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ABSTRACT

Aim Geographic mapping of risks is a useful analytical step in ecological risk

assessments and in particular, in analyses aimed to estimate risks associated

with introductions of invasive organisms. In this paper, we approach invasive

species risk mapping as a portfolio allocation problem and apply techniques

from decision theory to build an invasion risk map that combines risk and

uncertainty in a single map product.

Location Canada.

Methods We divide the study area into a set of spatial domains and treat each

domain as an individual ‘portfolio’ with a unique distribution of the expected

impacts of invasion. The risk of invasion is then mapped by finding nested

‘efficient’ portfolio sets that identify the geographic areas exhibiting the worst

combinations of the estimated risk of invasion and the uncertainty in that esti-

mate. For Canadian municipalities, we apply the approach to quantify the risk

that a given location will receive invasive forest pests with commercial freight

transported via the North American road network. We compare risk allocation

techniques that employ the concepts of nested mean-variance (M-V) frontiers

and second-degree stochastic dominance.

Results While both methods based on M-V and the stochastic dominance

principles identified similar areas of highest risk, they differed in how they

demarcated moderate-risk areas. Furthermore, they address uncertainty in dif-

ferent ways, treating it as a risk premium (in the case of nested M-V frontiers)

or producing risk-averse delineations (in the case of stochastic dominance).

Main conclusions The portfolio-based approach offers a viable strategy for

dealing with the typically wide variability in risk estimates caused by a lack of

knowledge about a new invader. The methodology also provides a tractable

way of incorporating decision-making preferences into the final risk estimates

and thus better aligns risk assessments with particular decision-making scenar-

ios about the organism of concern.

Keywords

Epistemic uncertainty, human-assisted spread, invasibility, mean-variance

frontier, road network, stochastic dominance.

INTRODUCTION

Geographic mapping of risks is a common exercise in many

environmental disciplines, for example, the analysis of flood-

ing (B€uchele et al., 2006; FEMA, 2003) or environmental

hazards (Briggs, 2000), and in particular, in assessing the

risks of invasive species (Boender et al., 2007; Magarey et al.,

2009; Venette et al., 2010). In general terms, ‘pest risk map-

ping’ can be described as the prioritization of geographic

domains facing the threat of establishment of a non-native

organism (Koch et al., 2009; Yemshanov et al., 2009a; Magarey

et al., 2011). The geographic area of concern is divided into
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a set of small units, so each element can be prioritized by

the potential for the invader to be established and cause

damage to a host resource.

Risk maps use a variety of metrics, such as the likelihood

of the pest’s arrival (Koch et al., 2011; Yemshanov et al.,

2012a) or projected resource losses (Borchert et al., 2007;

Yemshanov et al., 2009b), to describe the estimated risk of

pest invasion. The choice of risk metric is often operationally

driven. For example, if a risk map is used to guide early

detection, then a metric related to introduction is probably

more relevant than one measuring impact (Magarey et al.,

2009; Venette et al., 2010). Frequently, the measure of risk is

translated into an ordinal-scale variable (i.e. a rank) which,

in turn, is used to identify the decision-making priorities in

the geographic area of interest (FHTET, 2007a,b).

When knowledge about an invasive organism is poor

(a typical situation for alien species), the measures of risk

tend to be depicted in coarse, ‘high–low’ terms (Andersen

et al., 2004; Baker et al., 2005; Simberloff, 2005). The use of

imprecise data often leads to considerable uncertainty in the

final risk estimates (Andrews et al., 2004; Koch et al., 2009).

Because risk maps are used to inform decision-making, the

proper representation of uncertainty is critically important

(Morgan & Henrion, 1990; Gigerenzer, 2002). In general,

decision-makers responsible for managing introductions of

unwanted organisms are risk averse (i.e. they prefer the more

certain course of action from two alternative choices with

equal expected values; Shefrin & Belotti, 2007). Experts also

tend to misjudge uncertainty by a considerable margin

(Kahneman et al., 1982). Hence, risk maps that do not

incorporate uncertainty – thus placing the burden on deci-

sion-makers to address uncertainty implicitly – may lead to

decision-maker overconfidence in a biased assessment.

Therefore, the uncertainty associated with the estimated risk

stands as an important decision variable that should be

directly incorporated (i.e. by the analyst, rather than the

decision-maker) into the species’ risk map (Venette et al.,

2010). In practice, the uncertainty estimates are rarely

integrated and, if addressed at all, are usually presented as a

separate map (Koch et al., 2009; Yemshanov et al., 2009a),

which decision-makers may ignore or find confusing.

Our goal with this paper was to compare a set of quantita-

tive methods for combining an estimate of pest arrival risk

and its uncertainty in a single product (so that the uncer-

tainty cannot be ignored) and, just as importantly, to con-

sider how the identified methods relate to the preferences

and priorities of decision-makers tasked with the manage-

ment of invasive species.

METHODS

Applying portfolio valuation techniques to map risks

of ecological invasions

The decision-making trade-off between the estimated threat

of invasion and the uncertainty in that estimate is

remarkably similar to the problem of identifying an ‘efficient’

portfolio set in financial asset allocation. In our case, the

likelihood that an invasive pest of interest will arrive at a

previously uninvaded location can be seen as analogous to

the concept of ‘net return’ in financial asset valuation, while

the uncertainty of that probability estimate is, in turn, analo-

gous to the concept of ‘volatility’ (Arrow, 1971; Elton &

Gruber, 1996). We consider each map element as an individ-

ual ‘portfolio’ with an associated distribution of estimated

risks of invasion. In portfolio allocation, the usual objective

is to narrow down a theoretically infinite set of portfolio

combinations to the fewest possible choices (an ‘efficient

set’) that have the best trade-offs between net returns and

their volatilities (Elton & Gruber, 1996). In our pest risk

mapping scenario, the ‘efficient’ set represents the worst

combination of the estimated invasion risk and the uncer-

tainty of that estimate. Because each map element is treated

as an individual portfolio, the total number of portfolios is

equal to the number of elements in the map. The risk map-

ping problem can then be envisioned as akin to a portfolio

selection strategy: the highest-risk areas in the map can be

delineated by finding an ‘efficient set’ of ‘portfolios’ (individ-

ual map elements).

Under classical portfolio theory, allocation usually aims to

define a single most efficient set of portfolios (Ingersoll,

1987; Elton & Gruber, 1996). A single set is sufficient

because it is assumed that any investment amount can be

allocated simply in specified proportions to the set of portfo-

lios. However, allocation of resources in ecological pest man-

agement is somewhat more complex, often including

financial or personnel constraints that may be poorly charac-

terized during the risk analysis process. Thus, a goal of our

risk mapping study is to provide an analysis incorporating

risk and uncertainty for every map element. This was accom-

plished by delineating nested ‘efficient’ sets for all map ele-

ments. First, we evaluated the distributions of invasion risk

at all n map elements comprising our study area to find a

subset, @1, among n locations with the worst combinations

in terms of projected invasion risk and its uncertainty

(in short, @1 is analogous to the ‘efficient set’ in financial

asset allocation terms). Once the first efficient set @1 was

found, it was assigned the highest-risk rank 1 and removed

from set n temporarily. Next, a second efficient subset, @2,

was determined from the rest of the map, n�@1, assigned a

rank of 2, and so forth. The process was repeated until all

map elements had been evaluated and assigned a risk rank.

Conceptually, this technique is similar to algorithms for

finding nested non-dominated sets (Goldberg, 1989) and

multi-attribute frontiers (Yemshanov et al., 2010, in press).

Ecological invasion model

The portfolio allocation technique required estimating mea-

sures of projected likelihood of invasion and its uncertainty

at each map element. We generated these measures with a

stochastic invasion model. Spatial stochastic models have
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been increasingly used for assessing risks of ecological inva-

sions (Rafoss, 2003; Muirhead et al., 2006; Cook et al., 2007;

Pitt et al., 2009; Prasad et al., 2010; Potts et al., 2013) and

the movement of invasive organisms in the transport

networks (Robinet et al., 2009; Carrasco et al., 2010). Here,

we applied a stochastic model that predicted the human-

mediated movement of invasive forest pests through a trans-

portation network linking major and minor settlements

across Canada. In short, volumes of transported cargoes

typically associated with invasive forest pests were modelled

using a system of pathways through which an invader is

likely to be moved (Yemshanov et al., 2012a,b). The model

did not consider local spread of pests by biological means,

instead focusing on movement through the road network.

Indeed, our choice of a pathway-based model was aimed to

emphasize the importance of human-assisted spread over

long distances, a phenomenon that many ecological dispersal

models cannot predict well (see Andow et al., 1990; Buchan

& Padilla, 1999; Melbourne & Hastings, 2009).

The movement of traded commodities has been recog-

nized as a reasonable predictor of the human-mediated

spread of invasive pests (Tatem et al., 2006; Hulme et al.,

2008; Floerl et al., 2009; Hulme, 2009). We used a Commer-

cial Vehicle Survey (CVS) maintained by Transport Canada

(Yemshanov et al., 2012a,b) as our primary data source. The

CVS database stores summaries of individual commercial

freight shipment routes (i.e. involving commodities associ-

ated with forest pests) collected during a 2005–2007 survey

at truck weigh stations across Canada. A full description of

the database and the pathway model can be found in the

study by Yemshanov et al. (2012a) (see also Appendix S1 in

Supporting information); here, we summarize only the

model details germane to this study.

Essentially, the model represents an n 9 n pathway matrix

where each matrix element defines the probability, pij, of an

invasive forest pest being moved with commercial truck

transport from one location, i, to another, j (see Appendix

S1 in Supporting information). The set of locations in the

pathway matrix included �3000 major municipalities in

Canada and the United States.

We used the pathway matrix (Appendix S1 in Supporting

information) to generate stochastic realizations of potential

movements of a hypothetical pest of interest through the

transportation network. Starting from each point of ‘origin’

i, the model simulated the subsequent movements of the pest

from i to other locations j by extracting the associated vector

of probabilities pij from the pathway matrix and using it to

select the next pathway point. The process continued until

the chosen node had no outgoing paths or a terminal state

was selected based on the pathway matrix (Appendix S1 in

Supporting information). Finally, a rate of pest arrival was

estimated from the number of the times the pest arrived at j

from i over the multiple stochastic pathway realizations:

/ij ¼ Ji=K (1)

where Ji is the number of individual pathway simulations

where the pest was introduced at location i and arrived at

location j, and K is the total number of individual simulations

of pathway spread from i (K = 2 9 106 for each point i). The

values of φij were estimated for each (i, j) pair of ‘origin-

destination’ nodes, requiring a total of K [φij(φij�1)] path-

way simulations.

The results were then rearranged so each j ‘destination’

location in the road transportation network was character-

ized by a distribution, wj, of the pest arrival rates φij, from

all other nodes i, i 6¼ j. Essentially, this distribution described

the location’s invasibility, that is, the risk that it will receive

a forest pest with commercial freight transported from else-

where. Because the distribution at each potential destination

point represents a multitude of arrival rate estimates from

different types of origin locations, then the uncertainty in

this distribution depends on the configuration of the path-

way network and the levels of the transportation flows along

particular pathway segments; in short, the uncertainty derives

from variability in the underlying network model and data,

rather than the stochasticity of the individual Monte Carlo

draws during the pathway simulations. Note that these distri-

butions do not represent uncertainty associated with a lack

of knowledge about a given pest of interest. Furthermore,

our exploration of the uncertainty in the arrival rates

assumes that the topology of the transportation network is

known in general terms.

In order to generate a spatially continuous geographic cov-

erage, we further aggregated the location-based (i.e. point-

based) arrival rate values into area-based estimates. Thus,

each cell in a 15 9 15-km gridded map across Canada was

characterized by a distribution of n�1 pest arrival rates, wj,

from other locations in North America. We then used these

distributions to build risk maps via portfolio allocation

techniques.

Basic portfolio allocation techniques

We examined two basic portfolio allocation techniques that

employ, respectively, the concepts of mean-variance (M-V)

frontier (Markowitz, 1952; Arrow, 1971) and second-degree

stochastic dominance (SSD; Porter, 1978; Levy, 1998). We

also compared these allocation techniques with a simple

metric calculated as the weighted sum of the mean risk

estimate and its variance [a certainty equivalent (CE); Gerber

& Pafumi, 1998].

Mean-variance frontiers

The M-V concept is a visually appealing technique that, in

our pest risk mapping context, plots all map cells in the

dimensions of the mean risk value (�wj, the average rate of

pest arrival, across all simulations, for a map cell j) and the

standard deviation of that estimate, r(wj), which serves as a

measure of uncertainty (Fig. 1a). The points, and corre-

sponding map cells, in the outermost boundary of this
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two-dimensional cloud [i.e. comprising a convex frontier

with the worst combinations of �wj and r(wj)] are classified as

the highest risk (i.e. assigned a risk rank of 1). Then, the

points in this outermost boundary of the M-V cloud are

removed and the estimation proceeds inward until all points

are evaluated and assigned a corresponding risk rank

(Fig. 1a). Note that this delineation differs from applications

of the M-V concept in economic literature, which typically

identify the innermost convex boundary of lowest variance

and highest net returns (Arrow, 1971; Elton & Gruber, 1996).

Stochastic dominance

The stochastic dominance (SD henceforth) concept is a form

of stochastic ordering that compares a pair of distributions.

The concept has been previously applied to compare the dis-

tributions of portfolio returns in financial asset valuation

(Hanoch & Levy, 1969; Rothschild & Stiglitz, 1970) and

shares many aspects with the partial ordering of vectors

(Whitemore & Findlay, 1978; Levy, 1992).

The SD rule compares two distributions based on their

cumulative distribution functions, or CDFs (Levy, 1998). In

our case, we compare two risk map locations, f and g. At each

location, the assemblage of plausible invasion outcomes is

described by the distribution, f(wj) or g(wj), of the pest arrival

rate wj over an interval [a;b], wj � 0, a = 0 and b = 1

(Fig. 1b). The SD test compares the distributions at f and g as

represented by their respective CDFs, FðwjÞ ¼
R wj

a f ðwjÞdw
and GðwjÞ ¼

R wj

a gðwjÞdw. Location f dominates g by the

first-degree stochastic dominance rule (FSD) if

GðwjÞ � FðwijÞ� 0 for allwj and

GðwjÞ � FðwjÞ > 0 for at least onewj

(2)

The FSD rule implies that the CDFs of f and g do not cross

each other (Fig. 1b). In practice, differences between G(wj)

and F(wj) can be small, which causes the FSD conditions to

fail. Alternatively, SSD provides weaker but more selective

discrimination by comparing the integrals of the CDFs for F

(wj) and G(wj):
R wj

a FðwjÞdw and
R wj

a GðwjÞdw. Location f

dominates the alternative g by SSD if

Z wj

a

½GðwjÞ � FðwjÞ�dw� 0 for allwj andZ wj

a

½GðwjÞ � FðwjÞ�dw > 0 for at least onewj

(3)

The SSD condition implies that the integrals of the CDFs

for F(wj) and G(wj) do not cross (Fig. 1b). Because G(wj)

and F(wj) represent the entire distributions of estimated pest

arrival rates at locations f and g, uncertainty in the wj values

may cause the dominance conditions to fail and therefore

becomes a part of the comparison process. Importantly, the

SSD rule satisfies the assumption that the decision-maker is

risk averse: given two choices with the same expected (mean)

value, the more certain choice is always preferred (Levy,

1998; Levy & Levy, 2001).

Our risk mapping study analysed the set of n map ele-

ments via multiple SSD tests. Each test evaluated the distri-

butions of the area-based pest arrival rates wj at two

geographic locations (i.e. two map cells) f and g. Based on

multiple pairwise SSD comparisons of map elements, we

then delineated a non-dominant subset @1 from the total set

n such that each element of @1 could not be dominated by

any element in the rest of the set, n�@1 (according to the

SSD rule, equation 3). Basically, @1 is equivalent to an ‘effi-

cient set’ in asset allocation literature (Porter et al., 1973;

Fishburn & Vickson, 1978; Porter, 1978; Post & Versijp,

2007). After the first non-dominant subset @1 was found,

assigned a risk rank of 1 and removed from set n, the next

non-dominant subset was found, assigned a risk rank of 2

and so on until all elements of n were evaluated.

The delineation of nested efficient subsets is a sequential

process, which we undertook in two directions. The
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Figure 1 The concepts of nested multi-

attribute mean-variance frontiers and

stochastic dominance: (a) ranking risk of

invasion via nested multi-attribute

frontiers in dimensions of mean arrival

rate and its variance; (b) comparing two

distributions of invasion risk, wj, via the

SSD rule: f(wj) and g(wj) are example

distributions of pest arrival rates at two

corresponding map locations, f and g; F

(wj) and G(wj) are the cumulative

distribution functions (CDFs) of f(wj)

and g(wj);
R wj

a FðwjÞdw and
R wj

a GðwjÞdw
are the integrals of the CDFs. The ‘SSD’

label highlights a key second-order

stochastic dominance condition (i.e.R wj

a FðwjÞdw and
R wj

a GðwjÞdw do not

cross each other).
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‘top-down’ approach delineated the non-dominant subsets @
starting from the map cells with the highest estimated risk of

invasion (i.e. with the highest values from their wj distribu-

tions). The bottom-up approach used the inverted wj values

and started the delineation of the subsets @ from the loca-

tions with the lowest risk and identified the highest-risk areas

through step-by-step elimination of the lower-risk domains.

Note that in both cases, the CDFs were integrated in ascend-

ing order starting from the lowest value in the CDF (i.e.

from a to wj in equations 2 and 3); hence, the dominance

relationships in either case satisfy a risk-averse choice (Gasb-

arro et al., 2009).

Certainty equivalent

The CE is a comparatively simple metric that is a weighted

sum of mean risk values �wj and their variance r2(wj) for

each map cell j (Gerber & Pafumi, 1998):

CEj ¼ � ð�wj þ kar2ðwjÞÞ (4)

where �wj is the mean pest arrival rate (the minus sign

assumes the impact of the pest’s arrival is negative), k is a

weighting coefficient, a is the degree of a decision-maker’s

risk aversion, and r2(wj) is the variance of the arrival rate

values. Here, we examine the CE approach with k value set

to 1 (i.e. with no weighting) and the �wj and r2(wj) values

rescaled to a [0; 1] interval. Because information about the

degree of decision-makers’ risk aversion is often unavailable

in pest management situations, we set the a value to 1. Note

that the other method of risk-averse prioritization (i.e. the

SSD rule) used in this study did not require an explicit

specification of the degree of risk aversion; hence, the

possible variation in a was not considered here.

Comparing the risk allocation techniques

We compared the risk ranks generated with the four afore-

mentioned techniques (M-V, the top-down and bottom-up

SSD rules, and CE) using the outputs of the stochastic inva-

sion model (i.e. the distributions of the pest arrival rates at

each map location j). To compare the results, we inverted and

rescaled the risk ranks (or values, in the case of CE) generated

by all techniques to a 0–1 range, so the ranks denoting the

highest risk were close to 1 and the lowest risks were close to

0 (Fig. 2 and Appendix S2 in Supporting information). We

then explored the impact of uncertainty by plotting the

rescaled risk ranks, rj, in the dimensions of the mean arrival

rate value, �wj, and its standard deviation, r(wij) (Fig. 3).
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Figure 2 A comparison of risk delineations based on the certainty equivalent (CE), standard deviation of the pest arrival rate, nested

mean-variance frontiers (M-V) and the stochastic dominance rule [top-down and bottom-up second-degree stochastic dominance

(SSD)]. The maps show a portion of eastern Canada with the highest risk estimates. To better compare the geographic allocations of

high- and low-risk areas, the map legends of the standard deviation and CE ranks were adjusted to resemble the colour palettes of the

M-V and SSD maps.
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Estimating the risk ranking errors

We estimated the standard error of the rescaled risk ranks,

se(rj), via bootstrap and jackknife tests. These tests were used

to evaluate two different sources of error. Bootstrapping esti-

mates the sampling distribution of a population by generating

new samples via drawing (with replacement) from the original

data (Efron & Tibshirani, 1993). Alternatively, jackknifing esti-

mates the error by computing the risk ranks for n combina-

tions of the data where one of the original elements (map

cells) is removed (a leave-one-out jackknife; Shao & Tu, 1995).

The bootstrapping test involved simulating, for each map

location j, B independent bootstrap samples with replace-

ment of size n where each independent value of wj (i.e. the

distribution of arrival rate values for j) was sampled with the

probability 1/n. For each bootstrap sample, we then recalcu-

lated the rescaled risk ranks, r�j boot, using the M-V and SSD

approaches. The bootstrap standard error was estimated as

seðrjÞboot ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

B� 1

XB
1

ðr � j boot � �r � j bootÞ2
vuut ;

where �r � j boot ¼ 1

B

XB
1

r � j boot

(5)

The bootstrap used here involves resampling arrival rates

from different model runs. Thus, se(rj)boot gives a measure of

the variability in rank for map location j that is due to using

a finite number of model runs, rather than a hypothetical

infinite set composed of all possible model runs.

In the jackknife test, for each map location j, we generated

n samples of size n�1 by leaving out one location at a time

and recalculating the rescaled ranks, r�jjack. The standard error

was calculated as

seðrjÞjack ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 1

n

Xn
1

ðr� j jack � �r� j jackÞ2
s

where �r � j jack ¼ 1

n

Xn
1

r � j jack

(6)

The jackknife used here involves resampling from map

locations. Thus, se(rj)jack gives a measure of the variability in

rank for map location j that is due to a change in the net-

work configuration.

To understand how relative rank related to these two

sources of variability, we plotted the bootstrap and jackknife

standard errors against the rj values. For consistency, we used

the same number of resamples in both tests (i.e. B = n).

RESULTS

Broad-scale geographic risk patterns

Appendix S2 depicts the nationwide geographic pattern of risk

ranks across Canada based on the top-down SSD rule. The

0

0.00005

0.0001

0 0.001 0.002
0

0.00005

0.0001

0 0.001 0.002

Certainty equivalent (CE) (b)  Nested mean-variance
frontiers (M-V)

0

0.00005

0.0001

0 0.001 0.002

 0.91-1
 0.91-0.85
 0.85-0.7
 0.7-0

0

0.00005

0.0001

0 0.001 0.002

0.3-1
0.3-0.2
0.2-0.1
0.1-0

Second-degree stochastic dominance (SSD):
(c) Top-down SSD ranking (d) Bottom-up SSD ranking

Standard deviation, σ(ψj)

M
ea

n 
ar

riv
al

 ra
te

, ψ
j

Risk rank:Risk rank:

β

β

β

(a)

Figure 3 The rescaled risk ranks, ri, in

dimensions of the mean pest arrival rate,
�wj, and its standard deviation, r(wj). b
denotes the tilt angle between the

boundaries of risk classes in the mean-

variance cloud and the line indicating

constant mean arrival rate (wj = const).

The levels of broad risk classes in the

second-degree stochastic dominance

(SSD) classifications (different symbol

types in c and d) are similar to the

symbol levels in the mean-variance

(M-V) classification (see legend in b).
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map generally highlights how Canada’s major transportation

arteries serve as key pathways for new pest arrivals. For

example, in eastern Canada, the areas labelled as moderate to

high risk (rj > 0.75) are associated with major transportation

hubs in Ontario and Quebec: municipalities located along the

Highway 401 corridor between the Detroit (MI)-Windsor

(ON) area and Montreal (QC). Moreover, although most of

the arrival hotspots are located in eastern Canada (Appendix

S2, a), one noteworthy region in western Canada is the greater

Vancouver area (BC), extending to the nearby border crossing

with the United States (Appendix S2, b).

Figure 2 compares maps of risk ranks based on the CE, M-

V and SSD rules (both top-down and bottom-up approaches)

with a map of the standard deviation, r(wj), of the arrival

rate values. All ranking methods provided similar delineations

of the highest-risk areas (Fig. 2). Among the portfolio-based

classifications (i.e. based on the SSD and M-V rules), the top-

down SSD delineation showed the largest number of high-risk

ranks above 0.9 (Fig. 2d). The high-risk areas delineated by

all three portfolio-based classifications (Fig. 2c–e) were typi-

cally areas with high variability in wj (represented by high r
(wj) values; see Fig. 2b).

Table 1 lists major municipalities that were assigned a

top-20 risk rank by at least one ranking method (shaded cells

in Table 1). The top-20 lists generated with the M-V and

SSD methods are different from the ranks based on the mean

arrival rate (�wj) and the CE. For example, five locations in

the top-20 lists for the M-V and SSD delineations – Iroquois

(ON), Moncton (NB), Drummondville (QC), Trois-Rivieres

(QC) and Sainte-Madeleine (QC) – had considerably lower

ranks in the classifications based on the CE and the mean

arrival rate. Because the probabilistic pathway model consid-

ered only forest-pest-associated commodities transported via

the road network, not all major Canadian municipalities

appeared in the list of the highest ranks. For example, large

cities such as Edmonton (AB), Vancouver (BC) and Saska-

toon (SK) had moderate-risk ranks, rj < 0.85.

Risk ranks in dimensions of the mean arrival rate

and its standard deviation

Uncertainty figures prominently in the delineations based on

the M-V and SSD rules (Fig. 2). This is evident when the

rescaled risk ranks, rj, for individual map cells are plotted in

the dimensions of mean pest arrival rate (�wj) and its

standard deviation, r(wij) (Fig. 3). Different symbols in

Fig. 3 delineate broad classes of risk ranks: 0–0.7, 0.7–0.85,

0.85–0.91 and 0.91–1 for the M-V and SSD delineations and

0–0.1, 0.1–0.2, 0.2–0.3 and 0.3–1 for the CE ranks.

The CE approach delineated the boundaries between these

risk rank classes as parallel planes at equal intervals (dashed

lines in Fig. 3a). The boundaries between the risk classes in

Fig. 3a were always tilted at an angle, b, above 90 degrees

(which means that a location with the same mean arrival rate

as another location, but higher variability, will receive a

higher-risk rank). The boundaries between ranks delineated

with the M-V rule were similarly tilted at b > 90°, but they
were not parallel as in the CE approach; instead, their

angles were uniquely influenced by the local density of points

in the M-V cloud. This behaviour is expected: because the

M-V ranks are delineated as nested two-attribute (M-V) fron-

tiers (Fig. 1a), the adjacent M-V frontiers are expected to be

much closer to each other when passing through a high-

point-density area than through a low-point-density area.

Note also that the delineation of the M-V ranks starts from

the outermost upper part of the M-V point cloud, which

explains the tilt angle above 90 degrees.

For the delineations based on the SSD rule, the tilt angle b
of the boundaries between the risk classes was below 90°
(Fig. 3c, d). This implies that between two locations with

equal mean arrival rates, the location with the more certain

estimate (i.e. with lower variability) would be assigned a

higher rank. There are also noteworthy differences in the risk

ranks delineated by the top-down and bottom-up SSD

approaches. As described previously, in the top-down SSD

approach (Fig. 3c), the ranking process started from locations

with the highest pest arrival rates, whereas the bottom-up

SSD approach (Fig. 3d) started ranking from the locations

with the lowest arrival rates. In turn, the two approaches are

similar in terms of the highest- and lowest-ranked locations,

but for moderate-risk ranks, the methods appear to place dif-

fering levels of emphasis on certainty in the arrival rate esti-

mate (i.e. the top-down approach seems to be less tolerant of

high variability). This distinctive behaviour occurs because

the sequential delineation of the non-dominant subsets pro-

ceeds differently under the top-down or bottom-up rules.

Errors tend to accumulate in the direction by which the

delineation proceeds, which causes characteristic changes in

the structure of the remaining non-dominant subsets. Funda-

mentally, the non-dominance conditions under which either

the top-down or bottom-up rule is applied to a set may not

be symmetric. Briefly, if subset, A, of a set N is non-dominant

to the rest of the set, N’, this does not always imply that when

the values in N are inverted, the subset N’ would be non-

dominant to subset A.

The disparate treatment of uncertainty in the M-V- and SSD-

based algorithms can be further illustrated by the pattern of dif-

ferences in their rank values. Figure 4 depicts the rank values

for map locations generated with the M-V (x-axis) and top-

down SSD rules (y-axis). The magnitude of differences between

the M-V and SSD ranks increases gradually as the rank value

increases from zero and peaks in the middle rank values

between 0.4 and 0.6. This pattern is influenced by the shapes of

the arrival rate distributions. In the case of a normally distrib-

uted variable, the M-V efficient set would be the same as the

SSD-efficient set for a decision-maker who is risk averse. How-

ever, the delineation of M-V frontiers in our example started

from the upper outermost boundary of the M-V cloud. Also,

for multimodal and skewed distributions that fail the test for

normality, mean values and variance estimates may not describe

the distribution adequately, so the estimated ranks under the

M-V algorithm could be lower (or higher) than under SSD.
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Table 1 A comparison of ‘top-20’ locations ranked by different allocation methods

Location name

(aggregated

to the nearest

largest

municipality) Province*
Location

type†

Risk allocation method‡

�wj CE M-V

SSD

Top-down Bottom-up

Relative

rank§ rj CE§
Relative

rank* rj M-V

Relative

rank rj FSD

Relative

rank rj SSD

Relative

rank

Highest-risk municipalities (Top-20 locations identified by at least one risk ranking method)

Cornwall ON UB 14¶ 0.23 16 1.0 1 1.0 1 1.0 1

Toronto ON U 1 0.96 1 1.0 2 1.0 1 0.99 2

Windsor (ON) ON UB 3 0.37 7 0.98 4 1.0 1 0.98 4

Kitchener ON U 9 0.31 10 0.99 3 0.99 6 0.98 3

Drummondville QC U 39 0.12 43 0.98 5 0.98 11 0.97 5

Trois-Rivieres QC U 30 0.15 32 0.97 7 0.99 7 0.95 7

Iroquois ON T 45 0.09 53 0.96 8 0.99 5 0.94 8

Quebec QC U 34 0.12 40 0.93 15 1.0 1 0.90 17

Moncton NB U 28 0.15 36 0.97 6 0.98 10 0.96 6

Sainte-Madeleine QC T 22 0.17 25 0.95 10 0.99 8 0.93 11

Montreal QC U 15 0.21 21 0.95 9 0.98 9 0.94 9

Sarnia ON UB 6 0.28 13 0.94 13 0.97 14 0.92 13

Lacolle QC TB 52 0.07 64 0.94 11 0.97 12 0.93 10

Hamilton ON U 16 0.21 20 0.92 18 0.97 13 0.89 19

London ON U 4 0.41 6 0.94 12 0.96 19 0.92 12

Saint-Georges QC UB 73 0.05 75 0.93 16 0.96 16 0.91 15

Napanee ON U 10 0.33 9 0.92 17 0.95 23 0.91 16

Windsor (QC) QC T 42 0.15 35 0.91 22 0.96 17 0.90 18

North Bay ON U 19 0.22 17 0.92 19 0.95 24 0.91 14

Ottawa ON UB 38 0.11 47 0.88 32 0.96 18 0.86 36

Gananoque ON UB 2 0.47 3 0.91 20 0.94 32 0.89 20

Nobleton ON T 80 0.03 108 0.86 45 0.96 15 0.88 22

Oshawa ON U 5 0.33 8 0.89 26 0.94 31 0.84 44

Calgary AB U 8 0.45 5 0.94 14 0.90 56 0.86 29

Sorel QC U 89 0.04 88 0.86 41 0.96 20 0.86 34

White Rock BC UB 7 0.47 2 0.91 21 0.89 60 0.88 23

Niagara Falls ON UB 13 0.24 15 0.87 33 0.93 34 0.88 24

Sault Ste. Marie ON UB 20 0.21 22 0.86 40 0.92 42 0.87 26

Abbotsford BC UB 11 0.47 4 0.91 23 0.88 68 0.86 33

Kingston ON U 18 0.22 19 0.88 31 0.91 47 0.88 25

Sparwood BC T 24 0.25 14 0.90 25 0.86 76 0.85 41

Orono ON T 17 0.22 18 0.85 50 0.92 44 0.86 35

Ingersoll ON T 12 0.31 11 0.87 36 0.89 63 0.86 30

Thunder Bay ON U 27 0.29 12 0.86 44 0.79 140 0.82 58

Other notable cities

Halifax NS U 102 0.03 129 0.86 42 0.93 36 0.84 47

Winnipeg MB U 32 0.14 37 0.88 30 0.91 49 0.85 40

Sudbury ON U 36 0.12 41 0.85 48 0.88 65 0.86 32

Edmonton AB U 35 0.18 24 0.84 54 0.85 87 0.84 45

Vancouver BC U 43 0.15 31 0.83 57 0.84 96 0.85 27

Barrie ON U 21 0.19 23 0.82 63 0.83 103 0.86 28

Saskatoon SK U 75 0.06 67 0.82 70 0.81 125 0.85 37

Lethbridge AB U 123 0.03 109 0.77 104 0.78 146 0.85 38

Regina SK U 167 0.01 182 0.75 119 0.77 150 0.83 53

Fredericton NB U 194 0.01 214 0.69 165 0.81 122 0.83 51

*Canadian provinces: AB – Alberta; BC – British Columbia; MB – Manitoba; NB – New Brunswick; NS – Nova Scotia; ON – Ontario;

QC – Quebec; SK – Saskatchewan.

†Location type: U – urban area; B – border crossing with the United States.; T – town.

‡Risk allocation method: �wj – based on the mean arrival rate value; CE – based on the certainty equivalent; M-V – based on nested mean-

variance frontiers; SSD – based on the second-degree stochastic dominance rule (top-down and bottom-up ranking approaches).

§Risk metric: rj – location-specific risk rank rescaled to a 0–1 range.

‘relative rank’ – the location’s order rank in the table based on the rj value.

¶The top 20 relative ranks are shaded in grey; the risk rank values rj > 0.9 are outlined in boldface.
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Estimates of ranking errors

Figure 5a, c and e shows minimum, median and maximum

bootstrap standard errors, se(rj)boot, plotted against the

rescaled risk rank values, rj, for the three ranking methods.

Becausethe ranking methods based on nested non-dominant

frontiers (i.e. the M-V and SSD rules) tend to accumulate

errors as the ranking proceeds from highest- towards low-

est-risk ranks (or, in the case of the bottom-up SSD rule,

from lowest to highest), we depicted basic trends in errors as

a function of the rank value. The standard errors represent

the variability in rank due to the use of a finite number of

model runs to approximate the ‘true’ distribution of arrival

times. The ranks based on the M-V rule had the largest

errors, with median se(rj)boot approaching 0.12 (Fig. 5a). The

top-down SSD ranking had the lowest errors, with median

se(rj)boot below 0.05 (Fig. 5c). The bootstrap errors for the

bottom-up SSD ranking were higher, but median se(rj)boot
remained below 0.08 (Fig. 5e).

For the SSD top-down technique (Fig. 5c), errors were

the lowest for the highest ranks (rj > 0.85), which were

delineated first and then displayed an increase in variability

for ranks between 0.15 and 0.85. Overall, the errors

remained relatively low, as indicated by the nearly straight,

gently sloping lines for median se(rj)boot. The median

errors generated with the SSD bottom-up technique were

generally higher, especially for the moderate rank values

between 0.55 and 0.8. Compared to the top-down SSD

classification, the maximum bootstrap error values for the

range of ranks between 0.15 and 0.6 (Fig. 5e, dashed line)

were also higher.

In general, the delineations based on convex M-V fron-

tiers (Fig. 5a, b) showed higher errors than the methods

based on pairwise SSD tests. Because the nested efficient
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sets in the SSD or M-V classifications were delineated in

sequential order, the standard errors were the lowest for

the ranks delineated first. For all three methods, errors

increased in a fairly linear fashion in the direction of the

ranking sequence. With respect to the bottom-up SSD clas-

sification, the errors were also very low for the ranks above

0.9 (i.e. at the end of the ranking sequence for this

approach, with fewer locations left to rank and more

apparent differences between the remaining locations).

Overall, then, the bootstrap standard errors indicate that, at

least for high- and moderate-risk ranks above 0.7, the

top-down SSD classification was least influenced by the use

of a finite number of model runs in the analysis, although

bottom-up SSD also performed similarly for high-risk

locations above 0.8.

Figure 5b, d and f shows, respectively, the jackknife stan-

dard errors for the ranks delineated with the M-V, top-down

SSD and bottom-up SSD approaches. Compared to the boot-

strap estimates, the median error values were considerably

higher. This is logical: the removal of an element from a

non-dominant set during the jackknife tests may change the

dominance relationships between the other elements. The

minimum–maximum error ranges in Fig. 5 also help under-

stand the general variation of the ranking errors. Because the

jackknife test did not employ resampling with replacement,

the location-to-location variation of the error values in the

SSD-based classifications was lower than in the bootstrap

test, so the minimum–maximum ranges in Fig. 5d and f

appear to be narrower and more uniform than in the M-V

approach (Fig. 5b).

DISCUSSION

The portfolio-based techniques appear to be dependable risk

mapping methods when prior knowledge about an invasive

organism is imprecise. Both the M-V and the SSD techniques

delineated nested ‘efficient’ sets of map elements based on a

partial order of these elements in a space defined by the

invasion model outputs (i.e. the mean arrival rate and its

standard deviation in the M-V scenario, and distributions of

invasion risks in the form of CDF integrals in the SSD

scenario). Their reliance on a partial order of elements makes

these approaches fairly robust to errors in data and model

assumptions about the organism of interest. Because the SSD

and M-V non-dominant sets are discrete, it takes a higher

degree of uncertainty to alter the partial ordering of elements

(i.e. the arrangement of points in M-V space, or the domi-

nance relationships in the SSD scenario) in these scenarios

and move a particular point from one non-dominant set to

another. However, the CE method uses a continuous

weighted summation, so any small alteration in the mean

arrival rate or its variance changes the resulting rank value

linearly.

The techniques presented offer a strategy for dealing with

the typical lack of knowledge about an invasive organism

(which commonly translates into a problem of combining a

multitude of differing assessments into a one-dimensional risk

estimate and generating consistent rankings based on impre-

cise data). Furthermore, this lack of knowledge often causes

experts to generate fairly coarse assessments in vague ‘high–

low’ terms. Although experts can discern the meaningful

trends in the predicted outcome of an invasion, they are rarely

able to assign precise probability values. In the portfolio-based

techniques, each geographic location is ordered along a ‘high–

low’ risk gradient by finding nested ‘efficient’ sets, which

makes the issue of assigning precise values less critical.

Note that the M-V rule assumes that the first two distribu-

tion moments (i.e. the mean and the variance) provide an

adequate representation of the distribution as a whole (Gan-

dhi & Saunders, 1981). This may preclude the application of

the method in many practical situations where the distribu-

tion fails the test for normality. Alternatively, the stochastic

dominance approach evaluates the entire cumulative distri-

bution of expected outcomes and does not require testing

the distribution for normality (Fishburn & Vickson, 1978).

Incorporating the decision-maker’s risk preferences

The risk mapping techniques based on the CE, M-V and the

SSD rules depict two decision-making strategies that offer

different treatments of uncertainty. The CE and M-V rules

may be suitable in situations when uncertainty about the

organism of interest is considered as a factor that could

potentially increase the level of priority for decision-makers.

This situation is common in risk assessments aimed to aid

early detection of invasive organisms, when the need to gain

more information about the invader is paramount.

Alternatively, a delineation based on the SSD rule may be

more suitable for assessments that support costly decisions

(such as restricting trade or imposing a regulation) or when

a decision-maker otherwise shows risk-averse preferences

with respect to the chosen risk metric. While the SSD rule

operates from the perspective that a decision-maker is funda-

mentally risk averse (Porter et al., 1973; Levy, 1998; Meyer

et al., 2005), it does not require an explicit specification of a

degree of risk aversion or defining a numerical ‘utility’ value

for every possible invasion outcome that a decision-maker

may encounter. Furthermore, if the risk metric (or the

‘utility’ value) takes into account costs or is represented in a

monetary equivalent (cf. Hauser & McCarthy, 2009; Hester

et al., 2013), then the SSD rule could be applied to these

metrics to prioritize cost-effective management actions in

spatially heterogeneous environments. It is also common for

decision-makers to focus on a certain range of risk values. If

the delineation of highest-risk sites is the main objective,

then the top-down SSD ranking approach is suitable. When

the decision-making objective is to identify and filter off the

lowest-risk domains (which will not require any action), a

bottom-up SSD ranking method would be a better choice.

Ultimately, the applicability of a particular risk prioritiza-

tion method can be affected by the choice of the risk metric

used in the assessment. The choice of metric may change the
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interpretation of the uncertainty associated with the metric’s

variation and subsequently demand a different risk ranking

method. For example, when a risk assessment is intended to

assist with pest surveillance (i.e. to provide new information

about the distribution of a pest), the modelled probability of

pest arrival is not sufficient to characterize the potential

information gain from, for example, an unexpected detection

of the pest in a low-probability location. In such a case, the

uncertainty of the arrival rate estimates becomes a distinctly

important variable, and so the prioritization would best be

done in the two dimensions of the arrival rate and its

variance. The use of the M-V algorithm would seem appro-

priate in this instance. Furthermore, one could estimate the

risk ranks with all three proposed algorithms and then order

map locations in a three-dimensional space using multicrite-

ria aggregation techniques that do not require setting the

criteria weights (such as the multi-attribute frontier aggrega-

tion described in Yemshanov et al., in press).

Computational remarks

The M-V and SSD techniques use somewhat different methods

to generate the risk ranks. The M-V approach ‘peels’ the cloud

of points (representing individual map locations) in dimen-

sions of the mean risk and its variance, starting from the out-

ermost layer (Fig. 1a). Alternatively, the stochastic dominance

approach ranks the geographic locations via multiple pairwise

SSD tests (Fig. 1b). As a consequence, the two techniques typi-

cally yield different numbers of elements at the highest-risk

ranks. Typically, the M-V approach generates a larger number

of elements in the outermost frontiers (as is evident from

Fig. 1a). The allocation of the frontiers in the M-V approach

can also be influenced by local variations of the point density

in the M-V space: more frontiers can be delineated in regions

of the M-V space with higher point density. This may explain

the considerably higher ranking errors estimated for the M-V

approach in the bootstrap and jackknife tests.
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