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Abstract Wildland fire in the South commands consid-

erable attention, given the expanding wildland urban

interface (WUI) across the region. Much of this growth is

propelled by higher income retirees and others desiring

natural amenity residential settings. However, population

growth in the WUI increases the likelihood of wildfire fire

ignition caused by people, as humans account for 93% of

all wildfires fires in the South. Coexisting with newly

arrived, affluent WUI populations are working class, poor

or otherwise socially vulnerable populations. The latter

groups typically experience greater losses from environ-

mental disasters such as wildfire because lower income

residents are less likely to have established mitigation

programs in place to help absorb loss. We use geographi-

cally weighted regression to examine spatial variation in

the association between social vulnerability (SOVUL) and

wildfire risk. In doing so, we identify ‘‘hot spots’’ or geo-

graphical clusters where SOVUL varies positively with

wildfire risk across six Southern states—Alabama, Arkan-

sas, Florida, Georgia, Mississippi, and South Carolina.

These clusters may or may not be located in the WUI.

These hot spots are most prevalent in South Carolina and

Florida. Identification of these population clusters can aid

wildfire managers in deciding which communities to pri-

oritize for mitigation programming.
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Introduction

The South contained eight of the ten fastest growing

counties in the nation, in terms of percentage population

increase from 2006 to 2007 (U.S. Census Bureau 2009).

Moreover, greater than thirty million acres (12.15 mil-

lion ha) of forest land in the South are projected to be

converted to developed uses by 2040 (Wear 2002). The

urban expansion that has already occurred throughout

the region has created urban and suburban pockets in the

wildland urban interface (WUI) [defined as ‘‘the area

where houses meet or intermingle with undeveloped

wildland’’ (Radeloff and others 2005), p.799]. This

expansion heightens the contrast between rural, forested

lands and the urban environment. When such growth

occurs either in the short term or over longer time periods,

it can destabilize rural community social, cultural, and

environmental/ecological structures (Hurley and others

2008; Ghose 2004; Hurley and Walker 2004; Walker and

Fortmann 2003; Faulkenberry and others 2000).

Such disruption is seen clearly in controversies involv-

ing residential and other constructions in wildfire-prone

areas in the interface. Political ecologists charge that the

aesthetic preferences of higher income groups for remote

woodland living effectively elevate wildfire risks in rural

areas. Risks can increase for both those with higher
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incomes and for more marginal populations living in and

around the WUI (Collins 2008a; Collins and Bolin 2009;

Rodrigue 1993). Collins (2008a) stresses that the mobility

of middle and upper income groups creates disparities

between ‘‘rich’’ and poor/working class communities in

that state and market institutions such as local fire protec-

tion services and insurance act to buffer or insulate affluent

WUI migrants from potential losses from wildfire; whereas

lower socioe-conomic groups must absorb the increased

risks created by growth in the WUI, as the former have

fewer means to purchase or command the type of insulation

readily available to higher income groups.

Kline and others (2004) addressed this claim indirectly

by empirically testing the prevailing assumption that WUI

growth had the effect of decreasing timber harvesting and

forest management. Their examination of the effects of

population growth and urban expansion in western Oregon

WUI areas showed negative correlations between WUI

development and intensive forest management on private

lands. WUI development was associated with reduced

thinning, planting, and stocking, resulting in increased fuel

loadings. These factors may contribute to increased wild-

fire risk over time.

We hold the position, however, that more recent

migrants to the WUI do not necessarily place undue

hardships on place. Research has shown that rural

in-migrants can enhance a place’s social capital in that

migrants oftentimes bring political savvy and organiza-

tional skills to rural communities (Fortmann and Kusel

1990). We also do not want to imply that longer-term rural

residents, as a class, are ‘‘poor but virtuous’’ protectors of

place; or, alternatively, that they lack human agency to

effect social or political change, absence newcomers.

Rather than class differences, we maintain that irre-

sponsible development, irrespective of whether this is

fueled by wealthier newcomers or longtime residents, in

and around wildlands threatens the ecological stability of

those areas and burdens the larger society. Still, when this

occurs, upper income populations are better insulated than

poor people from financial burdens that may occur in the

event of natural disaster because of the various forms of

human and social capital possessed by the former strata

(Lynn and Gerlitz 2006).

We stress that particular attention, in terms of wildfire

mitigation and adaptation, should focus on places where

socially marginal populations intersect with higher wildfire

risk because these populations have the added vulnera-

bilities of lower capacity; yet poor and working class

communities may be less likely than upper income com-

munities to participate in wildfire protection programs.

Indeed, research in the U.S. Southwest shows that census

block groups (CBGs) comprised largely of lower income

Navajo and Apache communities are less likely than

majority white CBGs to participate in either state-spon-

sored grants to effect wildland fire mitigation, community

wildfire protection programs, or the Firewise Community

program (Ojerio 2008; Ojerio and others 2008a, b). Simi-

larly, a report by the University of Oregon’s Program for

Watershed and Community Health (2003), p. 5 states:

‘‘The current mechanism for decisions about where

[wildfire mitigation] grant funds go may favor communi-

ties with high value homes, better fire protection services,

and, generally higher capacity to implement projects that

reduce the risks to homes and communities. High capacity

communities have…experience managing grants and pro-

grams and past successes in implementing fire protection

services.’’ These communities are contrasted with impov-

erished and lower income areas.

Building on the aforementioned research, we examine

the influence of social vulnerability (SOVUL) on wildfire

risk in six states in the U.S. South—Alabama, Arkansas,

Florida, Georgia, Mississippi, and South Carolina. We

estimate ordinary least squares (OLS) regression and geo-

graphically weighted regression models (GWR), both of

which model wildfire risk as a function of a composite

variable, SOVUL.

In the OLS model, we expect an inverse association

between wildfire risk and SOVUL. As discussed, well-off

populations are spearheading development in amenity-rich,

wildlands in the South and elsewhere across the country

(Cordell and Macie 2002, p. 20; Collins 2008b; Kline and

others 2004; Ghose 2004; Johnson and others 2009;

Andreu and Hermansen-Báez 2008).

To contrast, the more nuanced GWR models allow for

an examination of possible spatial variation in the associ-

ation between wildfire risk and SOVUL. GWR models

would identify any clusters or sub-regions across the six-

state region where the relationship between wildfire risk

and SOVUL is positive. This identification is important, as

it provides information on those places within a state where

marginal increases in SOVUL result in increased fire risk.

Again, these areas would be considered the highest wildfire

risk class (hot spots) because biophysical risk of wildfire

occurrence is compounded by social marginalization.

Wildfire Risk and SOVUL

A number of recent studies suggest that poorer communi-

ties or those with lower socio-economic profiles such as

those prevalent in rural areas throughout the South would

face greater wildfire risks than middle class or affluent

communities (Ojerio 2008; Ojerio and others 2008a, b;

Lynn and Gerlitz 2006; Mercer and Prestemon 2005).

Some argue, even, against the notion of ‘‘natural disaster,’’

insisting that all disasters have social origins (Davis 1999;

Blaikie and others 2004). For instance, the oft-referenced
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consequences of Hurricanes Katrina in 2005 and of Gustav

and Ike in 2008 in the U.S. South; and mudslides and

wildfire devastation of homes in Southern California, are

cited as either examples of state abandonment of impov-

erished persons or human disregard for ecologically sen-

sitive topography and terrain. Both types of scenarios,

whether primarily affecting poor or affluent populations,

result from inadequate attention to the social roots under-

lying disaster.

Thus, wildfire occurrence is a type of disaster, which is a

function of not only exposure to biophysical hazards, i.e.,

wildfire prone woodlands, but importantly, is also affected

by the sensitivity of social groups to hazards. As Blaikie

and others (2004), p. 7 emphasize: ‘‘…to understand

[biophysical] disasters, we must not only know about the

types of hazards that might affect people, but also the

different levels of vulnerability (original emphasis) of

different groups of people. This vulnerability is determined

by social systems, not by natural forces.’’

We are aware of only two studies that have examined

individual indicators of social vulnerability and wildfire

risk in the South. In Florida, Butry and others (2002) found

wildfires to occur more often in areas with higher income,

older residents and a higher proportion of whites. These

places tended to include privately owned, fragmented for-

ests rather than intensively managed government holdings

such as National Forests. Mercer and Prestemon (2005)

also found an inverse relationship between poverty and

wildfire ignition but a positive association between poverty

and area of wildland burned and wildfire intensity, sug-

gesting that once wildfires are ignited, poorer communities

have fewer resources to extinguish fire. This latter finding

is consistent with our supposition that SOVUL amplifies

biophysical risk. It may also be that the relatively lower

population densities in poor areas contributes to more areas

burned because there are fewer persons or built structures,

in an absolute sense, to impede wildfire once begun.

Outside of these investigations, we know of no research

examining the association between wildfire risk and social

vulnerability in the South despite the fact that social vul-

nerability pervades rural, forested areas of the region such

as the Black Belt (Webster and Bowman 2008; Womack

2007, p. 42). Black Belt counties are defined as those

with African–American populations greater than 33%

(Wimberley and Morris 1997). The Southern U. S. also

accounts for the greatest number of wildfires, when

examined in the context of the entire U.S. (National

Interagency Fire Center, Wildland Fire Statistics, n.d.). In

2007, 50% of all reported wildfires in the U.S. occurred in

the 13 states of the U.S. Forest Service’s Southern Region.

In 2006, more than 50% of reported wildfires occurred in

the South, and 42% of all large wildfires reported were in

this region (Andreu and Hermansen-Báez 2008).

Objectives

Study objectives are to:

1. Model wildfire risk as a function of SOVUL

2. Examine possible regional or spatial variation in the

relationship between wildfire risk and SOVUL

3. Map any spatial variation in the relationship and

locate identifiable spatial clusters

Computation of Dependent and Independent

Variables—Wildfire Susceptibility Index (WFSI)

and Social Vulnerability (SOVUL)

The analysis was carried out at the CBG level. The CBG is

the unit of analysis because it is the finest geographical

scale at which both the fire risk data and socioeconomic

data are available. Fire risk data are from the Wildfire

Susceptibility Index (WFSI) developed by the Southern

Group of State Foresters for the Southern Wildfire Risk

Assessment (Buckley and others 2006a, b). WFSI incor-

porates terrain, surface fuels and canopy fuels, historical

weather, historical fire occurrence, and fire behavior met-

rics to calculate a probability value between 0 and 1

(Buckley and others 2006a, b). The WFSI integrates the

probability of an acre igniting (based on historical fire

occurrence, with expected final fire size based on the rate

of spread (ROS) in four weather percentile categories into a

single measure of wildland fire susceptibility. Due to some

necessary assumptions, mainly fuel homogeneity, it is not

the true probability; however, since the value is determined

consistently across the entire region, it provides a means

for comparison and ordination of areas as to the likelihood

of an acre burning.

WFSI includes three primary factors: (1) fire occurrence,

(2) fire behavior, and (3) fire suppression effectiveness.

Fire occurrence is expressed as a fire ignition rate measured

in number of fires/1,000 acres per year as determined from

historical fire occurrence records. As compiled for the

Southern Wildfire Risk Assessment, the fire occurrence

data does not differentiate fires by cause; however, wild-

fires throughout the South are largely human caused,

approximately 93% (Buckley and others 2006a). Buckley

and others (2006a, b) employ a roving window technique to

generate a raster layer of fire occurrence from the point

based fire records. This raster layer has a pixel size of

30 m 9 30 m.

The second WFSI component, fire behavior, considers

ROS, crown fire potential and flame length across a range

of historical weather conditions expressed as low, moder-

ate, high, and extreme conditions. Fire behavior calcula-

tions are performed by the FB3.DLL Windows software
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(commercial software licensed by Fire Program Solutions,

LLC). Inputs to the fire behavior calculations such as

topography and fuel type are provided as 30 m 9 30 m

raster layers while the weather conditions are considered

uniform over a larger geographic area, referred to as a

weather influence zone that are typically county size or

larger.

The final component of the WFSI, fire suppression

effectiveness, combines information from the historical fire

records and the fire behavior calculations. The fire sup-

pression effectiveness compares actual fire sizes to a the-

oretical fire size based on the fire behavior under steady

conditions with no suppression activities. The combination

of these three components yields the WFSI as a raster data

layer with 30 m 9 30 m pixels.

The analysis presented in this study was carried out at

the CBG level. The fire risk data as expressed by the WFSI

is converted from a 30 m 9 30 m pixel raster data set to

the CBG level by averaging all WFSI pixels within each

CBG boundary.

Social Vulnerability

Data for the SOVUL variable were obtained from the 2000

U.S. Census Bureau’s dataset summary file 3 for the CBG

level. We included proportion of population below poverty,

proportion of population 25 or older without a high school

diploma, proportion African American, proportion of

housing structures that are mobile homes, and proportion of

occupied housing units that are renter occupied. Overall

means (N = 22,216) for each of these variables are in

Table 1. SOVUL at the CBG level was constructed by

summing the respective proportions.

Our SOVUL index is specific to wildfire risk, as it

includes variables that can have a direct bearing on wildfire

preparedness, response, and recovery (Ojerio 2008; Ojerio

and others 2008a, b). The wildfire and SOVUL literature

indicates that variables such as these help distinguish those

communities or subpopulations that would be most vul-

nerable to wildfire in social terms. For instance, persons

below poverty and those with lower education levels typ-

ically have fewer efficacies in obtaining services or infor-

mation about environmental protection (Collins 2005;

Collins 2008a, b; Collins and Bolin 2009; Lynn and Gerlitz

2006; Program for Watershed and Community Health

2003). Also, race often figures into issues involving ser-

vices and information access. Majority white, middle, and

upper-class communities typically have a greater number

of facilities and services compared to poorer, minority

areas (Taylor and others 2007; Wolch and others 2002).

As well, mobile homes are less able to withstand natural

disasters such as hurricanes because the building material

is of lesser durability than constructed dwellings. This may

also be the case with fire resistance. Mobile structures are

less likely than constructed homes to be made of fire

resistant materials (Cutter and others 2003). Finally, renters

have less control over building materials, landscaping, fire

insurance, or other safeguards against wildland fire, all of

which could result in greater vulnerability for these resi-

dents (Cutter and others 2003).

Racial status tends to correlate positively with other

socio-demographic and economic indicators included in

our SOVUL—particularly poverty and education. How-

ever, we also believe that the descriptor ‘‘African Ameri-

can’’ or ‘‘Black’’ carries an additional weight beyond that

of income or education. This relates to both overt and more

subtle forms of discrimination from the larger society and

Table 1 List of socio-economic variables used to create the SOVUL index

Variables Definition Mean Standard deviation

Poverty Proportion of CBG population below poverty level 0.16 0.13

African–American Proportion of CBG population African–American 0.26 0.30

Education Proportion of CBG population with less than a high school education 0.25 0.15

Mobile home residence Proportion of CBG population with mobile home residence 0.14 0.19

Renter Proportion of CBG population with in rented housing 0.30 0.23

Correlations among SOVUL variables

Poverty African–American Education Mobile home residence Renter

Poverty 1.00 0.63 0.64 0.04 0.56

African–American 0.63 1.00 0.45 -0.10 0.36

Education 0.64 0.45 1.00 0.26 0.30

Mobile home residence 0.04 -0.10 0.26 1.00 -0.28

Renter 0.56 0.36 0.30 -0.28 1.00

Cronbach alpha = 0.60
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also to self-imposed racial segregation which continues

defacto racial separation.

Each of the variables comprising SOVUL was selected

based on a careful review of the SOVUL and disaster lit-

erature (Cutter and others 2000; Cutter and others 2003;

Cutter and others 2009), much of which was specific to

wildfire hazard (Lynn and Gerlitz 2006; Program for

Watershed and Community Health 2003; Ojerio 2008;

Ojerio and others 2008a, b; Collins 2005; Collins 2008a, b;

Collins and Bolin 2009). From these studies we distilled

the most consistent indicators of either SOVUL or a related

concept—community capacity—that would bear on com-

munity efficacy. These are, again, poverty, race/ethnicity,

education, homeownership, and condition of dwelling unit.

Because certain of these variables (race, education,

income in particular) tend to correlate highly, we checked

for multicollinearity among SOVUL variables using the

variance inflation factor. The aim was to see whether

standard errors were inflated, which could indicate multi-

collinearity. VIF factors were all less than three, which

indicates low or moderate multicollinearity (Freund and

Wilson 1998).

We assessed reliability of the index with coefficient

alpha (Hatcher and Stepanski 1994, pp. 506–516). Coeffi-

cient alpha for SOVUL was 0.60 (raw variables), an

acceptable reliability score for the social sciences (Hatcher

and Stepanski 1994, p. 513) (Table 1). The raw score

increases to 0.72 with the elimination of the mobile home

variable. However, we retain it in the scale because it is a

reliable indicator of housing quality, which can be an

important wildfire deterrent. It appears that the race indi-

cator (proportion black), education, poverty, and renter are

measuring one dimension of vulnerability while mobile

home residence may indicate another.

Convergent validity of SOVUL was assessed by exam-

ining the association between poverty and a version of the

SOVUL index that did not include poverty (Hatcher and

Stepanski 1994, pp. 331–332). Because the proportion of

the population below poverty, alone, is a very defensible

indicator of SOVUL as conceptualized in this article, we

use it as a benchmark against which alternative assess-

ments of SOVUL may be assessed. The correlation

between SOVUL without poverty and SOVUL (with pov-

erty) is 0.78, which indicates a strong correlation between

these measures of SOVUL and hence lends validity to the

SOVUL index.

Although SOVUL does not include other variables such

as gender or age, we submit that it sufficiently captures the

effects of these variables. For instance females, especially

female-headed households, are more socially vulnerable

because they are more likely than others to live in poverty.

Historically, education levels also distinguished males and

females, with males typically having more education. To

account for gender differences resulting from educational

differences, we also include education as a factor in the

index.

We normalized the SOVUL because the raw SOVUL

values among different CBGs would be inconsistent and

therefore could bias the analysis. Following Wood and

others (2010), we first normalized the individual census

variables that composed SOVUL and then summed the

normalized values to get the SOVUL for the analysis.

Model

Model estimation began with an examination of the linear

relationship between wildlfire risk (WFSI) and SOVUL

using OLS. The regression model was specified as follows:

yi ¼ b0 þ b1xi þ ei ð1Þ

where, yi is wildlfire risk for the ith CBG of a given state,

and xi is SOVUL for the ith CBG of that state. Similarly, b0

is the constant and b1 is the coefficient to be estimated for

SOVUL and ei is the stochastic error term. We conducted a

likelihood ratio test to see whether a pooled OLS regres-

sion for the region would fit better than separate regres-

sions for individual states. The test statistic allowed us to

reject the null hypothesis that the parameters were the same

across the states (LR = 49662, df = 10, P \ 0.001), sug-

gesting that including a dummy state variable would not be

sufficient to explain spatial variation.

Ordinary least squares is a global model, as it assumes

that the estimated beta value or the relationship between

dependent and independent variables holds the same

everywhere within a given geographical range. To deter-

mine whether there is spatial variation within a given state,

we employ a local (GWR) model that provides a SOVUL

regression coefficient (beta) for each CBG within the state.

These estimates allow us to compare the sign and size of

coefficients among CBGs to see if the relationship holds

the same everywhere.

The second stage involved estimating a GWR model

(Fotheringham and others 2002). The GWR is a modified

version of Eq. 1 as shown below:

yiðui; viÞ ¼ b0ðui; viÞ þ b1xiðui; viÞ þ eiðui; viÞ ð2Þ

where (ui,vi) represent the spatial location or the geo-

graphic coordinates of an observation (i.e., CBG). In our

case, ui and vi are, respectively, the longitude and latitudes

of the centroids of the ith CBG of a given state. The GWR

fits this model to a group of observations near a given

CBG, thereby yielding a separate parameter estimate for

each CBG. In addition to separately estimating parameters

for each observation, GWR puts more weight on observa-

tions nearer the ith CBG than those farther away. Note that
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the global regression model discussed above (OLS) neither

allows parameters to vary over space nor accounts for

geographical weighting, and therefore can estimate only a

single parameter for the entire study area (for a state, in our

case).

Regression coefficients estimated from the OLS model

is given by Eq. 3.

b̂ ¼ X
0
X

� ��1

X
0
Y: ð3Þ

In contrast, the coefficients estimated from the GWR

(Eq. 2) are given by

b̂ðui; viÞ ¼ X
0
wðui; viÞX

� ��1

X
0
wðui; viÞY ð4Þ

where, wðui; viÞ is the n x n spatial weight matrix that is

unique for each observation or data location (i.e., CBG).

While estimating the parameter for the ith location, the ith

point itself gets the weight of one; whereas the weight

attributed to other observation points (say the jth point),

depends on the distance of that jth point from the ith point

and a bandwidth.

The bandwidth, which helps define the optimal number

of neighbors (i.e., CBGs), is either purposively set by the

analyst or calculated through a cross-validation process.

We used a cross-validation approach for this purpose.

Details about this approach can be found in Fotheringham

and others (2002). The idea of the weighting scheme is that

weight values assigned to observations (CBGs) farther

away from the ith point gradually decrease and become

zero for those beyond a certain distance. As the standard

errors are also estimated for each observation, t tests can be

used to test the statistical significance of location specific

parameters. This also allows selecting only the parameters

that are statistically significant and appropriate for

mapping.

For each state, both the OLS and GWR models were

estimated. Local regression coefficients for a given CBG

were paired with the CBG location (latitude, longitude) to

carry out a test of spatial variability of parameters. This is

also called the test of spatial non-stationarity. A spatially

non-stationary variable means that it does not stay the same

over space. This test uses a Monte-Carlo simulation tech-

nique to compute the experimental significance level that

can confirm whether the observed variation in the param-

eter is just by chance. The test is based on Hope (1968) and

is available with the GWR 3.0 program (Fotheringham and

others 2002).

Results

Table 2 presents results from the global, OLS regressions

for each state and the region as a whole. Regression

coefficients were statistically significant at the 5% level for

the whole region and all states except Alabama and Mis-

sissippi. Also, there was some variation among the states in

terms of the significance, size and sign of SOVUL. For

example, in South Carolina SOVUL had a positive effect

on wildfire risk, WFSI; whereas the effect was opposite in

the remaining states. The global model thus shows an inter-

state difference in the relationship between these two

variables. Comparison of OLS coefficients among the

states shows that Florida, Arkansas, and Georgia exhibited

remarkably stronger evidence for negative relationships

between fire risk and SOVUL compared to Mississippi and

Alabama. South Carolina had a more direct relationship

between these two variables. This suggests that wildfire

risk in South Carolina communities is more sensitive to

SOVUL; but overall, OLS results support our supposition

that the statewide association between SOVUL and wildfire

risk is negative.

A summary of GWR results for each state is presented in

Table 3. The adjusted R-Square indicates that the model

fits well in each state. The table also shows five variables

summarizing coefficients for the parameter estimates for a

given state—minimum, lower quartile, median, upper

quartile, and maximum values. These statistics allow a

comparison of minimum and maximum parameter values

in each state, which show how greatly the coefficient varies

within the state and help explain the spatial variation in the

relationship.

An F-test was conducted to see whether employing the

local model (GWR) improved the analysis and results over

the OLS global model. F-test results are presented in

Table 4. Statistically significant F-tests for each state permit

us to reject the null hypothesis that there is no improvement

of the GWR model over the OLS one. The strongest F-test

value is for the Florida data. This test supports our use of a

locally weighted regression model here.

In addition, a test of non-stationarity was conducted

using a Monte-Carlo simulation test of significance; results

are also presented in Table 4. Highly significant test

Table 2 Region and statewide OLS regression coefficients: WFSI

regressed on SOVUL (Global model)

S.No. State OLS

coefficient

T ratio Number

of CBGs

1 Alabama -0.000060 -1.234259 3329

2 Arkansas -0.000525 -5.020923** 2069

3 Florida -0.002904 -7.768543** 9088

4 Georgia -0.000163 -2.054058*** 4788

5 Mississippi -0.000061 -1.532636 2147

6 South Carolina 0.000962 8.642123** 2858

7 Southeast Region 0.003343 -19.140000** 22216

Significant at 1% (***) and 5% (**) level, respectively
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parameters again allow us to reject the null hypothesis that

the spatial variation in the parameters is insignificant,

suggesting that the relationship between wildfire risk and

SOVUL varies over space in each state.

Census block group regression coefficients estimated by

GWR are mapped in Figs. 1 through 6. Readers interested

in detailed maps with additional reference layers may get

maps from the first author. Figure 1 shows that in Alabama,

there are few portions of the state with a significant asso-

ciation between WFSI and SOVUL. A group of CBGs

slightly northwest of Birmingham (marsh red cluster near

cities of Jasper and Cordova, not labeled). There are a few

more red CBG clusters along the Mississippi and Florida

border around the Mobile Bay area in the southwestern

corner exhibiting a positive effect of SOVUL on wildfire

risk. Communities along I-65 north of Mobile (in dark navy

blue color) exhibited a cluster of significant and negative

relationship between SOVUL and wildfire risk.

In Arkansas, clusters were located in the northern por-

tion of the state, along the Missouri border (Fig. 2). The

cluster around Mountain Home, Bull Shoals Lake, and

Buffalo River State Park (cities not labeled) was quite

significant revealing a positive relationship between

SOVUL and WFSI. Communities north of the Ozark

National Forest and east of Fayetteville, including Berry-

ville, Eureka Springs (not labeled) formed the clusters with

a significant and negative relationship. A similar cluster

was forund in the Northeast that included communities

such as Pocahontas and Maynard (not labeled).

The coefficients in Florida varied from as low as -0.021,

mostly along the Eastern bay of the peninsula portion of the

state and the portion in between Cape Coral and West Palm

Beach (in dark blue), to as high as 0.027 in the Western

portions of the peninsula and communities around Lake

Okeechobee (in marsh red) (Fig. 3). Notably, the relation-

ship is significant primarily in the peninsular portion of the

state. CBG clusters around the Spring Hills areas, west of

I-75; rural areas west of Port St. Lucie, the Ockechoobee

area, and rural areas east of Naples around state and federal

land areas exhibit a positive effect of SOVUL on WFSI.

Table 3 State-wise summary of coefficients from the GWR regression (Local model) of wildfire risk against SOVUL

State Model goodness of fit Coefficient summary

Adj. R-square Minimum Lower quartile Median Upper quartile Maximum

Alabama 0.49 -0.00129 -0.00011 -0.00002 0.00006 0.00404

Arkansas 0.31 -0.01058 -0.00027 -0.00008 -0.00000 0.00736

Florida 0.55 -0.02154 -0.00366 -0.00167 -0.00013 0.02659

Georgia 0.47 -0.00306 -0.00032 -0.00007 -0.00000 0.00768

Mississippi 0.43 -0.00098 -0.00011 -0.00001 -0.00019 0.00211

South Carolina 0.46 -0.00275 -0.00030 -0.00009 0.00055 0.00397

Table 4 Results from F-test for GWR improvement and Monte-

Carlo simulation test for spatial variability of coefficients

States F-test statistic Monte-Carlo test

1 Alabama 32.911*** 0.000***

2 Arkansas 10.266*** 0.000***

3 Florida 120.277*** 0.000***

4 Georgia 44.946*** 0.000***

5 Mississippi 18.076*** 0.000***

6 South Carolina 24.977*** 0.000***

*** Significant at 1% level

Fig. 1 Geographically weighted regression clusters for Alabama
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Fig. 2 Geographically

weighted regression clusters for

Arkansas

Fig. 3 Geographically

weighted regression clusters for

Florida
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Larger groups of CBGs near Jacksonville, Daytonna

Beach, and south of Gainesville stretching along the Ocala

National Forest, West Palm Beach, and the area north of

Everglades National Park reveal a negative relationship

between the variables. In general, a positive effect of

SOVUL on fire risk was more evident in CBGs located in

relatively rural areas, whereas the negative effect was

observed around urban areas in the state (with the big dark

blue cluster, north of the Everglades as an exception),

which is not surprising.

In Georgia, the regression coefficient value ranged from

-0.0030 to 0.0077 (Fig. 4). There are two big CBG clus-

ters showing positive coefficients. The first one lies in the

north-central part of the state stretching down from the

Tennessee border to Canton (near Atlanta). The other one

lies in the southeastern part and includes areas like Jesup,

Brunswick, and Hinesville (not labeled). Again, these are

the areas where wildfire risk is highly sensitive to SOVUL.

Three remarkable clusters of CBGs with a negative rela-

tionship were observed in the state. Those included areas

between I-20 and I-75 in the northwestern corner, areas

along I-85, east of highway 441 in the northeastern part,

and communities along the South Carolina border just

north of Savannah.

Interestingly, most of the CBGs with significant interac-

tion between wildfire risk and SOVUL in Mississippi lie

south of Interstate I-20 (Fig. 5). CBGs with a positive rela-

tionship between WFSI and SOVUL form big clusters in

communities surrounding the Homochitto National Forest.

Red clusters are also seen just Southwest of Bienville

National Forest, in communities in and around Raleigh,

Mendenhall, and Magee; and in some rural communities in

between Interstates I-59 and I-10 in the southern end of the

state. This cluster and a similar group of CBGs near Gulfport

encompass rural, poor communities. Other positive clusters

were found just Northwest of the Holly Springs National

Fig. 4 Geographically

weighted regression clusters for

Georgia
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Forest in the north along the Tennessee border. These areas

include suburban communities of Memphis including

Byhalia, Mt. Pleasant and Olive Branch.

In contrast, CBGs with a negative relationship between

fire risk and SOVUL were found in relatively developed or

urbanizing areas as along the city of Hattiesburg and sur-

rounding agricultural communities. This is consistent with

our previous observation in Florida, where relatively rural

areas exhibited positive and relatively urban areas exhib-

ited negative associations.

In South Carolina (Fig. 6), significant clusters reveal

some noteworthy observations. First, CBGs with statisti-

cally significant interaction between fire risk and SOVUL

lie mostly in the eastern half of the state. Second, results for

this state differ from the other five states because the

amount of land area with a significant and positive rela-

tionship between wildfire risk and SOVUL exceeds areas

with a negative relationship. Third, areas with a negative

relationship were found around the Florence area. Fourth,

the areas with a positive relationship were mostly found

near the coastal areas in the east (mostly to the east of

I-95). A wide and long cluster stretching from Savanna to

Myrtle Beach showed a positive relationship between

WFSI and SOVUL. There were some other notable clusters

in the urbanized areas near Columbia, Savannah, Florence,

and Augusta, Georgia.

Ecological fallacy is a concern when analyzing rela-

tionships between aggregate data, like those in this study.

Fig. 5 Geographically

weighted regression clusters for

Mississippi
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To check whether the statistics hold constant among dif-

ferent scales, we ran the regression analysis at two addi-

tional levels, the census tract and county level in Alabama

(insignificant relationship at CBG level) and South Caro-

lina (significant relationship at CBG level). In both states,

the relationship seen in the CBG level analysis was con-

sistent with results from the census tract and county level

analysis, suggesting that the implication of our results

would be the same regardless of the scale of analysis. We

presented the CBG level analysis because this would allow

us to map the relationship and potential hotspots at the

finest level possible.

Conclusion

Rural areas in the United States and elsewhere face

increasing pressure from human induced disturbances

(Radeloff and others 2005). Although wildfire risk counts

among these concerns, we know little about how the socio-

economic well-being of local people interacts with wildfire

in wildland proximate areas. Empirical findings from this

study shed some light on this relationship and offer some

important policy implications that are relevant in wildfire

management, land management, and forestry.

Consistent with Mercer and Prestemon (2005) and

Butry, Pye, and Prestemon’s (2002) results for Florida,

findings generally show an inverse association between

wildfire risk and SOVUL for all states except South Car-

olina. However, as the analysis moved beyond the simple

regression models and adopted a spatially varying param-

eter model, it successfully detected local level variation

between wildfire risk and SOVUL. The GWR model

confirmed that the relationship varies by location, which

demonstrates that the negative relationship does not hold

everywhere; that is, in states where there is an overall

inverse relationship between wildfire risk and SOVUL, we

locate some areas within these states where SOVUL

interacts positively with wildfire risk.

Identified hot spots could be targeted by state and fed-

eral agencies to implement community-based wildfire

mitigation initiatives such as Community Wildfire Protec-

tion Plans (CWPPs), Firewise USA communities, or other

mitigation programming; as these communities must con-

tend with both biophysical and social risk factors. We

suspect that community-level mitigation programs such as

Firewise and CWPPs would be more prevalent in middle

and upper income communities. Conversations with state

fire managers in Florida, for instance, stressed that the state

provides extensive wildfire mitigation information and

programming; but that managers oftentimes encounter

residents in fire-prone wildlands who demonstrate indif-

ferent attitudes towards mitigation because of the false

belief that their properties would not be affected by wild-

fire. We acknowledge such frustrations but counter that

managers should also be cognizant of the differential

capitals (human, social, financial) possessed by communi-

ties. In some cases, the synergy of higher skill, education,

and income levels combine to insulate communities from

fire risk; whereas other communities, struggle with com-

placency and also lack of information and services.

Along these lines, Florida wildland fire managers have

expressed an interest in assessing constraints residents face

in becoming more involved in community wildfire miti-

gation programming and planning. A next phase in this

research effort would be to coordinate with state forest

Fig. 6 Geographically

weighted regression clusters for

South Carolina
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managers in specific ‘‘hot spot’’ communities across the

South to identify barriers or constraints to more effective

resident engagement with existing wildland fire mitigation

programming and to solicit ideas on resident methods of

mitigating the same.

The University of Oregon’s Center for Watershed and

Community Health (CWCH) provides some guidelines for

assisting poor, rural communities in developing mitigation

plans (in the Pacific Northwest) (Program for Watershed

and Community Health 2003). Ojerio (2008); Ojerio and

others (2008a, b) provide similar strategies. CWCH rec-

ommends mapping the relationship between poverty and

wildfires by identifying poverty distributions within a

geographical area; identifying community capacity, in

terms of insurance and fire protection; and pairing these

with estimates of actual wildfire risk. Also, participatory

community mapping can identify where mitigation services

appear on the ground. Ojerio (2008), Ojerio and others

(2008a, b) stress the need for collaboration between fire

mitigation planning and available social services. Social

service agencies could provide useful information about

socially vulnerable populations and how best to engage

them; these agencies could also suggest alternative meth-

ods of contacting poor communities, such as working

through religious organizations.

A crucial component of mitigation planning is funding.

Without financial or technical aid, poor communities may

find it difficult to implement strategies. Ojerio (2008),

Ojerio and others (2008a, b) suggest drawing from indirect

sources, not specific to wildfire mitigation, when direct

funding is not available, for instance, the Federal Emer-

gency Management Agency grants for evacuation or

mapping.

Specific objectives for our research team would be to

map the intersection of socially vulnerable populations,

wildfire risk, and mitigation programs (Firewise, CWPPs,

state and federal grants) for all of the 13 Southern states

(Alabama, Arkansas, Florida, Georgia, Kentucky, Louisi-

ana, Mississippi, North Carolina, Oklahoma, South Caro-

lina, Tennessee, Texas, and Virginia). This information

could be incorporated into future wildfire assessments in

the southern U.S., thus contributing a valuable social sci-

ence dimension to this effort.

Lastly, a few caveats should be noted. First, the fire risk

data we used did not distinguish between risks caused by

human activities or other anthropogenic sources from nat-

ural sources. Second, while we used an index variable to

minimize the problem with the mutlicollinearity issue,

other issues may have some effects. Regarding normality,

we checked for outliers, and less than 1% of the observa-

tions had outliers, which we assumed did not affect our

results substantially. We found that the OLS model suf-

fered from spatial autocorrelation. However, we discuss

our results from the GWR model which itself is a locally

weighted regression that uses a moving window approach

to identify local sub-samples of observations and computes

coefficients for every observation unit (i.e., CBG). In

defining the neighborhood sample of a given CBG, the

model provides higher weight to nearby observations than

those farther away, and is therefore expected to control for

inherent spatial interactions. It should be noted that the

GWR model improved the spatial autocorrelation sub-

stantially. For example, the magnitude of Moran’s I was

reduced by 41% (Arkansas), 40% (Georgia), 34% (Flor-

ida), 48% (Mississippi), 46% (South Carolina). While we

suspect there could still be some spatial interaction

remaining even in the GWR residuals, we assume the

effect may be very minimal. Correcting this in a GWR

framework is rather complicated and none of the spatial

econometrics software is currently capable of handling this.

There are a handful of user-written codes available, but

they are still in the alpha or beta version at this time; and

their reliability is yet to be well-established in the spatial

econometrics literature.
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