 V [y ] 5 l (1 1 la) 	 (10.7)

Note that when a is zero, the expression collapses to the Poisson 
moments. The expectation is that relaxing the equivalence between the 
mean and variance will result in improved efficiency.

The Gaussian Random Effects Poisson generalization

Terza (1998) suggested introducing normally distributed heterogeneity 
to the Poisson model. Cameron and Trivedi (1998) called this density a 
Gaussian Random Effects Poisson. Terza utilized a two-stage method of 
moments estimator to avoid the full information maximum likelihood’s 
(FIML) computational burden. In the Gaussian Random Effects Poisson 
the random effects follow the normal distribution. Following Terza, yit 
are assumed to be iid P[exp(ui 1 x rit 

b) ] where the random effect ui is iid 
N[0, s2

u ]:

	 yit ~ P[ai exp(x rit b) ]	 (10.8)

and ai 5 expui

The joint density is:

	 Pr( yit) 5 3

`

2`

£q
T

t51
ae2litlyitt

yit!
b

e2
1
2

 u2

"2p
§ du	 (10.9)

where lit 5 exp(xitq 1 su) .
The expected number of trips is given by:

	 E[Y] 5 exp(m 1 0.5s2)	 (10.10)

and the variance is given by:

	 V [y ] 5 exp(xir b 1 0.5s2) 1 (exp(2l 1 s2) (exp(s2) 2 1) 	(10.11)
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Note that when s2 is zero the expressions again collapse to the Poisson 
moments. From a conceptual viewpoint the expectation is that loosening 
the equivalence between the mean and the variance will result in improved 
efficiency. Of course, the Gaussian Random Effects Poisson takes a very 
different approach to relaxing this restriction.

Heteroscedasticity and the Negative Binomial and Gaussian Random 
Effects models

Failure to model heteroscedasticity can lead to a variety of issues. There 
are the conventional problems with model testing but there are also prob-
lems which can affect the welfare results. This section provides a frame-
work for modelling heteroscedasticity in negative binomial and Gaussian 
random effects Poisson models.

Modelling heteroscedasticity is accomplished by developing a relation-
ship between the over-dispersion parameters and exogenous variables 
that could underlay the pattern of over-dispersion. In this case, the two 
over-dispersion parameters that are of interest are a from the negative 
binomial and s2 from the Gaussian random effects Poisson model. In each 
case an exponential link function between the over-dispersion parameters 
and the exogenous variables is used. An exponential link function assures 
that the predicted over-dispersion parameters will be positive (which is a 
requirement).

The exponential link function is a second equation that links the over-
dispersion parameters to a set of exogenous variables. The equation for 
the negative binomial can be represented by:

	 ai 5 exp(zird) 	 (10.12)

where a is the negative binomial over-dispersion parameter, the d are 
parameters to be estimated and the z’s are exogenous variables. The equa-
tion for the Gaussian Random Effects Poisson can be represented by:

	 s2
i 5 exp(zirr) 	 (10.13)

where s2 is the Gaussian random effects Poisson shape parameter, the r 
are parameters to be estimated and the z is exogenous variables

The introduction of a parameterized shape parameter for a in the 
negative binomial and s2 in the Gaussian random effects Poisson model 
provides a way to enrich the specification of the distributional shape 
parameter. Clearly, if only the constant in the function is significantly dif-
ferent from zero then the traditional methods are perfectly adequate. If, 
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however, other variables are significantly affecting the shape parameter 
then the system of two equations for each model will be mis-specified if 
only a constant is used. The goal is to enjoy the increased efficiency of the 
negative binomial or the Gaussian random effects Poisson without incur-
ring the bias that comes from mis-specifying the shape parameter.

DATA

The study area included four US Forest Service OHV areas in western 
and central North Carolina, USA during the summer of 2000. These 
included Upper Tellico, Wayehutta, and Brown Mountain in the Southern 
Appalachian Mountains and Badin Lake in the Uwharrie Mountains. The 
areas include some of the most attractive OHV areas of southeastern USA.

Surveys were administered by volunteers from local riding clubs. The 
volunteers were especially helpful due to their understanding of the 
nuances of the sites and the types of riders that frequented each site as well 
as their ability to maintain a cooperative ambiance throughout the data 
collection process. Although the sample was a convenience sample, an 
attempt was made to obtain data from a diverse array of riders. Only one 
rider per party was asked to respond to the survey. The goal was to obtain 
at least 100 completed surveys per site.

The survey consisted of an eight-page booklet consisting of 25 ques-
tions. To elicit the recreation count data, respondents were presented with 
a table and asked to enumerate the total number of trips made to each 
of the four OHV sites during each of the previous three years. Although 
this procedure may induce some degree of recall bias, respondents com-
monly left blank cells for some locations and years, suggesting a possible 
response strategy for those who could not recall the requested informa-
tion. However, it is anticipated that some respondents may have made a 
best (but inaccurate) guess, inducing heteroscedasticity in the responses.

In addition, respondents were presented with three contingent behav-
iour questions. These questions asked how many trips would have been 
taken if the characteristics of the sites were changed from their current 
level. The characteristics chosen for inclusion in the contingent behaviour 
questions were attributes under consideration by US Forest Service rec-
reation managers at the four OHV sites. In particular, the site characteris-
tics that were varied included the number of parking spaces (Parking); the 
trail mileage (Trail); and whether or not alcohol consumption was allowed 
on-site (Alcohol). The level of these characteristics was varied using a frac-
tional factorial experimental design. Data used for analysis included only 
the reported actual and contingent number of trips for the site at which 

M2584 - BENNETT PRINT.indd   193 01/03/2011   15:13



194    The international handbook on non-market environmental valuation

Graham HD:Users:Graham:Public:GRAHAM'S IMAC JOBS:12830 - EE - BENNETT:M2584 - BENNETT PRINT Graham HD:Users:Graham:Public:GRAHAM'S IMAC JOBS:12830 - EE - BENNETT:M2584 - BENNETT PRINT

the survey was administered based on the rationale that those responses 
would be most accurate. Thus, if respondents answered all visitation 
questions, six observations per respondent were available for analysis. 
Some respondents answered fewer questions, so their panel of responses 
is reduced. The survey also elicited a suite of demographic variables that 
could be included in the analysis. For the analysis here, the age (Age), 
income (Income), and gender (Male 5 1, Female 5 0) of the respondent 
were included in the model specifications.

RESULTS

Table 10.1 presents the econometric results. The first column presents the 
Poisson parameter estimates while columns two and three present the par-
tially parameterized and fully parameterized specifications of the negative 
binomial model, respectively. Columns four and five present the partially 
parameterized and fully parameterized versions of the Gaussian random 
effects Poisson, respectively. Standard errors are shown in parentheses 
beneath the respective parameter estimates.

Each equation satisfies the basic expectation of a downward sloping 
demand curve (all of the estimates of bp are negative and statistically 
significant at conventional levels). The parameter estimates on the miles 
of trail (Trail) are consistently positive across all model specifications, as 
one would expect – more trails to ride increases visitation. However, there 
is inconsistency among the influence of other site attributes on visitation 
with the Poisson and negative binomial providing consistent signs on the 
parameter estimates and the Gaussian random effects Poisson param-
eter estimates telling a slightly different story. The Poisson and negative 
binomial models suggest that having a greater number of parking spaces 
(Parking) decreases visitation and that allowing alcohol consumption 
on site (Alcohol) also decreases visitation – both of which are somewhat 
counter intuitive. The Gaussian random effects Poisson model suggests 
that a greater number of parking spaces increases visitation (which is 
logical) and that allowing alcohol consumption also increases visitation 
(which is at least plausible.) The Poisson regression provides unbiased, 
although inefficient, estimates of the demand parameters. The other 
models should provide more efficient estimates of the parameters. The 
issue at hand is the utility of different methods of handling the specifica-
tion of the distributional parameters.

The second and third columns provide some insight into the nega-
tive binomial model. The second column provides the standard negative 
binomial specification. The usual test of the desirability of the negative 
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binomial specification is the t-statistic on the over-dispersion parameter, 
a. The value of the test statistic is over 20, signifying that the negative 
binomial is the superior specification. The question remains, however, 
whether a simple linear specification of the dispersion parameter is, in 
fact, a good enough specification. Column three provides the parameter 
estimates for a specification that fully parameterizes a.

For the purposes of illustrating the methodology, the over-dispersion 
parameter is modelled with a constant and three variables. These include 
whether the observation is a revealed (a_revealed 5 1) or stated (a_revealed 
5 0) observation, the age of the respondent (a_age) and the gender of the 
respondent (a_male). It is interesting to observe that the parameter esti-
mates indicate that there is no (statistically significant) difference between 
the revealed and stated observations. Nor does gender play a role in the 
degree of dispersion. There remains a fixed effect but the t-statistic is now on 
the order of three instead of 20 which suggests that the constant in the simple 
negative binomial specification is trying to capture a great deal of variation. 
Age is now a statistically significant determinant with older people display-
ing more dispersion around the mean number of trips than younger people. 
In addition, the likelihood ratio test is 8.6 with three degrees of freedom 
which is significantly different from zero at the 5 per cent level.

The effect of multicollinearity is also clear in the results. The partially 
parameterized effect of male gender on demand is 0.0872 while in the 
fully parameterized model it is 0.0899, virtually the same. This would 
be expected since male gender is not a significant determinant of a. Age, 
however, does affect a. The partially parameterized value is −0.0061 while 
in the fully-parameterized model the value is −0.0042. If the shape param-
eter a is not fully parameterized, the regression is forced to put the net 
effect of age into the demand shift variable rather than apportion it among 
the demand shift effect and the heteroscedasticity effect.

A similar exercise is conducted with the Gaussian random effects 
Poisson model. The standard approach is to estimate the model by only 
partially parameterizing s2 – the fifth column reports the results for the 
partially parameterized model. Note that the parameter on s2 is very 
accurately measured with a t-statistic over 10. As noted above, the param-
eters on Parking, Trails and Alcohol are all positive and significant at the 
1 per cent level. Age has a significant negative affect and the parameter on 
Income remains insignificant.

The last column shows the model with a fully-parameterized s2. For 
purposes of comparison, the parameterization is the same as the one 
used in the negative binomial model. This specification indicates that the 
revealed preference data have greater variance than the contingent behav-
iour responses, and that Age also significantly increases the variation 
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around the mean number of trips. Neither the constant nor being male has 
a significant effect on s2.

Further, it is important to note the effect of fully-parameterizing s2 on 
the demand shift variables. The parameter on Age in the demand equation 
is roughly halved – to −0.0052 – relative to the partially parameterized 
model. Being Male remains insignificant and the estimates from columns 
four and five remain about the same. Of particular note, the Income 
parameter is now statistically significant, suggesting that the partially 
parameterized s2 was correlated with the income level. This correlation 
may have been through the Age variable, where older people earn higher 
salaries. In any case, fully parameterizing s2 results in an equation that 
fits better than the base case. The likelihood-ratio test statistic is 11.6 with 
three degrees of freedom, which is significant at the 0.05 level.

As discussed above the estimated per trip consumer surplus for the indi-
vidual i is simply ∫Q*(.) dp. One is also interested in the variance around 
the welfare measures so that welfare measures can be meaningfully com-
pared. Following Englin and Shonkwiler (1995) the variance of the per 
trip consumer surplus estimates can be calculated as:

	 Vara 1
btc
b 5

V
b4

tc
1 2

V 
2

b6
tc

	 (10.14)

Table 10.2 provides the per trip consumer surplus for each model and 
the associated 10 per cent confidence interval. For example, the 10 per cent 
confidence interval around the Poisson welfare measure of $370 is $370 
plus or minus $45. As can be seen in the table there is a wide variation in 
the welfare measure and the respective confidence intervals. Some obser-
vations about the results include the relatively high values yielded by the 
negative binomial models. These also have quite large confidence intervals 
and as a result they encompass every other model including each other. 
The other models are more precise and more interesting to explore.

Table 10.2  Welfare estimates for each model*

Poisson Negative binomial Gaussian random effects Poisson

Partially 
parameterized

Fully 
parameterized

Partially 
parameterized

Fully  
parameterized

$370
($45)

$625
($273)

$667
($313)

$372
($42)

$435
($63)

Note:  * 10% confidence interval in parentheses.
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The welfare and confidence intervals around the Poisson and the par-
tially parameterized Gaussian random effects Poisson are remarkably 
close. While the partially parameterized Gaussian random effects Poisson 
sharply outperforms the Poisson in terms of fit, the welfare estimates 
are indistinguishable. The fully parameterized Gaussian random effects 
Poisson shows an increase in value of about a quarter. The partially 
parameterized Gaussian random effects Poisson and the Poisson welfare 
estimates are at the ragged edge of the bottom of the confidence interval 
around the fully parameterized Gaussian random effects estimate. The 
superiority of fit of the fully parameterized Gaussian random effects 
Poisson and the precision of the model seem to suggest that modelling the 
shape parameter of a Gaussian random effects Poisson provides the best 
approach to characterizing these data.

SUMMARY

An avenue of analysis that has not received attention to date is the role 
that shift variables play in the degree of homogeneity that is found in 
contingent behaviour data. This analysis presented a framework within 
which one can explore the importance of fully specifying distributional 
shape parameters. The evidence, which is not surprising upon reflection, 
is that there are systematic influences on distributional shape parameters 
that can be captured in a multi-equation framework as suggested in this 
chapter.

In each case, the effect of demographic or survey design variables was 
found to be a significant determinant of the shape parameters and, impor-
tantly, to affect the demand parameters and the resulting welfare meas-
ures. This is important because failure to capture the separate effects of 
an explanatory variable on demand and the imposed distributional shape 
parameter assures a bias in the shape parameter and in the one place the 
demand parameter appears. Clearly, more work remains to be done to 
understand the role that different demographic variables or survey designs 
have on demand and distributional shape parameters. One can easily con-
sider survey complexity and respondent burden in a framework such as the 
one described here.

NOTE

1.	 The authors acknowledge the invaluable assistance provided by Scott Shonkwiler and 
USDA Forest Service employees Bonnie Amaral, Chad Boniface, Jake Cebula, Bill 
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Champion and Kathy Ludlow. Research partially supported by USDA Forest Service 
and the Nevada Agricultural Experiment Station.
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