
 PHOTOGRAMMETR IC  ENGINEER ING &  REMOTE  SENS ING M a y  2 0 1 3 469

The Infl uence of Multi-season Imagery on
Models of Canopy Cover: A Case Study

John W. Coulston, Dennis M. Jacobs, Chris R. King, and Ivey C. Elmore

Abstract
Quantifying tree canopy cover in a spatially explicit fash-
ion is important for broad-scale monitoring of ecosystems 
and for management of natural resources. Researchers have 
developed empirical models of tree canopy cover to produce 
geospatial products. For subpixel models, percent tree canopy 
cover estimates (derived from fi ne-scale imagery) serve as 
the response variable. The explanatory variables are devel-
oped from refl ectance values and derivatives, elevation and 
derivatives, and other ancillary data. However, there is a lack 
of guidance in the literature regarding the use of leaf-on only 
imagery versus multi-season imagery for the explanatory 
variables. We compared models developed from leaf-on only 
Landsat imagery with models developed from multi-season 
imagery for a study area in Georgia. There was no statistical 
difference among models. We suggest that leaf-on imagery is 
adequate for the development of empirical models of percent 
tree canopy cover in the Piedmont of the Southeastern United 
States. 

Introduction
Tree canopy cover is a primary component of ecosystems 
and is defi ned as the area covered by the vertical projection 
of tree crowns (Jennings, 1999). The amount and density of 
cover infl uences habitat suitability, fi re behavior, aesthetics, 
and carbon dynamics. For example, Rollins and Frame (2006) 
used a map of percent tree canopy cover (Homer et al., 2007) 
as a major component in their forest fi re behavior and fuel 
models. Tree canopy cover is also a critical component of for-
est management activities (Jennings, 1999). Additionally, both 
forest land use defi nitions and forest land cover defi nitions 
are partially based on the amount of tree canopy cover present 
during the time of classifi cation. For example, the defi ni-
tion of forest land cover used in the National Land Cover 
Database (NLCD) land cover mapping effort partially relies on 
identifying areas with at least 20 percent tree canopy cover 
(Homer et al., 2007). Likewise, the United Nations Food and 
Agriculture Organization (FAO) defi nition of forest land use 
partially relies on identifying areas with at least 10 percent 
tree canopy cover (FAO, 2001). Because of the importance 
of tree canopy cover, a national map of percent tree canopy 
cover, across all lands, was developed as part of the 2001 
NLCD (Huang et al., 2001, Homer et al., 2007) and a 2011 ver-
sion is under development (Coulston et al., 2012). 

The 2001 NLCD percent tree canopy cover product is a 
freely available 30 m dataset. Because percent tree canopy 
cover is not calculable from Landsat imagery directly, empiri-
cal models were developed to predict percent canopy cover 
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at unmeasured locations. In this case, the response variable 
was derived from classifying 1 m Digital Orthophoto Quarter 
Quadrangles (DOQQs) as either tree canopy or no tree canopy. 
Approximately 1 to 4 km2 per Landsat scene were purposively 
sampled and classifi ed using a classifi cation tree (Homer 
et al., 2004). The response, percent tree canopy cover, was 
then calculated on a 30 m pixel level for the sampled area. 
Multi-season (leaf-off, spring, leaf-on) Landsat-5 and -7 data 
and indices (e.g., tasseled cap), along with digital eleva-
tion models and derivatives (e.g., slope), and other ancillary 
information (e.g., 1992 NLCD) were used as the explanatory 
variables. Empirical models of percent tree canopy were then 
developed using regression trees based on the relationship 
between the response and explanatory variables.  

The current effort to produce a 2011 NLCD percent tree 
canopy product (Coulston et al., 2012) relies on a probabilistic 
sampling approach where a two stage sample is employed. 
The locations of the primary sampling units (PSUs) were 
identifi ed based on a global sampling grid (White et al., 
1992), and within each PSU a systematic dot grid (105 points) 
covers a 90 m by 90 m area. Each point within the PSUs was 
classifi ed using photographic interpretation of leaf-on 1 m 
true color or false color imagery provided by the National 
Agriculture Imagery Program (NAIP). This photointerpretation 
technique was similar to that used by Carreiras et al. (2006). 
The percent canopy cover estimates of each PSU then served 
as the response variable for empirical model development. 
The explanatory variables were leaf-on Landsat-5 imagery 
and derivatives, elevation and derivatives, and other ancil-
lary data such as the 2001 NLCD land cover map. There are 
several notable differences between the approach used to 
develop the 2001 NLCD percent tree canopy cover map and the 
approach for the 2011 NLCD percent tree canopy cover map. 
The scope of this research is not to compare and contrast all 
the differences between the 2001 and 2011 NLCD approaches. 
It is rather to examine whether empirical models of leaf-on 
percent tree canopy cover are improved by using multi-season 
Landsat imagery as opposed to only leaf-on Landsat imagery 
as explanatory variables.  

The available literature is comprised of examples sug-
gesting that the use of multi-season imagery is appropriate, 
and others suggesting that using only single season imagery is 
appropriate for this type of application. For example, Franco-
Lopez et al. (2001) used multi-season imagery to map forest 
stand density, volume, and cover type in St. Louis County, 
Minnesota. Hansen et al. (2003) used 40-day Moderate-
resolution Imaging Spectroradiometer (MODIS) composites 
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Land cover, based on Homer et al. (2007), in this ecoregion 
was 22 percent urban, 13 percent agriculture, and 56 percent 
forest cover. Much of the urban area was part of the Atlanta, 
Georgia metropolitan area. The Blue Ridge ecoregion covers 
19 percent of the study area and was 6 percent urban cover, 
5 percent agriculture cover, and 85 percent forest cover. 
A small percentage of the study area was classifi ed in the 
Ridge and Valley ecoregion (3 percent) and the Southeastern 
Plains ecoregion (1 percent). The Ridge and Valley ecoregion 
was 14 percent urban, 22 percent agriculture and 54 per-
cent forest cover. The Southeastern Plains ecoregion was 5 
percent urban, 21 percent agriculture, and 59 percent forest 
cover. 

Percent tree canopy cover was estimated for 4,125 sample 
locations (PSUs) across the study area and these estimates 
served as the response data. Sample locations were identi-
fi ed based on a 4X intensifi cation of the USDA Forest Service 
Forest Inventory and Analysis sampling grid using the pro-
cedures described by White et al. (1992). At each PSU, a 105 
point triangular-grid that fi lled a 90 m by 90 m (0.81 ha) area 
served as the basis for photo-interpretation (Figure 1). Each 
of the 105 points was manually interpreted as either “tree 
canopy” or “no tree canopy” using leaf-on 2009 NAIP (USDA, 

over the course of one year to model global tree canopy cover 
at 500 m. Alternatively, Carreiras et al. (2006) used leaf-on 
Landsat imagery to model tree canopy cover of evergreen 
oak woodlands on the Iberian Peninsula. Sen et al. (2011) 
used leaf-on imagery to quantify percent tree canopy cover 
of mined lands in the Appalachian Mountains in the south-
eastern United States. Clearly there are varying viewpoints on 
whether to use leaf-on or multi-season imagery for developing 
empirical models of percent tree canopy cover. The objective 
of this research is to test whether the inclusion of multi-sea-
son imagery as an explanatory variable signifi cantly improves 
empirical models of percent tree canopy cover and to provide 
some guidance on where our results are relevant. 

Methods
The study area was approximately the size of one Landsat 
scene covering central and northern Georgia in the south-
eastern United States (Figure 1). While the area was one 
Landsat scene in size, it covered path-rows 19-36 and 19-37 
and was specifi cally selected to capture the south to north 
environmental gradient. The Piedmont was the dominant 
(77 percent) ecoregion (USEPA, 2011) in the study area. 

Figure 1. (a) Georgia study area, and (b) and (c) sample design. One of the four systematic  samples (PSU) 
is displayed in (b). For each PSU a 105 point secondary sampling unit was used for photo  interpretation of 
canopy cover (c).
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this case refers to random bootstrap resampling of the data 
and the term “forest” refers to an ensemble of regression 
trees (i.e., forest). The bootstrap is a resampling technique in 
which n observations from the original dataset are selected 
randomly, with replacement. The size of the bootstrap sample 
is also n but because the sampling is performed with replace-
ment. On average only 63 percent of the observations in the 
original dataset will be included in a single bootstrap sample. 
Bootstrap approaches rely on selecting B bootstrap samples 
all of size n from the original data (see Efron and Tibshirani 
(1993) for more information). Bootstrap resampling is funda-
mental to developing random forest models. In the following 
example, adopted from Liaw and Wiener (2002), we assume 
that we have a dataset with n = 100 observations, and we set 
the forest size a priori to 500 regression trees. To construct the 
ensemble, we draw B = 500 bootstrap samples. The boot-
strap samples are selected with replacement and each boot-
strap sample has on average 63 observations (63 percent of 
observations). For each bootstrap sample, a regression tree is 
developed, but instead of determining the best split across all 
explanatory variables, a predetermined number of explanatory 
variables (for example, 5) are randomly selected and the best 
split among those variables is selected. Predicted values are 
then obtained by averaging the predictions from each of the 
500 individual trees. For modeling we used the R ver. 2.12 (R 
Development Core Team, 2010) random forest library (Liaw 
and Wiener, 2002) to construct empirical models of percent 
tree canopy cover.

Three random forest models were developed each using 
25 percent of the observations. To accomplish this, the 
original 4X systematic sample was decomposed using the 
hierarchical properties of triangular grids (White et al., 1992). 
A triangular grid can be enhanced or decomposed by factors 
of 3, 4, 7, or any multiplicative combinations of those factors. 
This property allowed us to create four systematic subsamples 
of the 4X grid. Subsample 1 was used to develop the multi-
season model, subsample 2 was used to develop the leaf-on 
model, and subsample 3 was used to develop the reduced 
model. Subsample 4 was used as a hold-out for model com-
parison. This approach was used to insure that the samples 
were independent. The multi-season model was fi t including 
all explanatory variables. The leaf-on model was fi t based 
on all remaining variables after removing leaf-off and spring 
Landsat variables and derivatives from the model. A third 
model (reduced model) was based on a set of  explanatory 
variables identifi ed using principal components analysis on 
the 72 continuous variables, in addition to the 2001 NLCD. 
Principal components analysis is a data reduction and inter-
pretation technique that leverages the correlation among all 
variables to identify orthogonal dimensions (Johnson and 
Wichern, 2002). Each component is a linear combination 
of the original variables and can be interpreted based on its 
eigenvector. When interpreting each component, the practi-
tioner typically examines the magnitude of the loadings for 
each variable in the linear combination. Components are then 
interpreted as a composite value of those variables that have 
large absolute values of their loadings. We performed two 
principal component analyses: one for standardized (mean 
= 0, variance = 1) Landsat data and derivatives, and another 
for standardized (mean = 0, variance = 1) elevation data and 
derivatives. For each principal component analysis, the fi rst 
n components that accounted for approximately 90 percent of 
the variation among all variables were retained for interpreta-
tion. Each component was interpreted based on the loading of 
each variable in the component. Of the variables that loaded 
high in each component, a single “representative” variable 
was selected based on its Pearson correlation with percent 
tree canopy cover. 

2009) imagery. The overall design was considered a two-stage 
sampling design where the 0.81 ha area was the PSU, and 
each of the 105 points within the PSUs were the secondary 
sampling units. The design based estimators of proportion 
canopy cover in each PSU, mean proportion canopy cover, and 
the standard error of the estimate were obtained following 
Cochran (1977).

Landsat-5 data and derivatives (NDVI, tasseled cap), 
digital elevation data and derivatives (slope, aspect, sine and 
cosine of aspect, compound topographic index), and 2001 
NLCD land cover data were used to develop the explanatory 
data. In total, six Landsat-5 scenes were downloaded from 
MRLC (2011) (Table 1). The 2001 NLCD land cover was also 
downloaded from MRLC (2011). Digital elevation data and 
derivatives were downloaded from USGS (2005). The Landsat 
data were already converted to top of atmosphere refl ectance 
as described by Homer et al. (2004). For consistency with 
Coulston et al. (2012), the top of atmosphere refl ectance 
was then converted to surface refl ectance by dark object 
subtraction following the COST method (Chavez 1996). This 
approach assumes that there are some objects in the scene 
(e.g., clear water bodies and deep shadows) which have near-
zero percent surface refl ectance and their recorded values 
are conditional on atmospheric scattering which should be 
removed (see Song et al. (2001) and Schroeder et al. (2006) 
for more discussion on this topic). For modeling purposes, 
recall that the percent tree canopy cover was estimated for 
each 0.81 ha PSU. Also note that the explanatory variables 
(Landsat bands, vegetation indices, elevation and deriva-
tives, and 2001 NLCD) were 30 m (0.09 ha) resolution. The 
response variable (percent tree canopy cover) was taken 
directly from the estimate for each PSU. The explanatory vari-
ables for modeling were developed by calculating the mean 
and standard deviation of each variable for each PSU. Because 
the PSU was registered to the NLCD base, the means and 
standard deviations for each variable were simply calculated 
using 3 × 3 pixel window focal statistics. In total there were 
73 explanatory variables. 

We used the random forest algorithm, developed by 
Breiman (2001), to construct empirical models of percent 
tree canopy cover. Random forest was chosen for consistency 
with Coulston et al. (2012) although there are other alterna-
tives (see for example, Coulston et al., 2012; Walton, 2008; 
Sen et al., 2011; Homer et al., 2004; Hansen et al., 2003). 
Random forest is an ensemble method that uses bootstrap 
sampling to develop multiple models and improve prediction. 
Generally speaking, the random forest modeling approach is 
a non-parametric technique in that there are no distributional 
assumptions. The term “random forest” may be confusing 
particularly given the context of this research. “Random” in 

TABLE 1. LANDSAT-5 ACQUISITION DATES FOR LEAF-ON, LEAF-OFF, AND SPRING

Image Date

Landsat-5 (path 19 row 36)

 leaf-on 24 July 2008

 leaf-off 16 January 2009

 spring 09 April 2010

Landsat-5 (path 19 row 37)

 leaf-on 09 August 2008

 leaf-off 16 January 2009

 spring 09 April 2010
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Principal components analysis was used to reduce the 
dimension of the full set of 73 explanatory variables. The 
results from the principal components analysis of the Landsat 
variable and derivatives indicated that 90 percent of the 
variance across all 60 variables was explained by the fi rst 10 
principal components. As expected this result suggests that 
there was a lot of redundant information in the Landsat-based 
explanatory variables. Each component was interpreted, and 
a single representative variable selected, based the pairwise 
correlation coeffi cient with observed percent tree canopy 
cover. The following Landsat based variables were retained: 
leaf-off TM band 3, standard deviation of spring TM band 3, 
standard deviation of leaf-off greenness, standard deviation of 
leaf-on TM band 6, spring NDVI, leaf-on NDVI, standard devia-
tion of spring wetness, standard deviation of spring TM band 
4, spring TM band 5, and leaf-off brightness. There was less 
redundant information in the digital elevation models and 
derivatives, where 90 percent of the variation across the 12 
variables was explained by the fi rst seven principal com-
ponents. The fi nal set of variables selected included: slope, 
aspect, sine aspect, standard deviation of slope, standard 
deviation of aspect, standard deviation of sine aspect, and 
standard deviation of compound topographic index. These ten 
Landsat variables and seven digital elevation variables, along 
with 2001 NLCD land cover, served as the explanatory vari-
ables for the reduced model. 

The empirical models of percent tree canopy cover had 
similar pseudo R2 s (Table 2). The R2 for the model con-
structed with only leaf-on imagery was slightly lower than 
the multi-season model and the reduced model. The RMSE 
was also slightly higher for the leaf-on model as compared 
to the multi-season and reduced models. However, based on 
the KS test, all three models produced distributions that were 
statistically different (p <0.001) than the observed distribu-
tion. Overall, the three models under-predicted the amount 
of no tree canopy cover and under-predicted the amount of 
100 percent tree canopy cover (Figure 2). While all three 
models produced distributions that were signifi cantly differ-
ent from the observed distribution, there was no signifi cant 
difference (a = 0.05) among the model predicted distribu-
tions based on the KS test. Because the observed values were 
fi xed and there was no statistical difference among model 
predictions, this indicated that there was no statistical dif-
ference (a = 0.05) between RMSE and R2 model fi t statistics 
among models.  

Typically with the ANCOVA there are two hypotheses 
tested sequentially. The first hypothesis is that the regres-
sion lines are parallel (i.e., the slopes are equal). If the 
lines are parallel, the second test examines whether they 
are coincident (i.e., equal slopes and equal intercepts). 
We used ANCOVA to test for differences between the slope 
and intercept of the observed versus predicted regres-
sion lines irrespective of 2001 land cover and for agri-
culture, forest, and urban classes individually. Overall, 
there was not enough evidence to reject the hypotheses 
that the observed versus predicted regression lines were 

The three models (multi-season, leaf-on, and reduced) 
were compared using the hold-out dataset. Models were 
examined in terms of root mean square error (RMSE), and 
pseudo-R2. Pseudo-R2 was calculated as 1 – (SSerror/SScc) where 
SSerror was the sum of squared model error and SScc was the 
sum of squares for observed canopy cover in the hold-out 
dataset. We also statistically compared the three models using 
the Kolomogrov-Smirnov two sample test (KS) and analysis of 
covariance (ANCOVA). The KS was used to test for differences 
in the predicted canopy cover distribution among the three 
models and the difference between observed and predicted 
distributions for each model. ANCOVA was used to test for 
equality of slopes and intercepts in the observed versus pre-
dicted regression line. Steel et al. (1997) provide background 
on these statistical tests. We used ANCOVA to examine model 
differences across all land cover types as well as for forest, 
agricultural and urban land covers specifi cally. Both the KS 
and the ANCOVA assume that the data are independent. This 
was the motivating factor for fi tting the three models based on 
independent samples and predicting canopy cover for a hold-
out dataset. 

Accounting for phenology is a motivating factor for 
using multi-date imagery to develop empirical models of 
tree canopy cover. Phenology is infl uenced by a variety of 
factors such as topography (Hwang et al., 2011), land cover, 
and climate such as minimum temperature (White et al., 
2002). Minimum temperatures are also used to identify plant 
hardiness zones (USDA, 2012). Because topography and 
land cover were explicitly accounted for in our modeling 
effort, we relied on climate to indicate where our results 
would likely be relevant. To accomplish this, we focused on 
1981 to 2010 estimates of monthly average daily minimum 
temperature acquired from the PRISM Climate Group (PRISM 
Climate Group, 2012). These data were in raster format and 
modeled at a spatial resolution of 30-arcseconds. We per-
formed a Fourier regression on the monthly time series of 
monthly average daily minimum temperature for each pixel. 
Fourier regression is a common technique used to identify 
and model periodicity in time-series data (Brocklebank and 
Dickey, 1986). It has also been used to quantify phenologi-
cal patterns based on vegetation indices (e.g., Brooks et al., 
2012; Wilson et al., 2012). For our application we developed 
each model based on one cycle per 12 months using the fol-
lowing model: 

Tm = t + asin(2pm/12) + bcos(2pm/12) + e 

where Tm is the average minimum daily temperature for 
month m, t is the average minimum daily temperature across 
months, a and b are estimated parameters controlling the 
amplitude and shape of the curve, and e is error. The model 
was parameterized for each pixel using ordinary least squares. 
The regression models developed within the study area were 
then compared to the regression models developed from 
outside the study area using the Wald test (see Harrell (2001) 
for background). For each pixel outside the study area we 
retained the probability that t, a, and b were equal to the most 
similar t, a, and b from within the study area.

Results
Based on the photo-interpretation of the 4X sample, the aver-
age percent canopy cover (across all 2001 NLCD land cover 
classes) was 66 percent (s.e. 0.53 percent) in the GA study 
area. The average percent tree canopy cover was 34 percent 
(s.e. 0.12 percent), 84 percent (s.e. 0.45 percent), and 41 
percent (s.e. 0.94 percent) in the NLCD 2001 agriculture, forest, 
and urban land cover, respectively. 

TABLE 2. MODEL FIT STATISTICS FOR EACH MODEL

Model RMSE R2

Leaf-on 15.01 0.81

Multi-season 14.02 0.83

Reduced 14.10 0.83
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coincident for each of the models (multi-season, leaf-on, 
and reduced) (Table 3). When not considering land cover 
class, all three models had slopes of approximately 1 and 
intercepts within 0.58 percent of zero. When examining 
the agriculture and urban land cover classes, intercepts 
were generally within 3 percent of zero and slopes were 

close to one, but as noted earlier, there was no statistical 
difference among models. In general, the intercepts for all 
models when considering the agriculture and urban land 
covers were negative. This indicated over-prediction at 
low canopy cover as evident in Figure 3. Intuitively one 
would expect under-prediction at low levels of canopy 
cover in the forest cover classes because the intercepts 
for all models were greater than zero. However, the actual 
case was that over-prediction occurred at low canopy 
cover. In the case of the forest land cover classes, the slope 
and intercept of the observed versus predicted regression 
line was heavily driven by the large number of observa-
tion where both the observed and predicted canopy cover 
were greater than say, 80 percent. In this range, percent 
canopy cover was also under-predicted and because of the 
density of observation this caused the intercept to be posi-
tive even though the few observations with canopy cover 
less than say, 20 percent were clearly over-predicted by all 
three models (Figure 3).

To speculate on the likely applicability of our fi ndings to 
other areas we relied on Fourier regression of average 1981 to 
2010 monthly average daily minimum temperature for each 
pixel in an area surrounding our study area. The total area 
examined was based on seven US Geological Survey mapping 
zones (Homer and Gallant, 2001) (Figure 4). The per-pixel 
Fourier regression models, across this broader area, had R2 
ranging from 0.94 to 0.99. We examined probability that t, a, 
and b were equal to the most similar t, a, and b from within 
the study area using a Wald test. Based on probabilities from 
the Wald test, our results may be applicable to much of the 
Piedmont and foothills of the Southeastern United States 
where the probability that regression parameters were equal 
to regression parameters within the study area exceeded 0.95 
(Figure 4). Conversely, our results may not be applicable to 
the outer and southern Coastal Plain of the Southeastern 
United States. 

Figure 2. Cumulative distribution of observed tree 
canopy and predicted tree canopy cover based on the 
leaf-on, multi-season, and reduced models.

TABLE 3. INTERCEPT AND SLOPE OF THE OBSERVED VERSUS PREDICTED LINE FOR EACH MODEL ACROSS 2001 
LAND COVERS, AND BY AGRICULTURE, FOREST, AND URBAN LAND COVERS; THE RESULTS 

OF THE ANALYSIS OF COVARIANCE ARE ALSO PROVIDED

Land Cover Model Intercept Slope

All Leaf-on 0.00 1.00

Multi-season −0.50 1.01

Reduced 0.58 1.00

P-value 0.66 0.70

Agriculture Leaf-on −2.79 1.05

Multi-season −1.42 1.02

Reduced −2.41 1.08

P-value 0.75 0.88

Forest Leaf-on 14.59 0.84

Multi-season 12.46 0.87

Reduced 11.47 0.87

P-value 0.59 0.36

Urban Leaf-on −1.69 1.01

Multi-season −2.74 1.02

Reduced −3.73 1.08

P-value 0.68 0.55
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Discussion
The scope of this research was to identify whether using 
multi-season imagery as explanatory variables resulted in 
more accurate empirical models of percent tree canopy cover. 
The answer to this question lies in a discussion of model 
accuracy and parsimony. Generally speaking, when models 
are equally complex, the most accurate model is preferred 
and when models are equally accurate, the simplest model is 
preferred. This concept follows Occam’s razor. In our par-
ticular case all models were equally accurate based on the 
KS and ANCOVA tests. The reduced model was the simplest 

model and the multi-season model was the most complex in 
terms of the number of predictor variables. However, to apply 
our logic to select a model, we must consider not just the 
number of predictor variables used in the model, but also the 
time invested in constructing and managing the explanatory 
data. Both the multi-season and the reduced model require 
the acquisition, storage, and processing of three times more 
Landsat data. Also, while the reduced model is simpler than 
the multi-season model, the leaf-on model is the simplest in 
terms of Landsat data acquisition, storage, and processing. 
Therefore in this case we recommend using leaf-on imagery as 

Figure 3. Observed versus predicted canopy percent canopy cover, based on a hold-
out dataset, for all land cover classes, agricultural classes, forest classes, and urban 
classes based on the multi-season model, the leaf-on model, and the reduced model. The 
solid line is the observed versus predicted regression line with parameters as described 
in Table 3.
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opposed to multi-season imagery. However, we acknowledge 
that this recommendation is more applicable when relatively 
broad geographic extents, comprised of numerous scenes, are 
modeled and imagery is minimally pre-processed. For smaller 
geographic areas, or if pre-processed imagery is available, 
the multi-season, leaf-on, or reduced models are all equally 
appropriate.   

Similarity among models was expected when examin-
ing model performance irrespective of NLCD 2001 land cover 
class. However, we did expect to observe some marked dif-
ferences in model performance particularly in agricultural 
areas. Hypothetically, multi-season imagery should allow 
for better separation between vegetative cover with distinct 
phenological cycles (e.g., Brooks et al., 2012). This in turn 
should result in smaller errors for agricultural fi elds and 
residential urban areas. There are at least three plausible 
explanations for the similarity among models in agricultural 
and urban land covers. The fi rst potential explanation is that 
the three date time series was not suffi ciently dense, from a 
temporal perspective, to adequately capture the phenologi-
cal profi les associated with different vegetation. The second 
potential explanation is that phenological differences at the 
pixel-level only account for a small proportion of the vari-
ability in subpixel tree canopy cover. The third potential 
explanation is that including land cover as an explanatory 
variable accounted for most of the variation in phenological 
cycles among various vegetative covers. However, we tested 
the third potential explanation by removing land cover from 
the empirical models. This did not yield signifi cantly dif-
ferent models. The fi rst two potential explanations are the 
most likely. 

We used an extrapolation technique to identify other 
areas in the Southeastern United States where our results 
may be applicable. This approach assumed that average daily 
minimum temperature is a driver of phenology which is 
consistent with White et al. (1997) except that we used long-
term averages rather than daily values. This approach was 
also based on the notion that phenology provides the motiva-
tion to use multi-season imagery. Phenology and modeling 
phenology is clearly more complex than the approach we 
have taken. Regardless, our goal was not to quantify phenol-
ogy per se but rather to identify areas where one might expect 
a similar phenology, as driven by minimum temperature, 
and hence similar results regarding models of percent tree 
canopy cover when similar explanatory variables are used. 
We suggest that our results may be applicable to the Piedmont 
of the Southeastern United States. However, our results may 
be more broadly applicable if the reason behind our fi nding 
is that phenological differences, as defi ned by three seasons 
of imagery at the pixel-level, only account for a small propor-
tion of the variability in subpixel tree canopy cover but this 
remains to be tested.

The models we developed provided reasonable results 
across land cover classes and for the agriculture and urban 
classes based on the intercepts and slopes of the observed 
versus predicted regression lines. However, the results for the 
forest land cover require more attention. As shown in Table 3, 
the intercept was approximately 12 percent across the three 
models. Upon closer examination, we observed that the den-
sity of percent tree canopy cover estimates in the 65 percent 
to 90 percent range were the primary driver of the slope and 
intercept parameter estimates in the forest land cover class 

Figure 4. The probability of similar monthly minimum temperature profi les to the study area. The 
probabilities were from the Wald test which compared Fourier regression parameters of areas out-
side the study area to the most similar Fourier regression parameters from within the study area.
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(Figure 5). The under-prediction in this range of canopy cover 
is counterintuitive to saturation issues of explanatory vari-
ables such as NDVI and may be more related to the infl uence 
of bare ground on vegetation indices as described by Sellers 
(1985). Given the importance of percent tree canopy cover 
in, for example, fi re modeling applications, more research 
should be focused on improving the model predictions for 
forested areas. One potential approach is to fi t separate models 
for each land cover class, perhaps at the Anderson Level I 
classifi cation. Hypothetically this would allow for more fl ex-
ibility in the model parameterization by land cover class and 
alleviate the underestimation at low-levels of canopy cover as 
described here.  

There are numerous examples of model assessment tech-
niques. Duane et al. (2010) and Riemann et al. (2010) are some 
recent examples. However, there are few examples of appro-
priate use of statistical test from either a parametric or non-
parametric perspective. One of the key challenges to using 
statistical tests is the assumption of independent samples. In 
the research presented here, we overcame this issue by fi tting 
three models using three independent samples, and predict-
ing values using each model to a fourth independent sample. 
In many cases, researchers do not have enough data to take 
this approach. One alternative is the chi-square test for nested 
models (see for example, Satorra and Bentler, 2001). However, 
the signifi cance of the test statistic can only be assessed when 
the degrees of freedom for each model can be specifi ed. In 
the typical regression scenario this equates to the number of 
estimated parameters that a model contains. Clearly specify-
ing the degrees of freedom for a learning based model (such as 
random forest or stochastic gradient boosting) is problematic, 
but one area of future research is to develop an approach to 
approximate the degrees of freedom for these types of models. 

In summary, we found that empirical models of per-
cent tree canopy cover were not signifi cantly improved by 

including multi-season imagery as explanatory variables. We 
also found the empirical models of canopy cover based on the 
wise selection of 18 explanatory variables (reduced model) 
performed as well as models developed from 33 explanatory 
variables (leaf-on model) and 73 explanatory variables (multi-
season model). All three modeling strategies are equally 
valid and we suspect that these results apply to much of the 
Piedmont in the Southeastern United States. 
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