Conformational isomerism of phenolic procyanidins: preferred conformations in organic solvents and water

Tsutomu Hatano† and Richard W. Hemingway *

Southern Research Station, USDA-Forest Service, 2500 Shreveport Highway, Pineville, LA 71360, USA

NMR studies of catechin-(4α→8)-epicatechin (1) and catechin-(4α→8)-catechin (2) provided complete assignment of the proton and carbon resonances for both the more extended and compact conformers in the free phenolic form. When 1 is in organic solvents, the more extended rotamer is preferred over the more compact rotamer (10:7), but in water, the compact rotamer dominates (2:10). When 2 is in organic solvents, the more compact rotamer is slightly preferred (8:10), but in water, only trace amounts of the more extended rotamer are detected. NOE experiments show rotational conformation exchange despite the fact that two distinct and sharp sets of signals are seen for each rotamer. The upper unit heterocyclic ring exists in an approximate half-chair conformation in each rotamer for both dimers. However, coupling constants of the lower unit heterocycles show substantial axial orientation of the B-ring. Lineshape analysis of the terminal unit H-3F excludes E- and A-conformational interchange. These results and NOE experiments show a skewed-boat conformation for the terminal unit in 1 and between a half-chair and skewed-boat conformation for the terminal unit in 2.

Condensed tannins are widely distributed in plants where they are often present as major constituents in tissues surrounding the vascular cambium (tree bark) or membranes surrounding fruits (e.g. peanut or pecan nuts) otherwise exposed to aggressive microbial, insect or animal predation. The protective properties of condensed tannins are thought to reside in their propensity to complex with proteins. Believing that complication of polyflavanoids with proteins is, to a significant extent, controlled by conformational preferences and flexibility of the polyflavanoid, we have engaged in a long-term effort to define the conformational properties of polyflavanoids using a variety of molecular mechanics and molecular orbital computations in combination with crystal structures, time-resolved fluorescence, as well as NMR methods. The polyflavanoids offer especially interesting challenges because of the large number of potential sources of conformational isomerism including the location and stereochemistry of the interflavanoid bond, rotation about the interflavanoid bond and heterocyclic ring geometry.

NMR spectra of the free phenolic forms of 2,3-trans-3,4-trans dimeric proanthocyanidins such as catechin-(4α→8)-epicatechin (1) or catechin-(4α→8)-catechin (2) exhibit multiplicity due to rotational isomerism at ambient temperatures. Fletcher et al. studied rotational isomerism in dimeric procyanidins showing that 2 in DMSO exhibited multiplicity in the spectrum observed at 30 °C, but this collapsed to a first-order spectrum at 100 °C. Multiplicity in the NMR spectrum was attributed to rotational isomerism. Foo and Porter expanded our understanding of the conformations of procyan-
idin dimers in their work on dimers containing either or both 2R and 2S absolute stereochemistry in the constituent flavan-3-ols. In the phenolic form of the ‘normal’ dimers (both upper and lower units either 2R or 2S), the NMR spectra were first-order in compounds with 2,3-cis stereochemistry of the upper unit. However, in the ‘crossed’ dimers (upper and lower units of opposite absolute configuration, i.e. 2R upper and 2S lower units), considerable broadening or multiplicity was evident in 1H NMR spectra in compounds with 2,3-cis stereochemistry of the upper unit. The increase in restriction of rotation was attributed to closer approach of the E-ring of the terminal unit to the upper unit.

In addition to rotational isomerism, an important potential source of conformational isomerism is associated with the geometry of the heterocyclic rings (Fig. 1). Foo and Porter,18 studying the peracetate derivatives of procyanidin dimers, suggested that a C-3‧-sofa conformation best fits the observed JHH coupling constants for the upper units with 2,3-cis relative stereochemistry. A half-chair conformation seemed to fit best for the upper units with 2,3-trans relative stereochemistry, but here JHH coupling constants are not so sensitive to conformational change of the C-ring, so both JHH and JH4 couplings are needed to define the conformation. The lower units of these dimers approximated a C-2‧-sofa conformation.

The observation of a ‘reverse’ half-chair or ‘axial’ B-ring conformation for the pentaaacetate of (+-)·catechin in the crystal state, whereas the IH NMR spectrum indicated a JHH coupling of ca. 6.5 Hz, suggested that the heterocyclic ring might be flexing rapidly in the NMR timescale.19 In an attempt to explain these JHH coupling constants, Porter et al.19 suggested that these coupling constants should be considered as averages of the E- (B-ring equatorial) and A-conformers (B-ring axial) due to rapid heterocyclic ring conformation interchange on an NMR timescale. Porter et al.19 predicted the ratio of A- and E-conformational isomers based on an arithmetical average of the two conformers in comparison with the observed JHH coupling constants. However, such ratios of A- or E-conformers were not consistent with computed differences in conformational energy.8

Through use of molecular dynamics and molecular search methods,6 it is possible to provide support for heterocyclic ring conformational interchange. Predicted coupling constants for tetra-O-methyl (v)·catechin are in reasonable agreement with those observed, particularly when a Boltzmann-average of the ensemble of conformers as predicted by the GMMX global search methodology is used to predict observed heterocyclic ring coupling constants.8,10 Although well tested on monomeric flavan-3-ols, there are no computational or NMR results supporting such heterocyclic ring conformational interchange in dimeric and larger polyflavanoids.

Previous NMR studies directed towards the assignment of the proton and carbon resonances of each rotamer, as is required if we are to use NMR methods to explore the complexity of dimeric flavanoids with polypeptides,28 are limited to only a few contributions.6,15–18 Steynberg et al.15 defined proton spectra of each rotamer of the methylated/acylated derivatives for a series of prostaticinidin dimers. Long-range COSY experiments permitted definition of protons of the upper and lower units in each rotamer. The rotational state of each rotamer could be defined using NOE experiments that showed the presence or absence of correlation between H-4c and MeO–H. It was then possible to define the heterocyclic ring conformations in the upper and lower units of each rotational isomer from JHH couplings. The heterocyclic ring in the upper unit was predominantly in an E-conformation (i.e. half-chair for the 2R,3S isomers and in a ‘reverse’ half-chair for the 2S,3R isomers). Comparatively small JHH couplings for the 2,3-trans ter-

† Mention of trade names does not constitute endorsement by the US Department of Agriculture.
of the relative chemical shifts of the H-6A and H-8A protons that were made to assist in the assignment of the C-5A, C-7A and C-9A carbon resonances. In addition, the relative chemical shifts of the H-6A and H-8A protons and corresponding carbon resonances are similar to those found in spectra measured in 1H-dioxane (Tables 1 and 2).

In an effort to clarify this question, a sample of 1 was added to D$_2$O and kept at ambient temperature for two days after which it was freeze-dried and the spectrum recorded in D$_2$O to which various amounts of D$_2$O were added. When acetone was the solvent, the H-8A signal was significantly smaller than the chemical shifts similar to those described above. After addition of 11% of D$_2$O, the H-6A and H-8A protons of the minor rotamer had collapsed to a singlet and those of the major rotamer were almost superimposed. Further addition of D$_2$O to a 20% level collapsed the H-6A and H-8A of the major rotamer and two signals began to emerge again for the minor rotamer. Finally, after addition of 77% of D$_2$O, both the major and minor rotamers once more showed two sets of meta-coupled doublets, but the relative order of the chemical shifts of the larger and smaller signals were inverted from those seen when recorded in 1Hacetone. The spectral properties of these compounds in D$_2$O are discussed more fully below.

The HMBC experiment provides an efficient route to solving the question of the location of the interflavonoid bond, which has previously been a substantial challenge, often requiring methylation and a series of methoxyl NOE experiments. An HMBC experiment on 1 in 1Hacetone showed a cross peak resulting from the H-2c which appeared as a broad signal at δH 5.00 to C-9a at δC 155.0 as was seen in the upper unit of this

Table 1 1H NMR assignments for catechin-(4a→8)-epicatechin (1)

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Rotamer</th>
<th>Unit</th>
<th>A/D-ring</th>
<th>B/E-ring</th>
<th>C/F-ring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Dioxane</td>
<td>A</td>
<td>U</td>
<td>5.67 (2.3)*</td>
<td>5.77 (2.3)*</td>
<td>6.89 (2.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>5.74 (6.4)</td>
<td>7.09 (6.2)</td>
<td>6.72 (8.0)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>U</td>
<td>5.76 (2.3)</td>
<td>5.81 (2.3)</td>
<td>6.63 (2.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>5.90 (6.4)</td>
<td>6.54 (2.0)</td>
<td>6.62 (8.0)</td>
</tr>
<tr>
<td>Acetone</td>
<td>A</td>
<td>U</td>
<td>5.84 (2.4)</td>
<td>5.85 (2.4)</td>
<td>7.01 (2.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>6.04 (6.4)</td>
<td>7.21 (6.2)</td>
<td>6.79 (8.0)</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>U</td>
<td>5.95 (2.4)</td>
<td>5.99 (2.4)</td>
<td>6.86 (2.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>6.20 (6.4)</td>
<td>6.71 (2.0)</td>
<td>6.71 (8.0)</td>
</tr>
<tr>
<td>D$_2$O</td>
<td>A</td>
<td>U</td>
<td>5.88 (2.5)</td>
<td>5.89 (2.5)</td>
<td>6.54 (1.9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>6.01 (6.4)</td>
<td>6.32 (1.9)</td>
<td>6.67 (8.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Rotamer</th>
<th>Unit</th>
<th>A/D-ring</th>
<th>B/E-ring</th>
<th>C/F-ring</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Dioxane</td>
<td>A</td>
<td>U</td>
<td>97.0</td>
<td>95.8</td>
<td>115.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>97.0</td>
<td>96.7</td>
<td>115.0</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>U</td>
<td>97.0</td>
<td>96.7</td>
<td>115.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>96.1</td>
<td>97.3</td>
<td>116.0</td>
</tr>
<tr>
<td>Acetone</td>
<td>A</td>
<td>U</td>
<td>97.6</td>
<td>96.9</td>
<td>115.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>97.4</td>
<td>96.9</td>
<td>116.1</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>U</td>
<td>96.5</td>
<td>96.9</td>
<td>114.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L</td>
<td>96.6</td>
<td>95.7</td>
<td>115.5</td>
</tr>
<tr>
<td>D$_2$O</td>
<td>A</td>
<td>U</td>
<td>95.4</td>
<td>96.9</td>
<td>114.3</td>
</tr>
</tbody>
</table>

* Data in parentheses are J values in Hz or multiplicity. * Data in brackets indicate relative proportions of two conformers in which the A and B conformers are the extended and compact conformers, respectively. * Data in dry acetone where OH coupling to H-3a was evident. Small amounts of D$_2$O were added to some samples discussed in the text so small deviations in chemical shift and coupling constants will be seen between the data in this table and referenced in the text. * Signals for the minor rotamer were too small to permit accurate assignments.
which each of the H-2c, H-3c and H-4c protons were irradiated. When the spectrum of a sample of 1 which had been partially exchanged with deuterium was compared with a normal sample in \[^{1}H\]dioxane, the H-8A signals were clearly depressed more than the H-6A signals.

Catechin-2(4α→8)-catechin (2). A similar protocol was used to assign the proton and carbon resonances of 2 summarized in Tables 3 and 4. As before, an HMBC experiment was used to assign the H-6A and H-8A of the two rotamers. An interesting problem in interpreting the C-ring coupling patterns arose here because small amounts of D_2O were added to the acetone to eliminate hydroxy signals and coupling to H-3c. This caused overlap of H-3c and H-4c in both rotamers and that resulted in 'virtual coupling' of the H-2c of both rotamers. The H-2c signal was converted to the expected doublet by adding less or more D_2O to the solvent. Having resolved that question, it was then possible to assign the A-ring Ar-H protons for the major rotamer using HMBC experiments. The cross peaks from H-2c at δ_H 4.28 as well as H-8A at 5.83 to C-9A at δ_C 158.6 clearly established the assignment of H-8A for the major rotamer. This spectrum also showed a weak cross peak between H-2c of the minor rotamer at δ_H 4.39 and the C-9A of this rotamer at δ_C 158.5, but the H-6A and H-8A protons for the minor rotamer were nearly superimposed, so it was not possible to distinguish between the two because of insufficient resolution in the proton dimension.

To solve this problem, a sample of 2 was added to D_2O and allowed to stand at room temperature for 2 days to deuteriate partially the A- and D-ring protons. In contrast to observations on the relative rates of exchange of H-6A and H-8A observed in (+)-catechin and 1, the H-6A proton in the major rotamer (the assignment clearly defined by a HMBC experiment) was exchanged more than H-8A. The proton spectrum of the partially deuterium-exchanged sample then appeared at two comparatively sharp singlets for the H-8A protons at δ_H 5.86 and 5.83 with smaller and more broadened signals for the H-6A protons at δ_H 5.93 and 5.85 for the major and minor rotamers, respectively.

The HMBC experiment also verified that both rotamers were linked through 4→8 interflavanoid bonds because of cross peaks between H-4c of both the major and minor rotamers at δ_H 4.46 and 4.57, with the C-9A carbons at δ_C 154.9 and 154.7 that were defined by correlation to the H-2p protons at δ_H 4.57 and 4.73, respectively. Long-range COSY experiments working from H-4c and the two H-4p protons distinguished the H-2c and H-2p protons of each rotamer, and correlation of those with H-2p and H-6a or H-2p and H-6b permitted assignment of the two catechol rings to the upper and lower unit in each rotamer. For example, the H-2c of the major rotamer showed crosspeaks with the H-2p doublet at δ_H 6.78 and to the H-6b doublet (J = 2.0 and 8.0 Hz) at δ_H 6.50, whereas the H-2p doublet of the lower unit of this rotamer showed crosspeaks with the H-2p doublet at δ_H 6.65 and to the H-6b doublet at δ_H 6.29. The other rotamer H-2c proton showed a crosspeak with the H-2p doublet at δ_H 6.99 and was correlated with the H-2p at δ_H 6.73 lowest field H-2p doublet at δ_H 7.03 and to the H-6a doublet at δ_H 6.88. The H-5c and H-5b doublets were then assigned from a long-range COSY experiment. These assignments were supported by a series of selective homonuclear decoupling experiments as well as by J-resolved experiments. The corresponding carbon assignments were then made using HETCOR and HMBC experiments.

The spectra of 2 in \[^{1}H\]dioxane also highlight the difficulty in accurately assigning the H-6A and H-8A of the two rotamers in the phenolic form. Three of the A-ring protons are overlapped at ca. δ_H 5.74, so a J-resolved experiment was used to show that the H-6p protons of the major and minor rotamers were at δ_H 5.87 and 5.73 and that two of the meta-coupled doublets were superimposed at δ_H 5.75. The other two meta-coupled doublets, one belonging to the major rotamer and the

Fig. 2 HMBC correlations used to assign H-6A and H-8A in 1 dimer. In addition, the H-4c doublet at δ_H 4.70 (J_1/H = 7.6 Hz) also showed a cross peak to the same carbon. If this compound had been formed with a C-4c to C-6p linkage, the Ar-H singlet would have to be assigned to H-6p and H-4c could not have correlation with C-9p.

The HMBC experiment also permitted assignment of the C-1A and C-1B signals through correlations with H-2c and H-2p protons. These correlations showed that the higher field carbons at δ_C 131.5 and 132.0 were the C-1B carbons of the lower unit of the minor and major roteramers, respectively. The C-1A carbons of the upper unit of minor and major roteramers appeared at δ_C 132.4 and 132.5, respectively. The resolution in the HMBC experiment was not sufficient to assign the C-3 and C-4 carbons of the B- and E-rings. However, a COLOC experiment optimized at 8 Hz coupling showed correlations between the H-2A and H-2B protons of the more extended major roteramer at δ_H 7.21 and 7.01 with the carbon resonances at δ_C 145.4 and 145.7 for C-3A and C-3B, respectively. The slightly resolved H-5 doublets (J = 8 Hz) of this roteramer for the upper and lower units at δ_H 6.80 and 6.79 showed strong cross peaks with carbons at δ_C 145.52 and 145.48 for C-4A and C-4B, respectively.

Because dioxane is the preferred solvent for fluorescence studies, NMR spectra were assigned in \[^{1}H\]dioxane as well. The relative proportions of the two roteramers as well as chemical shifts and coupling constants for each of the two roteramers were similar when recorded in either \[^{1}H\]acetone or \[^{1}H\]dioxane (Table 1). However, interpretation of the proton coupling patterns seen for 1 in \[^{1}H\]dioxane was more difficult. For example, the presence of two hydroxy proton signals overlapping the B- and E-ring protons complicated direct assignment, but the couplings were readily sorted out using a J-resolved experiment. Hydroxy coupling to H-3c in both roteramers resulted in very broad complex multiplets, but their assignment could be made using a series of HOMODEC experiments in
other to the minor rotamer on the basis of their integration, were at \(\delta_R \) 5.66 and 5.69. The partially deuterium-exchanged sample of 2 described above was also used as a probe for assignment of the A-ring protons in \([\text{H}_4]\)dioxane. Here, the two H-8A singlets (see discussion of spectral assignments in acetone above) remained as strong signals, one at \(\delta_R \) 5.75 and the other at \(\delta_R \) 5.69. A HETCOR experiment showed that the H-8A of the major rotamer at \(\delta_R \) 5.69 was correlated with a carbon resonance at \(\delta_C \) 96.5 and the H-8A of the minor rotamer at \(\delta_R \) 5.75 was correlated with a carbon resonance at \(\delta_C \) 97.0. The two H-6A protons at \(\delta_R \) 5.75 and 5.66 were correlated with carbon resonances at \(\delta_C \) 96.7 and 97.0 for the major and minor rotamers, respectively.

To explore these assignments further, 2 was added to \([\text{H}_4]\)dioxane and proton spectra were recorded after incremental dropwise addition of \(\text{D}_2\text{O} \) where the A- and D-ring proton signals shifted downfield. With the addition of 6 drops of \(\text{D}_2\text{O} \), the chemical shifts of H-6A and H-8A of the major rotamer now appeared at \(\delta_R \) 5.83 and 5.73. The corresponding chemical shifts of the minor rotamer were \(\delta_R \) 5.87 and 5.75, similar to the relative order observed in dry \([\text{H}_4]\)dioxane. When recorded in \(\text{D}_2\text{O} \), one rotamer was observed and here the relative order of the chemical shifts of H-6A and H-8A were 5.83 and 5.54, respectively. Assignment of the B- and E-ring protons required a series of HOMODEC experiments, but once the proton signals were assigned the protonated carbon resonances were readily assigned with a HETCOR experiment.

Rotamer conformations

An important feature of the rotational isomerism in the free phenols 1 and 2 was the 'rotational conformational exchange' first noted in NOESY experiments of 1 when recorded in \([\text{H}_4]\)acetone with a small amount of \(\text{D}_2\text{O} \). These spectra showed that strong crosspeaks representing conformational exchange in which correlations between the same proton in each of the two rotameric isomers dominate the spectrum. This effect was explored further in NOE-difference experiments, which clearly showed that despite the sharp signals for each of the two rotamers, the effect of irradiation of a proton in one rotamer was translated to the same proton in the other rotamer, indicating that there is rotational interchange between two conformers in the timescale of this experiment.

Long-range COSY experiments showed strong crosspeaks due to five-bond coupling between H-4\(_A\) and the A-ring Ar-H protons of each rotamer pair. This is analogous to allylic coupling where the correlation is maximized when the dihedral angles between the C-H α-bond and the π orbitals are 0°. The H-6A and H-8A (the A-ring plane), form an approximate 90° orientation relative to H-4\(_C\) (approximately axial to the heterocyclic C-ring plane). Hence, both rotamers show strong crosspeaks between H-4\(_C\) and H-6A or H-8A. The power of this experiment lies in its sensitivity to the orientation of H-4\(_C\) with the plane of the D-ring as evidenced through correlations with H-6A. For 1 in \([\text{H}_4]\)acetone, strong crosspeaks between H-4\(_C\) and both H-6A and H-8A, as well as H-6B in the major rotamer indicate that it was the rotamer in which the angle between
H-4c and H-6D was ca. 90°. The minor rotamer showed only a weak crosspeak between these two protons, suggesting an angle between H-4c and H-6D deviating towards either 0° or 180°. Although the relative populations of the two rotamers were similar, the situation was different for 2 in [2H]acetone. Here, the major rotamer showed strong crosspeaks between H-4c and both the H-6a and H-8a protons, but only a very weak crosspeak could be seen between H-4c and H-6D. By contrast, the H-4c of the minor rotamer showed strong crosspeaks to H-6a and H-8a as well as an approximately equally strong crosspeak to H-6D, suggesting an approximate 90° orientation of the H-6D to H-4c.

The orientation of the two rotational conformers was further investigated using NOESY and NOE-difference experiments. In addition to the strong crosspeaks attributable to conformational exchange, the expected correlations between H-2c and H-2e with the corresponding B- and E-ring H-2 and H-6 protons help to assign the upper and lower unit catechol rings. The most important observation is the NOE correlation seen between H-2e and H-4c in the major rotamer of 1 and in the minor rotamer of 2. These correlations were studied further in NOE-difference spectra. Irradiation of the major H-2e of 1 resulted in a strong positive NOE with H-4c as well as a negative (conformational exchange) signal for H-2e of the minor rotamer.

By contrast, irradiation of the H-2e of the minor rotamer of 2 resulted in comparatively weak positive NOE with both H-2e and H-4c of the minor rotamer and a stronger negative (conformational exchange) signal for H-2e of the major rotamer. Differences between 1 and 2 are consistent with relaxation of the irradiation in 1 being directed more through the correlation between H-2e and H-4c than in 2 where more of the saturation was transferred to the other rotamer through conformational exchange. The relative intensities of the crosspeaks between H-4c and H-6D for the two rotamers seen in the long-range COSY experiment, the NOE seen between H-2e and H-4c, and the coupling constants found for the terminal unit heterocyclic rings (discussed more fully below) in both 1 and 2 are all consistent with a conformation such as shown in Fig. 3 for the more extended rotamer in [2H]acetone.

When examined using the MM2 molecular mechanics force-field, two rotational isomers with only small (ca. 3.7 kcal mol⁻¹) differences in conformational energy are evident. For the 4→8 linked dimers, the C3–C4–D8–D9 torsion angles centre on ±90°. However, the flexibility in rotation is limited to a narrow range of from ±75° to ±104° for acceptable energy minima because of steric interactions. The high energy barrier to rotation through 360° coupled with the observation of conformational exchange between the two rotamers seen in NOE experiments begs the question of whether the two 'rotamers' correspond to conformations in which the C3–C4–D8–D9 torsion angles centre on ±90° or if these two conformations are represented by two stabilized forms, the 'extended' conformer in which the C3–C4–D8–D9 torsion angle is ca. −180° and the more 'compact' rotamer in which the π–π interaction between the B- and E-rings would stabilize the conformation where the C3–C4–D8–D9 torsion angle is ca. +100°. Both of these conformations are consistent with the relative intensities of the H-4c and H-6D crosspeaks observed in long-range COSY experiments. The conformation of the more extended rotamer is supported by the observation of NOE between the H-2e and H-4c protons (Fig. 3).

Fig. 3 Stereoview of the extended rotamer of 1

Fig. 4 PCPMR lineshape analyses of the H-3F proton in 1 when recorded in [2H]acetone with a small amount of D₂O.

\[\begin{align*}
 J_{2F} &= 0.5 \text{ Hz} \\
 J_{4c} &= 3.0 \text{ Hz} \\
 J_{6D} &= 3.0 \text{ Hz}
\end{align*} \]

\[\begin{align*}
 J_{2F} &= 1.2 \text{ Hz} \\
 J_{4c} &= 4.2 \text{ Hz} \\
 J_{6D} &= 2.4 \text{ Hz}
\end{align*} \]

\[\begin{align*}
 J_{2F} &= 4.3 \text{ Hz} \\
 J_{4c} &= 11.0 \text{ Hz} \\
 J_{6D} &= 5.2 \text{ Hz}
\end{align*} \]
The conformation of the more compact rotamer is supported by the anisotropy demonstrated by the large difference in chemical shifts of the B- and E-rings of the two rotamers, particularly for H-2E and H-6E. Note that the E-ring is positioned in a plane close to that of the B-ring in the compact conformers and that it is not necessary to rotate 360° through the large energy barrier involved in aligning the A- and D-rings to interchange between the extended and compact conformers. Because the conformation of the heterocyclic ring in the terminal unit is so important to the stabilization of these two rotational conformations, considerable efforts were made to evaluate the F-ring conformations.

Heterocyclic ring conformations

In either [1H]acetone with a small amount of D₂O added to suppress hydroxy signals or in [1H]dioxane, the coupling constants observed for the upper unit heterocyclic ring in the extended rotamer of 1 were in reasonably close agreement with a half-chair E-conformation, but with a slight distortion toward a C-3c-sofa resulting from rocking of the lower unit slightly back behind the plane of the A- and C-rings, hence a smaller \(J_{1,4} \) coupling constant than would be predicted of a true half-chair (Table 1). The coupling constants suggest that the heterocyclic C-ring in the minor more compact rotamer was distorted slightly more to a C-2c-sofa. The upper unit of both rotamers of 2 had coupling constants that indicated a conformation close to a half-chair with a slight distortion to a C-2c-sofa (Table 3).

However, the coupling constants observed for the terminal units in both rotamers of either 1 or 2 were substantially different from those expected of half-chair conformations. Given the previous evidence for heterocyclic ring conformational interchange, we first assumed that these coupling constants might be explained on the basis of E- and A-conformational averaging in the NMR timescale. Lineshape analysis of the observed H-3p multiplet using PCPMR, in conjunction with the coupling constants predicted for the E- and A-conformers of the terminal flavan-3-ol when minimized using the MMX force field in PCModel showed that the observed H-3p coupling could not be accounted for by any summation of the E- and A-conformers as would be required if the heterocycle flipped back and forth between these two low energy states (Fig. 4).

Instead, the observed coupling constants suggested a comparatively high energy (5-7 kcal mol⁻¹) skewed-boat conformation for the lower unit heterocyclic ring. Analysis of the H-3p of the major (more extended) rotamer of 1 in [1H]acetone plus a small amount of D₂O is offered as an example. When optimized using the MMX force field in PCModel, the E-conformer of epicatechin would have a \(J_{1,3} \) value of 0.5 Hz and both \(J_{1,4} \) and \(J_{1,6} \) would be ca. 3.0 Hz. In the A-conformation in which the B-ring is axial, \(J_{1,3} \) would be expected to be 4.3 Hz with \(J_{1,4a} \) and \(J_{1,6} \) at 11.0 Hz and \(J_{1,6b} \) at 5.2 Hz. When compared with the observed H-3p lineshape, it is clear that the comparatively large \(J_{1,3} \) observed (1.2 v. 0.5 Hz) cannot be attributed to the presence of the A-conformer because that would result in a much broader splitting pattern than was observed. The observed H-3p lineshape can be closely matched using PCPMR particularly with the aid of known \(J_{1,4a} \) and \(J_{1,6} \) coupling constants that were readily obtained from the spectrum. This provided an estimate of \(J_{1,3} \) of 1.2 Hz which, when combined with the \(J_{1,4} \) couplings, indicated a skewed-boat conformation for the heterocyclic F-ring. The analyses of Sternberg et al. of the energy barriers to E- and A-conformational interchange suggest that the
energy of this skewed-boat conformation might be ca. 6 kcal mol\(^{-1}\) higher than for the lowest energy half-chair conformation.

Note that the prediction of a skewed-boat conformation of the terminal epicatechin unit in 1 from the F-ring coupling constants is also supported by NOESY and NOE-difference experiments that showed correlation between H-2E and H-4c for this same rotamer. The latter observation requires that the E-ring is in an axial position in order to align closely these two protons. Additional support for this F-ring conformation comes from a long-range COSY experiment that showed a strong crosspeak between H-4c and H-6o, suggesting an approximate 90° orientation of these two protons. Consideration of the observed coupling constants for the minor and more compact rotamer of 1 also shows a skewed-boat conformation in this rotamer when combined with the observation of distortion to a C-2c-sofa in the upper unit provides appropriate orientation for π-π interaction of the B- and E-rings when the torsion angle H4-C4-D8-D7 is ca. +60°. This would account for the strong up-field shift of the proton resonances of the B- and E-rings in this rotamer.

The conformation of the terminal unit in 2 differs somewhat from that in 1 with apparently more half-chair character as evidenced by lineshape analysis of H-3p. However, NOESY and NOE-difference spectra show correlations between H-2E and H-4c, that can best be accounted for by a skewed boat conformation of the F-ring. PC Model shows that the hydroxy group at 3c has a tendency to form hydrogen bonding with the pyran oxygen of the F-ring and this places the E-ring slightly behind the B-ring.

Fig. 7 Stereoview of the compact rotamer of 1

Conformations in water

Obviously, from the standpoint of helping to understand the biological properties of polyphenols, the important conformations are those of the free phenols in water. As was observed by Haslam and co-workers\(^1\) for 2 and Steynberg et al.\(^2\) for 3, the proton spectra of both 1 and 2 showed predominantly one rotamer when the spectra are recorded in D\(_2\)O. Studies of the relative proportions of the more extended rotamer with normal catechol B- and E-ring chemical shifts, and the more compact rotamer in which the B- and E-ring protons are shifted upfield of 1 in [\(^1\)H\(_2\)]acetone containing different portions of D\(_2\)O show that in [\(^1\)H\(_2\)]acetone the more extended rotamer is present in ca. 65% and the more compact rotamer in ca. 35% of the population. Addition of small amounts of D\(_2\)O (up to ca. 10%) resulted in a slight increase in the population of the more extended rotamer. However, further addition of D\(_2\)O resulted in a gradual decline in the proportion of the more extended rotamer with corresponding increase in the signals due to the more compact rotamer (Fig. 5). When 1 is in D\(_2\)O, the more extended rotamer occupies less than 20% of the population. Similarly, when 2 is in [\(^1\)H\(_2\)]acetone, the more extended rotamer is the minor rotamer being present in only ca. 40% of the population. However, when measured in D\(_2\)O, only signals representing the major compact rotamer are seen. Using the MMX force-field in PCModel, the more extended rotamer appears to be stabilized by hydrogen bonding of the aliphatic hydroxy group at C-3c with the aromatic hydroxy group at C-7c. The more compact rotamer shows hydrogen bonding between the aliphatic hydroxy group at C-3c and the pyran oxygen of the F-ring. When the sample is dissolved in water, the hydrogen bonding restraints should be eliminated allowing the more compact rotamer to dominate, apparently in a comparatively high energy skewed-boat conformation because of π-π interaction between the B- and E-rings.

Lineshape analysis of the H-3p protons of 1 in D\(_2\)O again support the thesis that the F-ring coupling constants cannot be interpreted as conformational interchange between E- and A-conformers, but rather that comparatively high energy skewed-boat conformations must dominate (Fig. 6). For the more compact rotamer that is predominant when either of these compounds is dissolved in water, such a high energy state might be stabilized by π-π interaction of the B- and E-rings. However,
no NOE correlations between the B- and E-rings were observed to support that conclusion. However, all data support a conformation as represented in the stereoview shown in Fig. 7 for 1 in water.

The long-range COSY spectrum of 2 in D$_2$O did not show correlation between H-4$_c$ and H-6$_o$, indicating that the torsion angle H4-C4-D8-D7 must lie close to either 0° or 180°. In addition the strong upfield shift of the protons of the B- and E-rings indicates that these two rings lie close to each other requiring an axial orientation of the E-ring. Lineshape analysis of H-3$_p$ of 2 when measured in D$_2$O (Fig. 8) also suggests that the heterocyclic ring in the terminal catechin unit must take largely a skewed-boat conformation although there is more half-chair character to the coupling constants than was observed in 1. The coupling constants observed for this ring may be representative of a time-average of multiple conformations, but it does not appear possible to account for the lineshape of H-3$_p$ by an averaging of E- and A-conformers.

Experimental

Douglas-fir bark was extracted with acetone-water 7:3 (v/v) at room temperature for 3 days and the concentrated extract solution was extracted with diethyl ether (4 times) to recover 3.0% of an ether extract. Chromatography on Sephadex LH-20 gave 2.5% yield of (2R,3S)-dihydroquercetin on the basis of the bark dry weight. Compounds 1 and 2 were synthesized from dihydroquercetin by reaction with sodium borohydride and either (−)-epicatechin or (+)-catechin as a capture nucleophile. NMR spectra were recorded using a Bruker AC-300 spectrometer fitted with inverse electronics. The 1H$-^1$H long-range COSY and NOESY spectra were symmetrized prior to plotting. When measured in D$_2$O (at δ$_H$ 2.04) was used as the internal standard. Stereoviews in Figs. 3 and 7 were generated using Chem3D.²

Acknowledgements

This work was supported in part by USDA NRICGP Grant No. 94-03395. The authors especially thank Dr. Jan P. Steynberg formerly at the Department of Chemistry, University of the Orange Free State, Bloemfontein, South Africa who made significant contributions to preliminary experiments in this study.

References

25. PCModel, Serena Software, 386 Version. Bloomington, IN.