INTRODUCTION

Determining the sources of nonpoint source pollution in a watershed is difficult, although the largest source of sediment in forested systems is from skid trails, haul roads, and landings associated with forest harvesting (Ketcheson et al., 1999; Swift, 1988). The transport of sediment to streams and subsequent sedimentation leads to the loss of stream habitat and changes in stream hydrology (NCASI, 1999a; 1999b). Forest road position in the landscape, the soil type and geology present, and method of retirement ultimately determines the amount of sediment flux to the stream (Ketcheson et al., 1999; Swift, 1988).

Over the years the use of best management practices (BMPs) for forest road construction and maintenance has improved water quality. While BMPs have been designed for, and proven to be effective at reducing erosion caused by logging, elevated nonpoint source pollution continues to occur after harvest because of the severe soil disturbance necessary to construct roads (Arthur et al., 1998). The extent of the soil disturbance varies because of topography, seasons, construction methods and harvesting techniques (Kochenderfer, 1999). Soil damage on forest roads is mostly due to compaction and erosion that affects infiltration, surface and subsurface water flow (Wemple et al., 1996). If significant, the resulting erosion can be a major source of sediment and nutrient losses following the harvest. In eastern Kentucky for example, suspended sediment fluxes for the first two years following harvest were 10-40 times greater in a harvested watershed implemented with BMPs than in an unharvested watershed (Arthur et al., 1998). Nitrogen, phosphorus, and cations followed similar patterns.

Current BMPs for forest roads in many states include seedling, fertilizing, and liming to ensure establishment of the cover crop, diversion of surface water from exposed mineral soil, and restriction of traffic following the harvest (Stringer et al., 1997). With current BMPs, the natural recovery of soil properties, especially bulk density and infiltration, is usually slow and relies on wetting and drying, frost activity, animal activity, and root growth. Subsoil bulk density in forest roads had not recovered to undisturbed levels in 23 years in central Idaho (Froehlich et al., 1985) and 32 years in Oregon (Wert and Thomas, 1981).

The skidding on steep terrain (slopes greater than 30 percent) requires the construction of a relatively dense network of skid trails. In steep terrain 10-25 percent of the land area can be occupied by bladed skid trails (Stuart and Carr, 1991; Miller and Sirois, 1986; Kochenderfer, 1977). The dense network of skid trails throughout steep regions not only leads to enhanced nonpoint source pollution but also to losses in forest productivity. Tree volume in forest roads has been estimated to be as much as 80 percent less than volume in undisturbed areas (Carr, 1987). Over an entire harvested area growth reductions of 11.8 percent (Wert and Thomas, 1981) and 12 to 15 percent (Smith and Wass, 1979) have been estimated.

Although current BMPs are effective at reducing nonpoint source pollution, few of the current forest road BMPs specifically address the recovery of soil properties, normal hillslope hydrology, and site productivity. We need to develop new techniques to lessen the transport of sediment and nutrients, minimize the altering of hillslope hydrology, and increase overall forest health and productivity. The USDA Forest Service has recently come under fire to protect roadless areas and to retire or possibly restore roads that receive little use. While numerous methods have been used to retire roads, new technologies have evolved that can potentially ameliorate soil damage and lessen the generation of nonpoint source pollution from forest roads.

ALTERNATIVE FOREST ROAD RETIREMENT METHODS

Although not currently part of most state BMPs, others have investigated combinations of practices such as tillage and mulching that are specifically designed for soil and fertility recovery:

- The most effective amelioration techniques for seedling growth included a combination of tillage and fertilization (Reisinger et al., 1988).
- To increase infiltration in areas with deep compaction, subsoil ripping has shown to be effective (Luce, 1997).
- Moll (1996) outlines procedures including different kinds of tillage and partial and complete recontouring for obliteration of forest roads.

The development of Best Management Practices (BMPs) has been heavily influenced by practices that logging contractors could implement to reduce erosion on roads, landings, and skid trails following the timber harvest. The reliance of loggers on logging or road building equipment to implement BMPs has not emphasized retirement practices such as decomposition of soil profiles.
Revisiting Forest Road Retirement . . . cont’d.

Figure 2. Percent of Penetrometer Probes That Reached or Surpassed 10 cm or 40 cm on Each Treatment on the Three Study Sites (Fuller, Moore, and Road). The higher the percentage the more porous the soil.


AUTHOR LINK Dr. Randy Kolka
Assistant Professor
Department of Forestry
208B Thomas Poe Cooper Building
University of Kentucky
Lexington, KY 40546
(859) 257-4208 / Fax: (859) 323-1031
E-MAIL rkolk2@pop.uky.edu

Randy Kolka is an Assistant Professor of Forest Hydrology and Watershed Management in the Department of Forestry at the University of Kentucky. Dr. Kolka received his undergraduate degree in Soil Science from the University of Wisconsin-Stevens Point and his MS and PhD in Soil Science from the University of Minnesota. His primary research interests include Forest BMP assessment, wetland and riparian hydrology, and carbon, nutrient, mercury and sediment transport. Prior to coming to the University of Kentucky, Dr. Kolka was a Soil Scientist for two years with the USDA Forest Service Southern Research Station studying riparian restoration in bottomland hardwood communities.
Revisiting Forest Road Retirement . . . cont’d.

Mathew Smidt (smidtmf@auburn.edu) is Assistant Extension Specialist and Professor of Forest Operations with the School of Forestry and Wildlife Science at Auburn University. Dr. Smidt received a B.S. in Biology from Doane College, M.S. from Duke University, and a Ph.D from the University of Minnesota. As an extension specialist he has worked with the logging industry to increase the understanding of the costs and benefits of improving logging practices through education and applied research. Prior to moving to Auburn, Dr. Smidt was an extension specialist in timber harvesting at the University of Kentucky.

★ ★ ★
High Data Rate GOES

The first NESDIS-certified High Data Rate GOES transmitter, the SAT HDR GOES, is now available, offering data transmission rates of 300 and 1200 bps between your Campbell Scientific DCP and a GOES satellite.

Features

- NESDIS certified (#1100-001, Nov. 3, 2000) for low and high data rates, including 100, 300, and 1200 bps.
- Can be purchased as part of an integrated data collection platform (DCP).
- Automatic GPS correction of clock and oscillator drift
- Transmitter diagnostics and status information can be sampled by the datalogger and transmitted as part of the data stream
- Compatible with most existing Campbell Scientific hydrologic and meteorologic monitoring systems
- Non-volatile setups configured with Windows-based software
- Independent 16 kbyte self-timed and random data buffers
- Low power requirements and an operating temperature range of -40° to +50°C optimize operation in remote locales
- Available on GSA MAS Contract Number GS-25F-6042D

For more info on the SAT HDR GOES call us at (435) 753-2342 or visit our Web site at www.campbellsci.com/hdrgoes.html

Campbell Scientific, Inc.