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Abstract

Tree canopy cover is a fundamental component of the
landscape, and the amount of cover influences fire behavior,
air pollution mitigation, and carbon storage. As such, efforts
to empirically model percent tree canopy cover across the
United States are a critical area of research. The 2001
national-scale canopy cover modeling and mapping effort
was completed in 2006, and here we present results from a
pilot study for a 2011 product. We examined the influence
of two different modeling techniques (random forests and
beta regression), two different Landsat imagery normaliza-
tion processes, and eight different sampling intensities
across five different pilot areas. We found that random
forest out-performed beta regression techniques and that
there was little difference between models developed based
on the two different normalization techniques. Based on
these results we present a prototype study design which will
test canopy cover modeling approaches across a broader
spatial scale.

Introduction

Tree canopy cover is a primary structural characteristic that
is important both within a forest setting and in non-forest
land covers such as urban lands. Tree canopy cover is the
proportion of an area covered by the vertical projection of
tree crowns (Jennings et al. 1999). The amount of tree
canopy cover is directly related to biomass and carbon
(Suganuma et al. 2006, Kellndorfer et al. 2006) as well as air
pollution mitigation (Nowak et al. 2006) and stream water
temperatures (Webb and Crisp, 2006). Additionally, tree
canopy cover is a major component of forest fire behavior
and fuel models (Rollins and Frame, 2006) and a critical
aspect of forest management activities (Jennings et al. 1999).
Because of the importance of tree canopy cover, the Multi-
Resolution Land Characteristic consortium ( MRLC) developed
and distributed a map-based product of percent tree canopy
cover as part of the 2001 National Land Cover Database

John W. Coulston is with the US Forest Service, 4700 Old
Kingston Pike, Knoxville, TN 37919, (jcoulston@fs.fed.us).

Gretchen G. Moisen is with the US Forest Service, 507 25 ®
Street, Ogden UT 84401.

Barry T. Wilson is with the US Forest Service, 1992 Folwell
Avenue, St. Paul, MN 55108.

Mark V. Finco is with Red Castle Resources, 2222 West 2300
South, Salt Lake City, UT 84119.

Warren B. Cohen is with the US Forest Service, 3200 SW
Jefferson Way, Corvallis, OR 97331.

C. Kenneth Brewer is with the US Forest Service, 1601 N.
Kent Street, 4™ floor, Arlington, VA, 22209.

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

(NLcD) (Homer et al. 2007). The scope of this paper is to lay
the foundation for development of the 2011 version of the
NLCD percent tree canopy map.

The 2001 NLCD percent tree canopy map is a freely
available, 30 m raster geospatial dataset covering the
coterminous United States, coastal Alaska, Hawaii, and
Puerto Rico. These data contain percent tree canopy esti-
mates, as a continuous variable, for each pixel across all
land covers and types. Because percent tree canopy cover is
not directly calculable from the spectral information found
in Landsat imagery, fine-scale data were used to develop the
response variable and coarser (30 m) data derived from the
1992 NLCD, Landsat-5 and -7, and digital elevation models
were used as the explanatory variables. The response data
were generally derived from 1 m, panchromatic, digital
orthophoto quarter-quadrangles (DOQQ’s). Initially one to two
DOQQ’s (approximately 6 to 8 km %) were selected for each
Landsat scene. As the database development progressed,
three to four DOQQ’s between 1 and 4 km ? were used (Homer
et al. 2007). The bOQQ’s were typically selected in a purpo-
sive fashion to have coverage across the Landsat scene
including scene edges. To develop the response data, each
DOQQ was classified as “tree cover” or “no tree cover” at the
1 m pixel level using a classification tree algorithm and then
resampled to 30 m to calculate percent tree canopy cover.
Multi-season top-of-atmosphere Landsat-5 and -7 data and
indices (e.g., tasseled cap), along with digital elevation
models and derivates (e.g., slope), and other ancillary data
(e.g., 1992 NLCD land-cover) were used as the explanatory
variables. Regression trees, implemented through Cubist ©,
were then developed to model the empirical relationship
between the response and explanatory variables and create
the map products. The final step was to develop and apply
a “liberal” forest mask to avoid commission errors in, for
example, agricultural areas (Huang et al. 2001).

Accuracy assessments of the 2001 NLCD percent tree
canopy cover dataset were provided by Homer et al. (2004),
Greenfield et al. (2009), and Nowak and Greenfield (2010).
Homer et al. (2004) provide model fit statistics for three
mapping zones (Homer and Gallant, 2001) in the eastern
(Zone 60), north central (Zone 41), and interior west (Zone
16) United States. Based on cross-validation, the correlation
coefficient between observed and predicted percent canopy
cover was 0.88, 0.78, and 0.93 in zones 16, 41, and 60,
respectively. The mean absolute error was 9.9 percent,

14.1 percent, and 8.4 percent in zones 16, 41, and 60,
respectively. Greenfield et al. (2009) used imagery available
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through Google Earth™ to estimate percent tree canopy
cover for randomly selected counties and designated places
across the United States. These estimates were made by
manually interpreting 200 photo-points as tree cover or non-
tree cover within each county or place. The percent tree
cover from the 200 photo points was then compared to the
average percent tree canopy cover from NLCD 2001. Green-
field et al. (2009) found that the average percent tree canopy
cover estimate for the selected areas was consistently higher
based on photo interpretation as compared to the NLCD
canopy cover estimates. They reported a range of differences
from less than 1 percent to 25 percent. Nowak and Green-
field (2010) employed a similar photo interpretation-based
approach but sampled all mapping zones. They found that
canopy cover was underestimated in 64 of 65 mapping
zones and that the mean underestimation was 9.7 percent
nationally. Despite the challenges associated with creating a
national percent tree canopy cover map, there is substantial
interest on the part of the MRLC and the US Forest Service to
update these data for the 2011 NLCD.

Because of the high costs of broad-scale inventory,
monitoring, and mapping programs, it makes sense to
leverage existing programs and infrastructures across
agencies, to develop products such as the NLCD percent tree
canopy cover map. The USDA Forest Service Forest Inventory
and Analysis (FIA) program provides both in situ and
remotely sensed data on forest and land conditions across
the United States using a probability-based sample that
covers all lands. As Homer et al. (2004) described, the FIA
data can be used as training data for broad-scale mapping
efforts. Examples of such efforts are described by Blackard
et al. (2008) and Ruefenacht et al. (2008) for creating biomass
maps and forest-type maps respectively. The FIA program is

currently implementing measurement protocols to quantify
percent tree canopy cover on all lands using the same equal
probability sampling design. Clearly this provides a syner-
gistic opportunity for the MRLC and the US Forest Service to
develop the 2011 NLCD percent tree canopy cover map.

The objectives of this study were to (a) investigate the
use of FIA percent tree canopy cover data for constructing
empirical models to estimate percent tree canopy cover at
unmeasured locations, (b) examine the impacts of sampling
intensity and Landsat scene normalization on the develop-
ment of percent tree canopy cover models, (c) compare
model performance between random forest models and beta
regression models, and (d) identify design specifications for
a prototype study where percent tree canopy cover will be
modeled over much broader geographic regions.

Methods

Study Areas

Five pilot areas across the United States were selected for
this study (Plate 1). They were located in Georgia ( GA),
Kansas (ks), Michigan (M), Oregon (OR), and Utah (UT). Each
of the study areas were the size of approximately one
Landsat scene, but were positioned to span multiple path
rows in order to examine the impact of seam lines across
multiple scenes. Additionally, each pilot area was selected to
cross local ecological gradients. For example, the GA study
area ranged from the piedmont region in the south, through
the Atlanta metropolitan area, to the heavily forested
Appalachian Mountains in the north. The OR study area was
slightly larger than the other study areas so that it would
intersect with some existing lidar datasets for future research.

Plate 1. (a) Location of pilot study areas and proposed prototype study areas, (b) Equal probability grid
identifying the approximate locations of the primary sampling units, and (c) Example of a secondary
sampling unit consisting of 105 points.
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Sample Design and Photo Interpretation

The FIA sample design was adopted for this study (Bechtold
and Patterson, 2005). FIA uses a quasi-systematic sample
based on White et al. (1992) where the nominal sampling
intensity was approximately one sample location per 2,400
ha across all land covers and types. This design is assumed
to produce a random equal probability sample (McRoberts et
al., 2006) and is implemented in a panel design where each
of the five panels in GA, M1, and KS contain 20 percent of the
sample locations, and each of the ten panels in UT and OR
contain 10 percent of the sample locations. For the purposes
of this study, the base FiA sample was intensified to 4X
intensity (one plot per 600 ha) using the procedures
described by White et al. (1992) (Plate 1). The sample was
intensified so that we could examine the impact of sampling
intensity (from 20 percent to 400 percent of the base
sampling intensity) on model development. We then used a
simple dot grid approach to estimate canopy cover for each
sample location. Manual photo-interpretation of dot grids
are a standard technique for determining area (Slama et al.
1980) and are particularly well suited for estimating canopy
area of a given location of known size (Nowak et al., 1996).
For our purposes, we used a 105 point triangular-grid that
filled a 90 m by 90 m (0.81 ha) area surrounding the sample
location and then registered the 0.81 ha square to the NLCD
2001 dataset (Plate 1). Manual photo-interpretation was used
to classify each of the 105 points, per sample location, as
either “tree canopy” or “no tree canopy.” In most cases the
photo interpreters had detailed ground-based knowledge of
the area they were photo interpreting. The overall design
was considered a two-stage sampling design where the 0.81
ha area was the primary sampling unit ( Psu), and each of
the 105 points within PSUs were the secondary sampling
units. The design based estimators of proportion canopy
cover in each PSU, mean proportion canopy cover in each
study area, and the standard error of the estimate were
obtained following Cochran (1977).

Imagery, Vegetation Indices, and Ancillary Data

We used imagery provided by the National Agriculture
Imagery Program (NAIP) (USDA 2009) to develop the response
data (percent tree canopy cover). Landsat-5 data, digital
elevation data, and derivatives were used to develop the
explanatory data. The NAIP data were 1 m resolution and
available as either natural color ( XS, M1, UT study areas), or
natural color and color-infrared ( GA, OR study areas). All NAIP
imagery was collected during the growing season in 2009, and
therefore was leaf-on imagery. The six reflective bands from
Landsat-5 were used. The Landsat data were also leaf-on and
from either 2009 or 2008, depending on cloud cover. Initially,
the Landsat data were converted to top-of-atmosphere
reflectance and then to surface reflectance using a simple dark
object subtraction. These data were considered calibrated, but
“non-normalized” because no additional adjustments were
made to compensate for bidirectional reflectance distribution
function (BRDF) effects in the imagery. The Landsat data were
also “normalized” using Model II regression techniques
described in Beaty et al. (2010). This normalization technique
used the overlap areas among Landsat scenes to radiometri-
cally match each scene in a mosaic to each other. This
calibration was performed on each of the reflectance bands to
minimize differences in reflectance values due to BRDF effects.
From both the normalized and non-normalized Landsat data,
the normalized difference vegetation index ( NDvI) and tasseled
cap values were calculated. The Elevation Derivatives for
National Applications data were used for elevation, slope,
cosine of aspect, and compound topographic index and were
also 30 m resolution. Other ancillary data included the 2001
NLCD land cover and percent tree canopy cover.
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Percent Tree Canopy Cover Models and Comparisons

For modeling purposes, recall that the percent tree canopy
cover was estimated for each 0.81 ha PSU, and note that the
explanatory variables (Landsat bands, vegetation indices,
elevation and derivatives, and 2001 NLCD products) were 30
m (0.09 ha) resolution. The response variable (percent tree
canopy cover) was taken directly from the estimate for each
pSU. The explanatory variables for modeling were developed
by calculating the mean and standard deviation of each
variable for each PSu. Because the PSU was registered to the
NLCD base, the means and standard deviations for each
variable were simply calculated using 3 X 3 pixel window
focal statistics.

Numerous modeling approaches are available to develop
empirical models of percent tree canopy cover. Here we
used both the random forests algorithm developed by
Breiman (2001) and beta regression (Ferrari and Cribari-
Neto, 2004). Generally speaking, the random forest modeling
approach is a non-parametric technique in that there are no
distributional assumptions. The term random forest may be
confusing particularly given the context of this research.
“Random” in this case refers to random bootstrap resam-
pling of the data, and the term “forest” refers an ensemble of
regression trees (i.e., forest). The beta-regression approach is
a parametric technique that is analogous to multiple regres-
sion except that rather than assuming the residuals are
normally distributed the implementation of this techniques
assumes that the residuals are beta-distributed which is a
more tenable assumption for modeling proportions. Random
forests is relatively resistant to multicollinearity whereas
beta-regression is not. However, prediction error is more
directly estimated using beta-regression because it is a
parametric approach whereas additional bootstrap tech-
niques must be used to estimate prediction error from
random forest models. More information about each tech-
nique follows.

Random forests is an ensemble method that uses
bootstrap sampling to develop multiple models to improve
prediction. In the following example adopted from Liaw and
Wiener (2002), we assume that we have a dataset with 100
observations, and we set the forest size a priori to 500
regression trees. To construct the ensemble we draw 500
bootstrap samples. The bootstrap samples are selected with
replacement and each bootstrap sample has on average 63
observations (63 percent of observations). For each bootstrap
sample, a regression tree is developed, but instead of
determining the best split across all explanatory variables, a
predetermined number of explanatory variables (say five) are
randomly selected and the best split among those variables
is selected. Predicted values are then obtained by averaging
the predictions from each of the 500 individual trees.
Typically, model fit statistics are then developed from the
out-of-bag (00B) data. Recall that each bootstrap sample
contains about 63 percent of the observations. The remain-
ing 37 percent of the observations are the OOB data for a
given tree. At each bootstrap iteration, estimates for the 00B
data are made based on models developed from the boot-
strap sample. The 00B predictions are then aggregated across
all samples to estimate mean square error ( MSE) and pseudo
R2 For modeling we used the R version 2.12 (R Develop-
ment Core Team, 2010) random forest library (Liaw and
Wiener, 2002) to construct empirical models of percent tree
canopy cover.

Beta regression was also used to develop empirical
models of percent tree canopy cover. This approach was
used by Korhonen et al. (2007) to develop models of canopy
cover in Finland. Beta regression is an extension of general-
ized linear models and is specifically well suited for
estimating parameters for empirical models of rates and
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proportions. This technique assumes the errors are beta
distributed (rather than normally distributed, as assumed
under ordinary least squares solutions) and a link function
is used to transform the estimated values into the appropri-
ate range. Beta regression is valid for continuous response
variables in the standard unit interval [0,1]. Because the
response typically also included numerous observations of 0
and 1, we transformed percent tree canopy cover for each
observation as recommended by Smithson and Verkuilen
(2006): ((cci(n—1) + 0.5)/n) where n was the number of
observations. To construct beta regression models, the full
set of potential explanatory variables was reduced by
removing highly correlated variables (r >0.7) by study area.
This was done to minimize multicollinearity. Models were
constructed manually based on the 4X sample for each
study area, and the parameters were estimated individually
for each sampling intensity (0.2X — 4X). The final models
only included explanatory variables that were significant at
a = 0.10. For modeling we used the R version 2.12 (R
Development Core Team, 2010) betareg library (Cribari-Neto
and Zeileis, 2010) to construct empirical models of percent
tree canopy cover.

For each study area 32 empirical models were devel-
oped. A separate model was developed for each modeling
approach (beta regression, random forest), for each sampling
intensity (0.2X, 0.4X, 0.6X, 0.8X, 1X, 2X, 3X, and 4X) using
the normalized and non-normalized Landsat data as part of
the explanatory data. These sampling intensities were
selected because, from an FIA programmatic viewpoint, they
are easily implemented as part of FIA standard data collec-
tion protocols. We examined and compared model perform-
ance based on recommendations provided by Duane et al.
(2010). Model accuracy was examined based on pseudo R 2

n P
E-: (cc; — ccy)?

R=1- =1L — (1)
> i-q(ce; —ce)?

where R? = pseudo R? (percent variance explained), cc; =
observed percent canopy cover of the i observation, ¢ =
predicted percent canopy cover of the i observation, and
cc = mean percent canopy cover across n observations.
Equation 1 is essentially one minus the MSE divided by
the variance of cc where the variance is calculated with n
in the denominator rather than n-1. In addition to pseudo
R?, root mean square error ( RMSE) was also calculated, but it
should be noted that in this case, RMSE was inversely
proportional to pseudo R? because the numerator in equa-
tion 1 was the sum squared prediction error and the
denominator was fixed for each study area. To make
comparisons across the different sampling intensities and
different modeling approaches, the pseudo R ? and RMSE
were calculated based on all observations (i.e., the 4X
sample). For example, suppose a random forest model was
constructed using the 1X sampling intensity (approx 1,000
observations). In this case, about 3,000 observations were
not used to develop the model. Out-of-bag predictions were
retained for the 1,000 observations from the 1X sample, and
model predictions were also made for the remaining 3,000
observations. Equation 1 was then used to calculate the
pseudo R? based on n = 4,000 observations. The ability of
each model to replicate the sample distribution was exam-
ined using cumulative distribution functions (CDF) con-
structed using 1 percent increments from 0 percent to 100
percent. Model bias was assessed by examining the slope
and intercept of the observed versus predicted linear
regression line for each model by study area and sampling
intensity (0.2X to 3X) for the normalized and non-normal-
ized datasets (Pineiro et al. 2008). In this case, we used the
remaining sample (approximately 1,000 observations) as a
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hold-out data set for fitting the linear regression model and
estimating the parameters. To examine map bias, percent
tree canopy cover maps were produced from each model for
each study area and sampling intensity for the normalized
and non-normalized datasets. Recall that the models were
developed based on focal means (and standard deviations)
in the 3 X 3 window around each sample location. For
creating the maps, the original 30 m pixel values were used
rather than the focal mean of each explanatory variable.
However, the focal standard deviation explanatory variables
were still based on a 3 X 3 window. The mean map-based
percent tree canopy cover estimate was then compared to
the design-based estimate of the mean from the 4X sample,
which has the smallest sampling error, for the following
classes: all land covers, urban land cover, and forest land
cover. Additionally, cDFs for each map were constructed
and compared to the observed CDF.

Having determined the appropriate sample size for each
study area (0.2X to 4X), the best performing modeling
approach (beta regression or random forests), and whether
normalized Landsat data were required, we then examined
how robust the solution was across broader geographic
areas. To accomplish this we combined the modeling data
for the eastern study areas ( GA, KS, and MiI) and developed
one single empirical model; likewise with the western study
areas (OR and UT). We also constructed one single US model
across all study areas. For example, suppose that the beta
regression model outperformed the random forest model for
each of the two western study areas and that the pseudo R
etc. stabilized at the 1X sampling intensity (approx 1,000
observations). Also assume that the models required the
normalized Landsat data. Based on this example we would
fit a beta regression model for the eastern study areas where
one-half of the observations (500) were selected from each
study area. The “western model” would then be assessed
based on pseudo R?, CDF, and slope and intercept of the
observed verses predicted regression line. However, while
the model would be fit across several studies areas, the
model performance would be assessed for each study area
based on the entire 4X sample.

2

Results

Based on the photo interpretation of the 4X sample, the
average percent canopy cover (across all 2001 NLCD land
cover classes) ranged from 66 percent in the GA study area
to 12.8 percent in the KS study area (Table 1). The standard
error of these estimates ranged from 0.69 percent in the M1
study area to 0.40 percent in the KS study area. When
considering the forest land cover class (as defined by NLCD
2001), the M1 study area had the highest average percent
canopy in the forest class (90.5). Conversely, the UT study
area had the lowest average percent canopy cover in the
forest class (52 percent). The same pattern was observed
when considering average percent canopy cover in urban
land covers where again MI had the highest (53.5 percent),
and UT had the lowest (9.1 percent). Typically, the standard
errors of the estimates were highest when considering urban
land cover classes (Table 1). For example, the standard error
for average canopy cover in urban classes in MI was 2.69
percent which means that the 95 percent confidence interval
was 48.1 percent to 58.8 percent.

Overall, the empirical percent tree canopy cover models
had pseudo R? ranging from 0.53 to 0.90 and the best model
fits were observed in the M1 study area (Figure 1) based on
the 4X sample. The random forest models consistently
outperformed the beta regression models. The degree to
which the random forest model outperformed the beta
regression model was related to how good the model was.
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TaBLE 1. MEAN PERCENT TREE CANOPY COVER (CT) For example, the smallest difference between the two
AND THE STANDARD ERROR OF THE MEAN (S.E.(CT)) FOR modeling approaches was observed in the MI study area
EacH STupy AREA FOR NLCD 2001 F OREST LAND where the pseudo R? were on average 0.89 and 0.87 for the
COVE?:' URB’EN LAND COVER, AND AC:OSSS ALL Lano random forest model and beta regression model respectively.
OVER LILASSES BASED ONTHE AX SAMPLE Conversely, the UT study had the largest difference where,
on average, the random forest and beta regression models
had pseudo R? of 0.68 and 0.59, respectively. Regardless of

Sample-based

Study Area e s.e @) Iqodeling. te(.;}.lnique, 'the use of norma}ized Landsat imagery
did not significantly improve model fit based on the pseudo
GA R? (Figure 1). The largest gain was observed in the OR study
Forest 84.1 0.45 area where the pseudo R ? increased from about 0.80 to 0.81
Urban 41.1 0.94 when the normalized data were used. Pseudo R ? was
s All 66.0 0.53 relatively stable across sampling intensities, however the
K Forest 71.0 157 stability was more pronounced for the beta regression
Urban 14.5 128 modeling approach as compared to the random forest
All 12.8 0.40 models. The kS study areas was the exception where there
Ml was a relatively large increase (0.06) in pseudo R ? between
Forest 90.5 0.59 the 0.2X and 0.4X sampling intensities (Figure 1).
Urban 53.5 2.62 As expected, RMSE behaved inversely proportional to
All 40.5 0.69 pseudo-R?, and for this reason RMSE results are presented in
OR brevity. Using the normalized data did not significantly
Fo}r)est 66.5 0.60 decrease RMSE for either modeling approach across study
Ur Isﬁ i?'g Sgi areas therefore only the results from the non-normalized
UT ’ ‘ data are presented in Figure 2. Across all study areas, as
Forest 52.0 0.68 sampling intensity increasgd RMSE decreased. However,
Urban 9.1 1.68 these decreases were marginal, generally 1 percent to 3
All 27.4 0.47 percent (Figure 2). Also, the random forest models had

lower RMSE than the beta regression models (generally 1

ut
09 =

0.8 o

0.7 r
.= Beta Regression: non-normal ———

Beta Regression: normal ===
0.5 -1 r Random Forest: non-normal ———
e —— Random Forest: normal gl

Mi OR
0.9 L

0.8 -

RZ

0.7

0.6 - =

0.9 -

0.8 4

t

0.7 - r

0.6 -

02 0.4 06 0.8 1 2 3 4 02 0.4 06 0.8 1 2 3 4
Sampling intensity

Figure 1. Pseudo R? for each study area by sampling intensity and model type
using the normalized and non-normalized Landsat imagery.
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Figure 2. Root Mean Square Error ( RMSE) for each study area by sampling
intensity and model type using the non-normalized Landsat imagery.

percent to 3 percent). Models with the highest RMSE were
observed in the UT study area, and models with the lowest
RMSE were observed in the KS study areas (Figure 2).

We examined the slope and intercept of the observed
versus predicted regression line for each model (0.2X to
3X); the desired values of the slope and intercept were
one and zero, respectively. There was little difference
between models developed using the normalized data as
compared models developed using the non-normalized
data, so Figures 4 and 5 display only results based on the
non-normalized data. When considering the beta regres-
sion model, slopes were typically greater than one and
intercepts were less than zero (Figures 4 and 5). This
pattern was consistent across sampling intensities.
Although in the ks study area, slopes and intercepts of
the beta regression models did move towards one and
zero, respectively, as sample intensity increased. Intercept
values less than zero indicated a tendency to over-predict
canopy cover at the low end of the distribution. Slope
values greater than one can indicate under-prediction at
the upper end of the distribution but this was dependent
upon the intercept. When considering the random forest
models, slopes were generally closer to one when com-
pared to the beta regression models. In most of the study
areas the slope approached one at sampling intensities
greater than 0.6X (Figure 3). The KS study area was the
exception where the slope stabilized around a 2X sam-
pling intensity. With the exception of the GA study area,
the intercepts of observed versus predicted regression
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lines for random forest models were approximately zero at
sampling intensities at least 0.8X (Figure 4). In the GaA
study area, the intercept of the observed versus predicted
regression line stabilized at approximately -2 at the 0.6X
sampling intensity.

cDFs were used to examine whether each model was
able to reproduce the distribution of percent tree canopy
cover observed in the sample data (Figure 5). There was
no appreciable difference between results from the same
modeling approach when comparing normalized and
non-normalized data therefore only results based on the
non-normalized data are presented in Figure 5. In general,
both beta regression models and random forest models
under-estimated the proportion of observations in the tails
of the distribution but the magnitude of the underestima-
tion varied by study area and modeling approach. The
beta regression model using the non-normalized data for
the MI study area provides an example where approxi-
mately 40 percent of the observations had 0 percent
canopy, but based on the beta regression model about 1
percent of the predictions had 0 percent canopy cover. In
the upper tail of the distribution, the observed data had
about 75 percent of the observations with less than 100
percent canopy cover (i.e., 25 percent with 100 percent
canopy cover). However, the beta regression model using
the non-normalized data had 95 percent of the observa-
tions with less than 100 percent canopy cover (i.e., 5
percent with 100 percent canopy cover). For the MI study
area based on the random forest model, the results
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Figure 3. Slope of the observed versus predicted regression line for each study
area by sampling intensity and model type using the non-normalized Landsat

02 04

improved. Approximately 35 percent of the predicted
values were 0 percent canopy cover (as compared to 40
percent of the observed values) and about 13 percent of
the predicted values were 100 percent canopy (as com-
pared to 25 percent of the observed values). In general,
the random forest models performed better when compar-
ing observed and predicted CDFs. There was also no
appreciable difference in CDFs between models developed
with different sampling intensities. When examining CDFs,
the clear pattern was that the random forest model
performed better than the beta regression models and that
sampling intensity and data normalization did not influ-
ence the model behavior with respect to CDF.

We examined the map-based cDF for each modeling
approach, study area, sampling intensity, and data normal-
ization option. These results were the same as the model-
based results (i.e., Figure 5 was the same regardless of
using the model output for each observation or the map
output). This indicated that the sample did capture the
variability in the explanatory maps. While there was
evidence of overestimation in the lower tail of the distribu-
tion and underestimation at the upper tail of the distribu-
tion, the map-based means (across all 2001 NLcCD land cover
classes) were within two standard errors of the sample-
based means (Figure 6) for both modeling approaches and
using either the normalized or non-normalized data.
Results are only shown for the 0.6X sampling intensity and
non-normalized data because sampling intensity and data
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normalization displayed little influence. The results were
more variable when considering the forest land cover class
based on the beta regression models, where map-based
estimates were more than two standard errors away from
the sample-based estimate for the kS and M1 study areas.
The random forest models performed slightly better for the
forest land cover class, where only the map-based estimate
for the MI study area was more than two standard errors
away from the sample mean (Figure 6). With respect to the
urban land cover class, the beta regression model per-
formed slightly better than the random forest model because
three of the five study areas had map-based means that fell
within two standard errors of the sample mean whereas the
random forest model only had two (Figure 6). The largest
difference was observed in the M1 study area where the
sample based estimate was 53.5 percent (standard error
2.62 percent) and the map-based estimates were 43.4
percent and 39.2 percent based on the beta regression
model and random forest model, respectively, using the
non-normalized data.

In summary, using the normalized data did not signifi-
cantly improve models and overall the random forest
models tended to outperform the beta regression models.
The sampling intensity influenced the slope and intercept
of the observed versus predicted regression lines and to a
lesser extent pseudo-R? and RMSE. For the random forest
models, these impacts tended to stabilize at sampling
intensities of 0.6X for all study areas except KS where the
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slope stabilized at 2X. The 0.6X and 2X sampling intensi-
ties equated to approximately 600 and 2,000 observations,
respectively. The sampling intensity had little influence on
CDFs or on the differences between map-based and sample-
based estimates of mean percent tree canopy cover. These
summary findings narrowed the options for the final stage
of the analysis which was to combine data across study
areas to construct models. To accomplish this we randomly
drew 1,000 samples for the eastern US study areas (333
samples from each GA, kS, and M1) and 1,000 samples from
the western study areas (500 samples from each OR and UT).
We then constructed two regional random forest models
using the non-normalized data. Likewise, we drew 1,000
samples across all study areas (200 sample from each) to
construct a single US random forest model using the non-
normalized data. Overall, the results from the regional
models were comparable to those results observed based on
individual models constructed for each pilot area for the

1X study (Table 2). For example, the pseudo R * values were
typically the same regardless of whether the 1X pilot
models or the regional models were used. The largest
difference was observed in the GA study area where the
pseudo R? based on the regional and individual pilot area
(1X sample) were 0.80 and 0.83, respectively. When consid-
ering the US model, pseudo R ? values were slightly less
than either the regional models or the pilot area models
(Table2). The magnitudes of these differences in pseudo R 2
were typically —0.02. The cDFs based on the regional and
US models were comparable to those observed based on
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individual pilot area models (Figure 7). These results
suggest that suitable models can be constructed over
relatively broad and diverse geographic areas based on
relatively few samples.

Discussion

Our approach to modeling percent tree canopy cover had
some similarities and some differences to that described
by Homer et al. (2004) for the NLCD 2001 product. We
developed our response data using a probabilistic design,
where the approach used for the 2001 NLCD percent tree
canopy cover models can best be described as purposive.
Also, our response data were developed from manual
photo-interpretation of natural and false color images,
whereas an automated approach using panchromatic
images was used for the 2001 effort. The response data for
the 2001 NLCD production and this pilot study were both
developed from 1m resolution imagery. Even though the
sampling approaches differed, the overall sampling
intensity (on an areal basis) was similar between the 2001
effort and the 1X sample used in our research. We used
similar predictor variables as were used in the past;
however we only used leaf-on Landsat imagery rather than
multi-season imagery used for the 2001 effort. We also
used the 2001 percent tree canopy cover estimates as an
explanatory variable. The use of 2001 dataset did not
improve overall model fits but did help with areas of no
canopy cover. The empirical models we developed had
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Figure 5. Cumulative distribution function of the observed
canopy cover and predicted canopy cover for each
sampling intensity by study area and model type using

the non-normalized Landsat data.

similar or in some cases improved fit statistics to those
reported by Homer et al. (2004). However, a true compari-
son of model fit between this pilot effort and the 2001
effort could not be made because of the purposive sam-
pling approach used in the 2001 effort (see Duane et al.,
2010 for example).

Greenfield et al. (2009), and Nowak and Greenfield
(2010) provided accuracy assessments of the 2001 NLCD
percent tree canopy cover product and, as described earlier,
they found that map-based estimates were consistently lower
than sample-based estimates from photo interpretation. Our
results indicated that sample-based and map-based estimates
were within sampling error when all land cover classes were
considered. For all study area estimates except MI, map and
sample-based estimates were comparable for the forest land
cover class. The MI study area also exhibited differences
between map-based and sample-based estimates in the urban
land cover class. Part of the issue with the Mr study areas
was the distribution of observed canopy cover. Over 30
percent of the MI study area was water and the northern
portion of the study area was heavily forested (typically
approaching 100 percent canopy cover). These “heavy-
tailed” distributions of the response data were difficult to
model as indicated particularly in the MI and kS study areas
(Figure 5). Because the CDFs were virtually the same when
the empirical models were applied to the sample data and
the map data, this indicated that the sample covered the
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variability in the maps of explanatory variables. However,
the choice of explanatory variables did not explain all the
variation in the response. This concept was key, because the
overestimation of canopy cover in the low-end of the
distribution and the underestimation of canopy cover in the
high-end of the distribution is characteristic of most para-
metric modeling approaches because they will tend to
estimate toward the central tendency (i.e., the mean) as the
percent variance explained by the model decreases. In the
case of the random forest models, recall that the final
estimates were the average estimate over all trees in the
forest. This type of bootstrap estimate was in fact a smooth-
ing algorithm which dampened the thickness of the tails.
With future canopy-cover modeling projects, we recommend
that canopy cover samples only be drawn for land, and that
water, particularly large water bodies, be excluded. This
would partially alleviate some of the issues observed in the
Ml study area.

Cost is a primary concern when developing national-
scale geospatial products. With respect to percent tree
canopy cover, the major costs are associated with the
sampling intensity of the response data and the normaliza-
tion of the Landsat imagery. Our results suggest that about
1,000 samples were sufficient to develop empirical models
of percent tree canopy cover across broad and diverse
geographic areas. In fact, little gain in model performance
was observed by intensifying the base FIA sample. In a
separate simulation analysis presented by Tipton et al. (in
press), similar results were observed regarding sampling
intensity and Moisen et al. (in press) observed that study
areas could be combined with minimal influence on model
fit statistics. The reason for observing only modest gains in
model performance at increased sample size is because
model performance is only partially related to the sample
size. The important question, when considering model
development, is whether the variability in the explanatory
variables accounts for the variability in the response vari-
able. When there are strong relationships between the
response and explanatory variables, fewer samples are
required for model development. Alternatively, when the
variability in the explanatory variables does not explain all
the variability in the response, increasing the sample size
again may have little influence on the model fit. Regardless
of which scenario is the case for this study, the small gains
in model performance were not worth the additional cost of
collecting those data.

Normalizing the Landsat scenes within each study area
was also a high cost component of this research. The initial
hypothesis was that different atmospheric conditions
between and among path / rows in each study area would
create explanatory variables that differed in scale in different
parts of the study areas and therefore model performance
would decline. The normalization process actually had little
influence on model performance. The likely reason for this
behavior was that the minor changes in scale in the
reflectance values were small in relation to the overall
variability of the reflectance values across the study area. On
the surface, these minor gains in model performance do not
warrant the additional cost of the normalization process.
However, we must also consider the visual appearance of
the final geospatial product. Visually perceptible differences
between reflectance values of adjacent scenes (i.e., seam
lines), while not statistically significant, resulted in notice-
able artifacts in the final tree canopy cover product. The
Landsat data for the UT study area had the most pronounced
boundary. When a modeled map of percent tree canopy
cover was created using the non-normalized data, the
boundary was clearly evident (Plate 2). However, the same
boundary was not observed when using the normalized data
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(Plate 2). In reality, each map has about the same accuracy
but as a practical matter geospatial data are also judged on
appearance and overlay with higher resolution imagery and
the emergence of arbitrary seam lines causes general concern
among potential users.

As with all modeling applications, estimates of percent
tree canopy cover have error. However, unlike a regression
scenario outside the spatial domain, modeled maps pro-
duced at 30 m can be visually inspected by overlaying finer
resolution imagery. When this is done, one inevitably finds
locations where low values of modeled percent canopy
cover where the value should actually be zero (e.g., agricul-
tural fields, shore lines). In the previous national canopy
cover mapping effort Homer et al. (2004) created a liberal
forest mask to force estimates of canopy cover to zero in
areas that clearly had no trees. This approach, while straight
forward, introduces additional error into the final map
because both the mask and the original percent canopy
cover map have error, and it is difficult to know how these
errors propagate when the two datasets are combined. This
masking procedure may also have contributed to the under-
estimation of tree canopy cover reported by Nowak and
Greenfield (2010). A seemingly more appropriate approach
is to provide both a map of the percent canopy cover
estimates and the standard errors for each estimate as a
separate dataset or map layer. This poses some technical
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challenges because the development of the standard error
estimator for random forests is just beginning to be exam-
ined (Sexton and Laake, 2009). Freeman et al. (2010)
provide an alternative that may be applicable for producing
estimates of uncertainty around percent canopy cover
estimates from random forests models. Other ensemble
modeling techniques, such as stochastic gradient boosting,
may also allow greater flexibility that could reduce the need
for masking while maintaining adequate model fits. One area
of further research is to develop alternatives to masking.
This may be accomplished by producing uncertainty
estimates or using alternative modeling techniques.

In this pilot study we used 1 m resolution NAIP imagery
to develop our response variable. This has several implica-
tions. Canopy cover estimates are scale dependent. In other
words an estimate of cover depends on the ability to resolve
a pattern that changes as the resolution changes (Coulston et
al. 2010, Jennings et al. 1999). That means that our esti-
mates of cover will likely differ from estimates made in situ
or from 0.5 m or 5 m imagery, for example (Frescino and
Moisen, In press). These differences can arise for several
reasons. One reason is that at finer scales the ability to
identify gaps in the canopy (and distinguish gaps from
shadows) will generally improve. Another reason is that
with finer scale imagery the photo-interpreters’ ability to
distinguish woody plants that can achieve tree-form and
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TABLE 2. PSEUDO R? AND THE SLOPE AND INTERCEPT OF
THE OBSERVED VERSUS PREDICTED REGRESSION LINE FOR
EACH STUDY AREA BASED ON THE REGIONAL AND US

MoDEL
Model extent
Study Area Regional us
GA
R* 0.80 0.78
intercept —4.73 2.68
slope 1.06 0.97
KS
R* 0.83 0.81
intercept —0.99 0.26
slope 0.98 0.96
Ml
R* 0.89 0.87
intercept 0.43 2.54
slope 1.04 1.01
OR
R? 0.78 0.75
intercept —0.68 —0.52
slope 1.01 0.99
uT
R* 0.69 0.65
intercept 0.50 2.44
slope 1.02 1.05

those that cannot achieve tree-form will also increase.
Another potential issue arose because the NAIP imagery was
not available in stereo. Canopy cover is defined as the
vertical projection of the crown, and this can only be
assessed at nadir, although Avery and Burkhart (1994) note
that angles less than 3 degrees may be considered vertical
for all practical purposes. Further research is needed to
examine the influence of off-nadir photo interpretation on
estimates of percent canopy cover, particularly in steep
terrain. Regardless of the potential challenges of using NAIP
imagery for developing canopy cover model, NAIP imagery
provides a consistent set of information across the cotermi-
nous United States. While other data may provide better
estimates of tree canopy cover (e.g., lidar), it is currently
cost-prohibitive to acquire these data for national-scale
products.

Conclusions and Prototype Design

The approach for modeling percent tree canopy cover
presented here yielded encouraging results. First, the
sampling approach for developing the response data was
appropriate for model development at relatively low
sampling intensities. Second, the random forest modeling
technique outperformed the beta regression approach,
which will be beneficial in a production environment
because the random forest modeling approach does not
require the practitioner to test individual explanatory
variables for significance as is common with traditional
regression approaches. From a statistical perspective,
model fits using the normalized Landsat imagery were
equivalent to model fits using the non-normalized
imagery. However, from an end-user perspective, the
normalization process minimized the emergence of seam
lines. Based on the findings presented here, the US Forest
Service plans to move forward with a broader-scale
prototype study. The prototype study covers five MRLC
mapping zones (Homer and Gallant, 2001): three in the
southern US and two in the western US (Plate1). The
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tive distribution functions for each study are
based on the regional and US random
forest model.

southern prototype area generally falls in the piedmont
physiographic zone and the western prototype area
generally falls in the Colorado plateaus physiographic
zone. The prototype areas have substantial overlap with
the GA and UT pilot study areas presented here. This will
allow for a more direct comparison between pilot effort
results and prototype results. Each prototype area will be
sampled at the 0.2X sampling intensity described in this
paper. This sampling intensity yields approximately 1,550
and 1,800 observations in the western and southern
prototype areas, respectively. The results from the proto-
type study will set the specifications for the final produc-
tion environment and the timely development of the 2011
NLCD percent tree canopy cover layer.
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